1
|
Wu Z, Huang Y, Zhang R, Zheng C, You F, Wang M, Xiao C, Li X. Sex differences in colorectal cancer: with a focus on sex hormone-gut microbiome axis. Cell Commun Signal 2024; 22:167. [PMID: 38454453 PMCID: PMC10921775 DOI: 10.1186/s12964-024-01549-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024] Open
Abstract
Sexual dimorphism has been observed in the incidence and prognosis of colorectal cancer (CRC), with men generally exhibiting a slightly higher incidence than women. Research suggests that this difference may be attributed to variations in sex steroid hormone levels and the gut microbiome. The gut microbiome in CRC shows variations in composition and function between the sexes, leading to the concept of 'microgenderome' and 'sex hormone-gut microbiome axis.' Conventional research indicates that estrogens, by promoting a more favorable gut microbiota, may reduce the risk of CRC. Conversely, androgens may have a direct pro-tumorigenic effect by increasing the proportion of opportunistic pathogens. The gut microbiota may also influence sex hormone levels by expressing specific enzymes or directly affecting gonadal function. However, this area remains controversial. This review aims to explore the differences in sex hormone in CRC incidence, the phenomenon of sexual dimorphism within the gut microbiome, and the intricate interplay of the sex hormone-gut microbiome axis in CRC. The objective is to gain a better understanding of these interactions and their potential clinical implications, as well as to introduce innovative approaches to CRC treatment.
Collapse
Affiliation(s)
- Zihong Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuqing Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Renyi Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chong Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Yuan T, Edelmann D, Kather JN, Fan Z, Tagscherer KE, Roth W, Bewerunge-Hudler M, Brobeil A, Kloor M, Bläker H, Burwinkel B, Brenner H, Hoffmeister M. CpG-biomarkers in tumor tissue and prediction models for the survival of colorectal cancer: A systematic review and external validation study. Crit Rev Oncol Hematol 2024; 193:104199. [PMID: 37952858 DOI: 10.1016/j.critrevonc.2023.104199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
The research aimed to identify previously published CpG-methylation-based prognostic biomarkers and prediction models for colorectal cancer (CRC) prognosis and validate them in a large external cohort. A systematic search was conducted, analyzing 298 unique CpGs and 12 CpG-based prognostic models from 28 studies. After adjustment for clinical variables, 48 CpGs and five prognostic models were confirmed to be associated with survival. However, the discrimination ability of the models was insufficient, with area under the receiver operating characteristic curves ranging from 0.53 to 0.62. Calibration accuracy was mostly poor, and no significant added prognostic value beyond traditional clinical variables was observed. All prognostic models were rated at high risk of bias. While a fraction of CpGs showed potential clinical utility and generalizability, the CpG-based prognostic models performed poorly and lacked clinical relevance.
Collapse
Affiliation(s)
- Tanwei Yuan
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Dominic Edelmann
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jakob N Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany; Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Ziwen Fan
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katrin E Tagscherer
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Wilfried Roth
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | | | - Alexander Brobeil
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hendrik Bläker
- Institute of Pathology, University of Leipzig Medical Center, Leipzig, Germany
| | - Barbara Burwinkel
- Division of Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Gynecology and Obstetrics, Molecular Biology of Breast Cancer, University of Heidelberg, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
3
|
Das PK, Saha J, Pillai S, Lam AKY, Gopalan V, Islam F. Implications of estrogen and its receptors in colorectal carcinoma. Cancer Med 2023; 12:4367-4379. [PMID: 36207986 PMCID: PMC9972078 DOI: 10.1002/cam4.5242] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 11/08/2022] Open
Abstract
Estrogens have been implicated in the pathogenesis of various cancer types, including colorectal carcinoma (CRC). Estrogen receptors such as ERα and ERβ activate intracellular signaling cascades followed by binding to estrogen, resulting in important changes in cellular behaviors. The nuclear estrogen receptors, i.e. ERβ and ERα are responsible for the genomic actions of estrogens, whereas the other receptor, such as G protein-coupled estrogen receptor (GPER) regulates rapid non-genomic actions, which lead to secondary gene expression changes in cells. ERβ, the predominant estrogen receptor expressed in both normal and non-malignant colonic epithelium, has protective roles in colon carcinogenesis. ERβ may exert the anti-tumor effect through selective activation of pro-apoptotic signaling, increasing DNA repair, inhibiting expression of oncogenes, regulating cell cycle progression, and also by changing the micro-RNA pool and DNA-methylation. Thus, a better understanding of the underlying mechanisms of estrogen and its receptors in CRC pathogenesis could provide a new horizon for effective therapeutic development. Furthermore, using synthetic or natural compounds as ER agonists may induce estrogen-mediated anti-cancer activities against colon cancer. In this study, we report the most recent pre-clinical and experimental evidences related to ERs in CRC development. Also, we reviewed the actions of naturally occurring and synthetic compounds, which have a protective role against CRC development by acting as ER agonist.
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh.,Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Joti Saha
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - Suja Pillai
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Alfred K-Y Lam
- School of Medicine & Dentistry, Griffith University, Gold Coast, Queensland, Australia
| | - Vinod Gopalan
- School of Medicine & Dentistry, Griffith University, Gold Coast, Queensland, Australia
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh.,Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
4
|
Chromatin modifiers – Coordinators of estrogen action. Biomed Pharmacother 2022; 153:113548. [DOI: 10.1016/j.biopha.2022.113548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
|
5
|
Epigenetic insights in the diagnosis, prognosis, and treatment selection in CRC, an updated review. Mol Biol Rep 2022; 49:10013-10022. [PMID: 35727475 DOI: 10.1007/s11033-022-07569-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 05/05/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIM The gradual accumulation of genetic and epigenetic alterations can lead to the development of colorectal cancer. In the last decade much research has been done to discover how methylation as an epigenetic alteration leads to carcinogenesis. While Methylation is a biological process, it can influence gene expression by affecting the promoter activity. This article reviews the role of methylation in critical pathways in CRC. METHODS In this study using appropriate keywords, all research and review articles related to the role of methylation on different cancers were collected and analyzed. Also, existing information on methylation detection methods and therapeutic sensitivity or resistance due to DNA methylation were reviewed. RESULTS The results of this survey revealed that while Methylation is a biological process, it can influence gene expression by affecting the promoter activity. Promoter methylation is associated with up or downregulation of genes involved in critical pathways, including cell cycle, DNA repair, and cell adherence. Hence promoter methylation can be used as a molecular tool for early diagnosis, improving treatment, and predicting treatment resistance. CONCLUSION Current knowledge on potential methylation biomarkers for diagnosis and prognoses of CRC has also been discussed. Our survey proposes that a multi-biomarker panel is more efficient than a single biomarker in the early diagnosis of CRC.
Collapse
|
6
|
Barfield R, Huyghe JR, Lemire M, Dong X, Su YR, Brezina S, Buchanan DD, Figueiredo JC, Gallinger S, Giannakis M, Gsur A, Gunter MJ, Hampel H, Harrison TA, Hopper JL, Hudson TJ, Li CI, Moreno V, Newcomb PA, Pai RK, Pharoah PDP, Phipps AI, Qu C, Steinfelder RS, Sun W, Win AK, Zaidi SH, Campbell PT, Peters U, Hsu L. Genetic Regulation of DNA Methylation Yields Novel Discoveries in GWAS of Colorectal Cancer. Cancer Epidemiol Biomarkers Prev 2022; 31:1068-1076. [PMID: 35247911 PMCID: PMC9081265 DOI: 10.1158/1055-9965.epi-21-0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/05/2021] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Colorectal cancer has a strong epigenetic component that is accompanied by frequent DNA methylation (DNAm) alterations in addition to heritable genetic risk. It is of interest to understand the interrelationship of germline genetics, DNAm, and colorectal cancer risk. METHODS We performed a genome-wide methylation quantitative trait locus (meQTL) analysis in 1,355 people, assessing the pairwise associations between genetic variants and lymphocytes methylation data. In addition, we used penalized regression with cis-genetic variants ± 1 Mb of methylation to identify genome-wide heritable DNAm. We evaluated the association of genetically predicted methylation with colorectal cancer risk based on genome-wide association studies (GWAS) of over 125,000 cases and controls using the multivariate sMiST as well as univariately via examination of marginal association with colorectal cancer risk. RESULTS Of the 142 known colorectal cancer GWAS loci, 47 were identified as meQTLs. We identified four novel colorectal cancer-associated loci (NID2, ATXN10, KLHDC10, and CEP41) that reside over 1 Mb outside of known colorectal cancer loci and 10 secondary signals within 1 Mb of known loci. CONCLUSIONS Leveraging information of DNAm regulation into genetic association of colorectal cancer risk reveals novel pathways in colorectal cancer tumorigenesis. Our summary statistics-based framework sMiST provides a powerful approach by combining information from the effect through methylation and residual direct effects of the meQTLs on disease risk. Further validation and functional follow-up of these novel pathways are needed. IMPACT Using genotype, DNAm, and GWAS, we identified four new colorectal cancer risk loci. We studied the landscape of genetic regulation of DNAm via single-SNP and multi-SNP meQTL analyses.
Collapse
Affiliation(s)
- Richard Barfield
- Department of Biostatistics and Bioinformatics, Duke University, Durham NC USA
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Mathieu Lemire
- Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Xinyuan Dong
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Yu-Ru Su
- Biostatistics Unit, Kaiser Permanente Washington Health Research Institute, Seattle, Washington
| | - Stefanie Brezina
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria 3010 Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria 3010 Australia
- Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Marc J Gunter
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Epidemiology, School of Public Health and Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Thomas J Hudson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- School of Public Health, University of Washington, Seattle, Washington, USA
| | - Rish K Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Robert S Steinfelder
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Wei Sun
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Aung Ko Win
- Department of Epidemiology, School of Public Health and Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Syed H Zaidi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Peter T Campbell
- Department of Population Science, American Cancer Society, Atlanta, Georgia, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Jiangzhou H, Zhang H, Sun R, Fahira A, Wang K, Li Z, Shi Y, Wang Z. Integrative omics analysis reveals effective stratification and potential prognosis markers of pan-gastrointestinal cancers. iScience 2021; 24:102824. [PMID: 34381964 PMCID: PMC8340129 DOI: 10.1016/j.isci.2021.102824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/01/2021] [Accepted: 07/05/2021] [Indexed: 12/09/2022] Open
Abstract
Gastrointestinal (GI) tract cancers are the most common malignant cancers with high mortality rate. Pan-cancer multi-omics data fusion provides a powerful strategy to examine commonalities and differences among various cancer types and benefits for the identification of pan-cancer drug targets. Herein, we conducted an integrative omics analysis on The Cancer Genome Atlas pan-GI samples including six carcinomas and stratified into 9 clusters, i.e. 5 single-type-dominant clusters and 4 mixed clusters, the clustering reveals the molecular features of different subtypes, other than the organ and cell-of-origin classifications. Especially the mixed clusters revealed the homogeneity of pan-GI cancers. We demonstrated that the prognosis differences among pan-GI subtypes based on multi-omics integration are more significant than clustering by single-omics. The potential prognostic markers for pan-GI stratification were identified by proportional hazards model, such as PSCA (for colorectal and stomach cancer) and PPP1CB (for liver and pancreatic cancer), which have prominent prognostic power supported by high concordance index. Pan-cancer multi-omics strategy reveals homogeneity and heterogeneity of pan-GI cancers Identify 9 iclusters with significantly different survival and molecular features Potential prognostic markers have prominent power supported by concordance index
Collapse
Affiliation(s)
- Huiting Jiangzhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hang Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Renliang Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Aamir Fahira
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ke Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China.,Affiliated Hospital of Qingdao University & Biomedical Sciences Institute of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China.,Affiliated Hospital of Qingdao University & Biomedical Sciences Institute of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
8
|
Heinrich K, Modest DP, Ricard I, Fischer von Weikersthal L, Decker T, Kaiser F, Graeven U, Uhlig J, Schenk M, Freiberg-Richter J, Peuser B, Denzlinger C, Giessen-Jung C, Stahler A, Michl M, Held S, Jung A, Kirchner T, Stintzing S, Heinemann V. Gender-dependent survival benefit from first-line irinotecan in metastatic colorectal cancer. Subgroup analysis of a phase III trial (XELAVIRI-study, AIO-KRK-0110). Eur J Cancer 2021; 147:128-139. [PMID: 33647548 DOI: 10.1016/j.ejca.2021.01.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND XELAVIRI compared sequential (Arm A) versus initial (Arm B) irinotecan in combination with fluoropyrimidine plus bevacizumab in patients with metastatic colorectal cancer, trial identification: NCT01249638. In the full analysis set of the study, non-inferiority of time to failure of strategy (TFS) was not shown. The present analysis was performed to evaluate the effect of gender on treatment outcome and tolerability. METHODS The study end-points overall response rate (ORR), progression-free survival (PFS), TFS and overall survival (OS) were evaluated in female versus male patients and in molecular subgroups (i.e. RAS mutational status). Interaction of treatment and gender was tested by likelihood ratio tests. RESULTS In total, 281 male and 140 female patients (n = 421) were evaluated. Among the male patients, the ORR was 33.6% without and 58.3% with initial irinotecan (P < 0.001). PFS (hazard ratio [HR] 0.54; 95% confidence interval [CI] 0.42-0.69; P < 0.001) and OS (HR 0.63; 95% CI 0.47-0.85; P = 0.002) were also significantly better with initial irinotecan. Among the female patients, the ORR was 42.7% in Arm A and 43.1% in Arm B, PFS was similar (HR 1.09; 95% CI 0.76-1.55; P = 0.649) without and with initial irinotecan. A strong trend for inferior outcome with regard to OS with initial irinotecan was observed (HR 1.46; 95% CI 0.95-2.24; P = 0.081) and the trend reached significance in the multivariate analysis (HR 1.78; 95% CI 1.08-2.95; P = 0.02). Formal interaction of treatment and gender was observed for ORR (P = 0.018), PFS (P = 0.002) and OS (P = 0.001). Treatment-related adverse events were not significantly different between male and female patients. CONCLUSIONS The present analysis suggests that gender interacts with efficacy of initial irinotecan when used in combination with fluoropyrimidines and bevacizumab. Although male patients derived a significant and clinically meaningful benefit from initial combination chemotherapy, this was not observed in female patients.
Collapse
Affiliation(s)
- Kathrin Heinrich
- Department of Medicine III, University Hospital, LMU Munich, München, Germany; German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany.
| | - Dominik P Modest
- German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany; Medical Department, Division of Oncology and Hematology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Ingrid Ricard
- Comprehensive Cancer Center, University Hospital, LMU Munich, München, Germany
| | | | | | | | - Ullrich Graeven
- Kliniken Maria Hilf GmbH, Krankenhaus St. Franziskus, Mönchengladbach, Germany
| | | | - Michael Schenk
- Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | | | - Bettina Peuser
- Onkologische Praxis Am Diakonissenhaus, Leipzig, Germany
| | | | - Clemens Giessen-Jung
- Department of Medicine III, University Hospital, LMU Munich, München, Germany; German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Arndt Stahler
- German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany; Medical Department, Division of Oncology and Hematology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Marlies Michl
- Department of Medicine III, University Hospital, LMU Munich, München, Germany; German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | | | - Andreas Jung
- German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany; Institut für Pathologie, Ludwig-Maximilians-Universität, München, Germany
| | - Thomas Kirchner
- German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany; Institut für Pathologie, Ludwig-Maximilians-Universität, München, Germany
| | - Sebastian Stintzing
- German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany; Medical Department, Division of Oncology and Hematology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Volker Heinemann
- Department of Medicine III, University Hospital, LMU Munich, München, Germany; German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany; Comprehensive Cancer Center, University Hospital, LMU Munich, München, Germany
| |
Collapse
|
9
|
Lettini G, Condelli V, Pietrafesa M, Crispo F, Zoppoli P, Maddalena F, Laurenzana I, Sgambato A, Esposito F, Landriscina M. TRAP1 Regulates Wnt/β-Catenin Pathway through LRP5/6 Receptors Expression Modulation. Int J Mol Sci 2020; 21:E7526. [PMID: 33065966 PMCID: PMC7589514 DOI: 10.3390/ijms21207526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/01/2022] Open
Abstract
Wnt/β-Catenin signaling is involved in embryonic development, regeneration, and cellular differentiation and is responsible for cancer stemness maintenance. The HSP90 molecular chaperone TRAP1 is upregulated in 60-70% of human colorectal carcinomas (CRCs) and favors stem cells maintenance, modulating the Wnt/β-Catenin pathway and preventing β-Catenin phosphorylation/degradation. The role of TRAP1 in the regulation of Wnt/β-Catenin signaling was further investigated in human CRC cell lines, patient-derived spheroids, and CRC specimens. TRAP1 relevance in the activation of Wnt/β-Catenin signaling was highlighted by a TCF/LEF Cignal Reporter Assay in Wnt-off HEK293T and CRC HCT116 cell lines. Of note, this regulation occurs through the modulation of Wnt ligand receptors LRP5 and LRP6 that are both downregulated in TRAP1-silenced cell lines. However, while LRP5 mRNA is significantly downregulated upon TRAP1 silencing, LRP6 mRNA is unchanged, suggesting independent mechanisms of regulation by TRAP1. Indeed, LRP5 is regulated upon promoter methylation in CRC cell lines and human CRCs, whereas LRP6 is controlled at post-translational level by protein ubiquitination/degradation. Consistently, human CRCs with high TRAP1 expression are characterized by the co-upregulation of active β-Catenin, LRP5 and LRP6. Altogether, these data suggest that Wnt/β-Catenin signaling is modulated at multiple levels by TRAP1.
Collapse
Affiliation(s)
- Giacomo Lettini
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; (G.L.); (V.C.); (M.P.); (F.C.); (P.Z.); (F.M.); (I.L.); (A.S.)
| | - Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; (G.L.); (V.C.); (M.P.); (F.C.); (P.Z.); (F.M.); (I.L.); (A.S.)
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; (G.L.); (V.C.); (M.P.); (F.C.); (P.Z.); (F.M.); (I.L.); (A.S.)
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; (G.L.); (V.C.); (M.P.); (F.C.); (P.Z.); (F.M.); (I.L.); (A.S.)
| | - Pietro Zoppoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; (G.L.); (V.C.); (M.P.); (F.C.); (P.Z.); (F.M.); (I.L.); (A.S.)
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; (G.L.); (V.C.); (M.P.); (F.C.); (P.Z.); (F.M.); (I.L.); (A.S.)
| | - Ilaria Laurenzana
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; (G.L.); (V.C.); (M.P.); (F.C.); (P.Z.); (F.M.); (I.L.); (A.S.)
| | - Alessandro Sgambato
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; (G.L.); (V.C.); (M.P.); (F.C.); (P.Z.); (F.M.); (I.L.); (A.S.)
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; (G.L.); (V.C.); (M.P.); (F.C.); (P.Z.); (F.M.); (I.L.); (A.S.)
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| |
Collapse
|
10
|
Yang W, Zhang K, Li L, Ma K, Hong B, Gong Y, Gong K. Discovery and validation of the prognostic value of the lncRNAs encoding snoRNAs in patients with clear cell renal cell carcinoma. Aging (Albany NY) 2020; 12:4424-4444. [PMID: 32126023 PMCID: PMC7093172 DOI: 10.18632/aging.102894] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Some lncRNAs can encode small nucleolar RNAs (snoRNAs), called small nucleolar RNA host genes (SNHGs), which have exerted certain predictive values for the prognosis of some cancer patients. In this study, using RNA-seq and survival data in TCGA-KIRC, we examined the expression profile of 20 SNHGs and explored their prognostic values in ccRCC. Results showed that SNHG1, GAS5, SNHG3-8, SNHG11, SNHG12, SNHG15-17, SNHG20, SNHG22 and SNHG25 were significantly upregulated in ccRCC tissues compared with adjacent normal tissues. After adjustment for confounding factors, the multivariate analysis confirmed that increased SNHG3 expression was independently associated with shorter OS, while increased SNHG15 expression was an independent predictor of shorter RFS. Using the methylation data, the methylation status of 2 CpG sites (cg07807470 and cg15161854) and 2 CpG sites (cg00953154 and cg16459265) were negatively correlated with SNHG3 and SNHG15 expression, respectively. Moreover, low methylation levels of the 4 CpG sites were significantly associated with shorter OS. Furthermore, we validated the expression patterns, methylation status and prognostic value of SNHG3 and SNHG15 using clinical ccRCC samples. Taken together, SNHG3 and SNHG15 might be valuable prognostic markers in ccRCC, and DNA hypomethylation might play an important role in elevated SNHG3 and SNHG15 transcription in ccRCC.
Collapse
Affiliation(s)
- Wuping Yang
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China.,Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, P.R. China.,Institute of Urology, Peking University, Beijing 100034, P.R. China.,National Urological Cancer Center, Beijing 100034, P.R. China
| | - Kenan Zhang
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China.,Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, P.R. China.,Institute of Urology, Peking University, Beijing 100034, P.R. China.,National Urological Cancer Center, Beijing 100034, P.R. China
| | - Lei Li
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China.,Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, P.R. China.,Institute of Urology, Peking University, Beijing 100034, P.R. China.,National Urological Cancer Center, Beijing 100034, P.R. China
| | - Kaifang Ma
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China.,Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, P.R. China.,Institute of Urology, Peking University, Beijing 100034, P.R. China.,National Urological Cancer Center, Beijing 100034, P.R. China
| | - Baoan Hong
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China.,Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, P.R. China.,Institute of Urology, Peking University, Beijing 100034, P.R. China.,National Urological Cancer Center, Beijing 100034, P.R. China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China.,Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, P.R. China.,Institute of Urology, Peking University, Beijing 100034, P.R. China.,National Urological Cancer Center, Beijing 100034, P.R. China
| | - Kan Gong
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China.,Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, P.R. China.,Institute of Urology, Peking University, Beijing 100034, P.R. China.,National Urological Cancer Center, Beijing 100034, P.R. China
| |
Collapse
|
11
|
d'Errico M, Alwers E, Zhang Y, Edelmann D, Brenner H, Hoffmeister M. Identification of prognostic DNA methylation biomarkers in patients with gastrointestinal adenocarcinomas: A systematic review of epigenome-wide studies. Cancer Treat Rev 2020; 82:101933. [DOI: 10.1016/j.ctrv.2019.101933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
|
12
|
Neumeyer S, Popanda O, Butterbach K, Edelmann D, Bläker H, Toth C, Roth W, Herpel E, Jäkel C, Schmezer P, Benner A, Burwinkel B, Hoffmeister M, Brenner H, Chang-Claude J. DNA methylation profiling to explore colorectal tumor differences according to menopausal hormone therapy use in women. Epigenomics 2019; 11:1765-1778. [PMID: 31755748 DOI: 10.2217/epi-2019-0051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: Use of menopausal hormone therapy (MHT) has been associated with a reduced risk for colorectal cancer, but mechanisms underlying this relationship are not well understood. In the colon, MHT appears to act through estrogen receptor β (ERβ) which may influence DNA methylation by binding to DNA. Using genome-wide methylation profiling data, we aimed to identify genes that may be differentially methylated according to MHT use. Materials & methods: DNA methylation was measured using Illumina HumanMethylation450k arrays in two independent tumor sample sets of colorectal cancer patients. Differential methylation was determined using R/limma. Results: In the discovery analysis, two CpG sites showed differential DNA methylation according to MHT use, both were not replicated. In stratified analyses, 342 CpG sites were associated with current MHT use only in ERβ-positive tumors. Conclusion: The suggestive findings of differential methylation according to current MHT use in ERβ-positive tumors warrant further investigation.
Collapse
Affiliation(s)
- Sonja Neumeyer
- Division of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Odilia Popanda
- Division of Epigenomics & Cancer Risk Factors, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Katja Butterbach
- Division of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Division of Clinical Epidemiology & Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Dominic Edelmann
- Division of Biostatistics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Hendrik Bläker
- Institute of Pathology, Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany
| | - Csaba Toth
- Institute of Pathology, Heidelberg University, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Wilfried Roth
- Institute of Pathology, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Esther Herpel
- Institute of Pathology, Heidelberg University, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany.,NCT Tissue Bank, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Cornelia Jäkel
- Division of Epigenomics & Cancer Risk Factors, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Peter Schmezer
- Division of Epigenomics & Cancer Risk Factors, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Barbara Burwinkel
- Division of Molecular Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Department of Gynecology & Obstetrics, Molecular Biology of Breast Cancer, University of Heidelberg, Im Neuenheimer Feld 440, Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology & Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology & Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) & National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Genetic Tumour Epidemiology Group, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 54, 20251 Hamburg, Germany
| |
Collapse
|
13
|
CD36 inhibits β-catenin/c-myc-mediated glycolysis through ubiquitination of GPC4 to repress colorectal tumorigenesis. Nat Commun 2019; 10:3981. [PMID: 31484922 PMCID: PMC6726635 DOI: 10.1038/s41467-019-11662-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 07/19/2019] [Indexed: 12/28/2022] Open
Abstract
The diverse expression pattern of CD36 reflects its multiple cellular functions. However, the roles of CD36 in colorectal cancer (CRC) remain unknown. Here, we discover that CD36 expression is progressively decreased from adenomas to carcinomas. CD36 loss predicts poor survival of CRC patients. In CRC cells, CD36 acts as a tumor suppressor and inhibits aerobic glycolysis in vitro and in vivo. Mechanically, CD36-Glypcian 4 (GPC4) interaction could promote the proteasome-dependent ubiquitination of GPC4, followed by inhibition of β-catenin/c-myc signaling and suppression of downstream glycolytic target genes GLUT1, HK2, PKM2 and LDHA. Moreover, disruption of CD36 in inflammation-induced CRC model as well as ApcMin/+ mice model significantly increased colorectal tumorigenesis. Our results reveal a CD36-GPC4-β-catenin-c-myc signaling axis that regulates glycolysis in CRC development and may provide an intervention strategy for CRC prevention.
Collapse
|