1
|
Davyson E, Shen X, Huider F, Adams MJ, Borges K, McCartney DL, Barker LF, van Dongen J, Boomsma DI, Weihs A, Grabe HJ, Kühn L, Teumer A, Völzke H, Zhu T, Kaprio J, Ollikainen M, David FS, Meinert S, Stein F, Forstner AJ, Dannlowski U, Kircher T, Tapuc A, Czamara D, Binder EB, Brückl T, Kwong ASF, Yousefi P, Wong CCY, Arseneault L, Fisher HL, Mill J, Cox SR, Redmond P, Russ TC, van den Oord EJCG, Aberg KA, Penninx BWJH, Marioni RE, Wray NR, McIntosh AM. Insights from a methylome-wide association study of antidepressant exposure. Nat Commun 2025; 16:1908. [PMID: 39994233 PMCID: PMC11850842 DOI: 10.1038/s41467-024-55356-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/09/2024] [Indexed: 02/26/2025] Open
Abstract
This study tests the association of whole-blood DNA methylation and antidepressant exposure in 16,531 individuals from Generation Scotland (GS), using self-report and prescription-derived measures. We identify 8 associations and a high concordance of results between self-report and prescription-derived measures. Sex-stratified analyses observe nominally significant increased effect estimates in females for four CpGs. There is observed enrichment for genes expressed in the Amygdala and annotated to synaptic vesicle membrane ontology. Two CpGs (cg15071067; DGUOK-AS1 and cg26277237; KANK1) show correlation between DNA methylation with the time in treatment. There is a significant overlap in the top 1% of CpGs with another independent methylome-wide association study of antidepressant exposure. Finally, a methylation profile score trained on this sample shows a significant association with antidepressant exposure in a meta-analysis of eight independent external datasets. In this large investigation of antidepressant exposure and DNA methylation, we demonstrate robust associations which warrant further investigation to inform on the design of more effective and tolerated treatments for depression.
Collapse
Affiliation(s)
- E Davyson
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - X Shen
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - F Huider
- Complex Trait Genetics, Center of Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Biological Psychiatry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - M J Adams
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - K Borges
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - D L McCartney
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - L F Barker
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - J van Dongen
- Complex Trait Genetics, Center of Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Biological Psychiatry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development, Research Institute, Amsterdam, The Netherlands
| | - D I Boomsma
- Complex Trait Genetics, Center of Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development, Research Institute, Amsterdam, The Netherlands
| | - A Weihs
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17489, Greifswald, Germany
| | - H J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17489, Greifswald, Germany
| | - L Kühn
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475, Greifswald, Germany
| | - A Teumer
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17489, Greifswald, Germany
| | - H Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17489, Greifswald, Germany
- Department SHIP/Clinical-Epidemiological Research, Institute for Community Medicine, University Medicine Greifswald, 17475, Greifswald, Germany
| | - T Zhu
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - J Kaprio
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - M Ollikainen
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - F S David
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - S Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - F Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - A J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Center for Human Genetics, University of Marburg, Marburg, Germany
| | - U Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - T Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - A Tapuc
- Max Planck School of Cognition, Leipzig, Germany
- Max-Planck-Institute of Psychiatry, Department Genes and Environment, Munich, Germany
| | - D Czamara
- Max-Planck-Institute of Psychiatry, Department Genes and Environment, Munich, Germany
| | - E B Binder
- Max-Planck-Institute of Psychiatry, Department Genes and Environment, Munich, Germany
| | - T Brückl
- Max-Planck-Institute of Psychiatry, Department Genes and Environment, Munich, Germany
| | - A S F Kwong
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
| | - P Yousefi
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - C C Y Wong
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - L Arseneault
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - H L Fisher
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- ESRC Centre for Society and Mental Health, King's College London, London, UK
| | - J Mill
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - S R Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - P Redmond
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - T C Russ
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
- Neuroprogressive and Dementia Network, NHS Research Scotland, Scotland, UK
| | - E J C G van den Oord
- Center for Biomarker Research and Precision Medicine (BPM), Virginia Commonwealth University, Virginia, USA
| | - K A Aberg
- Center for Biomarker Research and Precision Medicine (BPM), Virginia Commonwealth University, Virginia, USA
| | - B W J H Penninx
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - R E Marioni
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - N R Wray
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - A M McIntosh
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Jones BC, O'Callaghan JP, Ashbrook DG, Lu L, Prins P, Zhao W, Mozhui K. Epigenetic study of the long-term effects of Gulf War illness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626040. [PMID: 39677691 PMCID: PMC11642795 DOI: 10.1101/2024.11.29.626040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Gulf war illness is a chronic multisymptom disorder that affects as many as many as 25-35% of the military personnel who were sent to the Persian Gulf war in 1991. The illness has many debilitating symptoms, including cognitive problems, gastrointestinal symptoms, and musculoskeletal pain. Those so afflicted have been sick for more than 30 years and, therefore, it has become imperative to understand the etiology and then produce treatments to ease the symptoms. We hypothesized that the length of the disease was reflected in epigenetic modification of possibly several genes related to the symptoms. We subjected male and female mice from 11 BXD strains to combined corticosterone and the sarin surrogate, diisopropylfluorophosphate, to emulate the physiological stress of war and the potential exposures to organophosphate pesticides and nerve agent in theater. Three hundred days after treatment, we analyzed the animals' DNA for genome-wide methylation by MBD-seq. The analysis revealed 20 methylated genes, notably Eif2B5 , that regulates myelin production. Loss of myelin with accompanying musculoskeletal pain is a major symptom of Gulf War illness. Our work demonstrates multiple genes were methylated by exposure to OPs and glucocorticoids. These genes point to biochemical mechanisms that may be targets for therapeutic intervention.
Collapse
|
3
|
Han LKM, Aghajani M, Penninx BWJH, Copeland WE, Aberg KA, van den Oord EJCG. Lagged effects of childhood depressive symptoms on adult epigenetic aging. Psychol Med 2024; 54:1-9. [PMID: 39370998 PMCID: PMC11496221 DOI: 10.1017/s0033291724001570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Cross-sectional studies have identified health risks associated with epigenetic aging. However, it is unclear whether these risks make epigenetic clocks 'tick faster' (i.e. accelerate biological aging). The current study examines concurrent and lagged within-person changes of a variety of health risks associated with epigenetic aging. METHODS Individuals from the Great Smoky Mountains Study were followed from age 9 to 35 years. DNA methylation profiles were assessed from blood, at multiple timepoints (i.e. waves) for each individual. Health risks were psychiatric, lifestyle, and adversity factors. Concurrent (N = 539 individuals; 1029 assessments) and lagged (N = 380 individuals; 760 assessments) analyses were used to determine the link between health risks and epigenetic aging. RESULTS Concurrent models showed that BMI (r = 0.15, PFDR < 0.01) was significantly correlated to epigenetic aging at the subject-level but not wave-level. Lagged models demonstrated that depressive symptoms (b = 1.67 months per symptom, PFDR = 0.02) in adolescence accelerated epigenetic aging in adulthood, also when models were fully adjusted for BMI, smoking, and cannabis and alcohol use. CONCLUSIONS Within-persons, changes in health risks were unaccompanied by concurrent changes in epigenetic aging, suggesting that it is unlikely for risks to immediately 'accelerate' epigenetic aging. However, time lagged analyses indicated that depressive symptoms in childhood/adolescence predicted epigenetic aging in adulthood. Together, findings suggest that age-related biological embedding of depressive symptoms is not instant but provides prognostic opportunities. Repeated measurements and longer follow-up times are needed to examine stable and dynamic contributions of childhood experiences to epigenetic aging across the lifespan.
Collapse
Affiliation(s)
- Laura K. M. Han
- Department of Psychiatry, Amsterdam UMC, location Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam UMC, location Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Institute of Child & Education Studies, Section Forensic Family & Youth Care, Leiden University, The Netherlands
| | - Brenda W. J. H. Penninx
- Department of Psychiatry, Amsterdam UMC, location Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | | | - Karolina A. Aberg
- The Center for Biomarker Research and Precision Medicine, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Edwin J. C. G. van den Oord
- The Center for Biomarker Research and Precision Medicine, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
4
|
Tran CJ, Campbell TL, Johnson RH, Xie LY, Hultman CM, van den Oord EJCG, Aberg KA. Cell-type specific methylation changes in the newborn child associated to obstetric pain relief. PLoS One 2024; 19:e0308644. [PMID: 39298419 DOI: 10.1371/journal.pone.0308644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/28/2024] [Indexed: 09/21/2024] Open
Abstract
Although it is widely known that various pharmaceuticals affect the methylome, the knowledge of the effects from anesthesia is limited, and nearly nonexistent regarding the effects of obstetric anesthesia on the newborn child. Using sequencing based-methylation data and a reference-based statistical deconvolution approach we performed methylome-wide association studies (MWAS) of neonatal whole blood, and for each cell-type specifically, to detect methylation variations that are associated with the pain relief administered to the mother during delivery. Significant findings were replicated in a different dataset and followed-up with gene ontology analysis to pinpoint biological functions of potential relevance to these neonatal methylation alterations. The MWAS analyses detected methylome-wide significant (q<0.1) alterations in the newborn for laughing gas in granulocytes (two CpGs, p<5.50x10-9, q = 0.067), and for pudendal block in monocytes (five CpGs across three loci, p<1.51 x10-8, q = 0.073). Suggestively significant findings (p<1.00x10-6) were detected for both treatments for bulk and all cell-types, and replication analyses showed consistent significant enrichment (odds ratios ranging 3.47-39.02; p<4.00×10-4) for each treatment, suggesting our results are robust. In contrast, we did not observe any overlap across treatments, suggesting that the treatments are associated with different alterations of the neonatal blood methylome. Gene ontology analyses of the replicating suggestively significant results indicated functions related to, for example, cell differentiation, intracellular membrane-bound organelles and calcium transport. In conclusion, for the first time, we investigated and detected effect of obstetric pain-relief on the blood methylome in the newborn child. The observed differences suggest that anesthetic treatment, such as laughing gas or pudendal block, may alter the neonatal methylome in a cell-type specific manner. Some of the observed alterations are part of gene ontology terms that previously have been suggested in relation to anesthetic treatment, supporting its potential role also in obstetric anesthesia.
Collapse
Affiliation(s)
- Charles J Tran
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Thomas L Campbell
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Ralen H Johnson
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Lin Y Xie
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Edwin J C G van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Karolina A Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| |
Collapse
|
5
|
Tivey A, Lee RJ, Clipson A, Hill SM, Lorigan P, Rothwell DG, Dive C, Mouliere F. Mining nucleic acid "omics" to boost liquid biopsy in cancer. Cell Rep Med 2024; 5:101736. [PMID: 39293399 PMCID: PMC11525024 DOI: 10.1016/j.xcrm.2024.101736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024]
Abstract
Treatments for cancer patients are becoming increasingly complex, and there is a growing desire from clinicians and patients for biomarkers that can account for this complexity to support informed decisions about clinical care. To achieve precision medicine, the new generation of biomarkers must reflect the spatial and temporal heterogeneity of cancer biology both between patients and within an individual patient. Mining the different layers of 'omics in a multi-modal way from a minimally invasive, easily repeatable, liquid biopsy has increasing potential in a range of clinical applications, and for improving our understanding of treatment response and resistance. Here, we detail the recent developments and methods allowing exploration of genomic, epigenomic, transcriptomic, and fragmentomic layers of 'omics from liquid biopsy, and their integration in a range of applications. We also consider the specific challenges that are posed by the clinical implementation of multi-omic liquid biopsies.
Collapse
Affiliation(s)
- Ann Tivey
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK; Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Rebecca J Lee
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK; Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Alexandra Clipson
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| | - Steven M Hill
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| | - Paul Lorigan
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Dominic G Rothwell
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| | - Caroline Dive
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| | - Florent Mouliere
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
6
|
Li N, Liu HY, Liu SM. Deciphering DNA Methylation in Gestational Diabetes Mellitus: Epigenetic Regulation and Potential Clinical Applications. Int J Mol Sci 2024; 25:9361. [PMID: 39273309 PMCID: PMC11394902 DOI: 10.3390/ijms25179361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Gestational diabetes mellitus (GDM) represents a prevalent complication during pregnancy, exerting both short-term and long-term impacts on maternal and offspring health. This review offers a comprehensive outline of DNA methylation modifications observed in various maternal and offspring tissues affected by GDM, emphasizing the intricate interplay between DNA methylation dynamics, gene expression, and the pathogenesis of GDM. Furthermore, it explores the influence of environmental pollutants, maternal nutritional supplementation, and prenatal gut microbiota on GDM development through alterations in DNA methylation profiles. Additionally, this review summarizes recent advancements in DNA methylation-based diagnostics and predictive models in early GDM detection and risk assessment for subsequent type 2 diabetes. These insights contribute significantly to our understanding of the epigenetic mechanisms underlying GDM development, thereby enhancing maternal and fetal health outcomes and advocating further efforts in this field.
Collapse
Affiliation(s)
- Nan Li
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Huan-Yu Liu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, 169 Donghu Road, Wuhan 430071, China
| | - Song-Mei Liu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, 169 Donghu Road, Wuhan 430071, China
| |
Collapse
|
7
|
Clark SL, McGinnis EW, Zhao M, Xie L, Marks GT, Aberg KA, van den Oord EJCG, Copeland WE. The Impact of Childhood Mental Health and Substance Use on Methylation Aging Into Adulthood. J Am Acad Child Adolesc Psychiatry 2024; 63:825-834. [PMID: 38157979 PMCID: PMC11745081 DOI: 10.1016/j.jaac.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/11/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE To test whether childhood mental health symptoms, substance use, and early adversity accelerate the rate of DNA methylation (DNAm) aging from adolescence to adulthood. METHOD DNAm was assayed from blood samples in 381 participants in both adolescence (mean [SD] age = 13.9 [1.6] years) and adulthood (mean [SD] age = 25.9 [2.7] years). Structured diagnostic interviews were completed with participants and their parents at multiple childhood observations (1,950 total) to assess symptoms of common mental health disorders (attention-deficit/hyperactivity disorder, oppositional defiant disorder, conduct disorder, anxiety, and depression) and common types of substance use (alcohol, cannabis, nicotine) and early adversities. RESULTS Neither childhood mental health symptoms nor substance use variables were associated with DNAm aging cross-sectionally. In contrast, the following mental health symptoms and substance variables were associated with accelerated DNAm aging from adolescence to adulthood: depressive symptoms (b = 0.314, SE = 0.127, p = .014), internalizing symptoms (b = 0.108, SE = 0.049, p = .029), weekly cannabis use (b =1.665, SE = 0.591, p = .005), and years of weekly cannabis use (b = 0.718, SE = 0.283, p = .012). In models testing all individual variables simultaneously, the combined effect of the variables was equivalent to a potential difference of 3.17 to 3.76 years in DNAm aging. A final model tested a variable assessing cumulative exposure to mental health symptoms, substance use, and early adversities. This cumulative variable was strongly associated with accelerated aging (b = 0.126, SE = 0.044, p = .005). CONCLUSION Mental health symptoms and substance use accelerated DNAm aging into adulthood in a manner consistent with a shared risk mechanism. PLAIN LANGUAGE SUMMARY Using data from 381 participants in the Great Smoky Mountains Study, the authors examined whether childhood mental health symptoms, substance use, and early adversity accelerate biological aging, as measured by DNA methylation age, from adolescence to adulthood. Depressive symptoms and cannabis use were found to significantly accelerate biological aging. Models that tested the combined effect of mental health symptoms, substance use, and early adversity demonstrated that there was a shared effect across these types of childhood problems on accelerated aging.
Collapse
Affiliation(s)
| | | | - Min Zhao
- Virginia Commonwealth University, Richmond, Virginia
| | - Linying Xie
- Virginia Commonwealth University, Richmond, Virginia
| | | | | | | | | |
Collapse
|
8
|
Tan WY, Nagabhyrava S, Ang-Olson O, Das P, Ladel L, Sailo B, He L, Sharma A, Ahuja N. Translation of Epigenetics in Cell-Free DNA Liquid Biopsy Technology and Precision Oncology. Curr Issues Mol Biol 2024; 46:6533-6565. [PMID: 39057032 PMCID: PMC11276574 DOI: 10.3390/cimb46070390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Technological advancements in cell-free DNA (cfDNA) liquid biopsy have triggered exponential growth in numerous clinical applications. While cfDNA-based liquid biopsy has made significant strides in personalizing cancer treatment, the exploration and translation of epigenetics in liquid biopsy to clinical practice is still nascent. This comprehensive review seeks to provide a broad yet in-depth narrative of the present status of epigenetics in cfDNA liquid biopsy and its associated challenges. It highlights the potential of epigenetics in cfDNA liquid biopsy technologies with the hopes of enhancing its clinical translation. The momentum of cfDNA liquid biopsy technologies in recent years has propelled epigenetics to the forefront of molecular biology. We have only begun to reveal the true potential of epigenetics in both our understanding of disease and leveraging epigenetics in the diagnostic and therapeutic domains. Recent clinical applications of epigenetics-based cfDNA liquid biopsy revolve around DNA methylation in screening and early cancer detection, leading to the development of multi-cancer early detection tests and the capability to pinpoint tissues of origin. The clinical application of epigenetics in cfDNA liquid biopsy in minimal residual disease, monitoring, and surveillance are at their initial stages. A notable advancement in fragmentation patterns analysis has created a new avenue for epigenetic biomarkers. However, the widespread application of cfDNA liquid biopsy has many challenges, including biomarker sensitivity, specificity, logistics including infrastructure and personnel, data processing, handling, results interpretation, accessibility, and cost effectiveness. Exploring and translating epigenetics in cfDNA liquid biopsy technology can transform our understanding and perception of cancer prevention and management. cfDNA liquid biopsy has great potential in precision oncology to revolutionize conventional ways of early cancer detection, monitoring residual disease, treatment response, surveillance, and drug development. Adapting the implementation of liquid biopsy workflow to the local policy worldwide and developing point-of-care testing holds great potential to overcome global cancer disparity and improve cancer outcomes.
Collapse
Affiliation(s)
- Wan Ying Tan
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
- Department of Internal Medicine, Norwalk Hospital, Norwalk, CT 06850, USA
- Hematology & Oncology, Neag Comprehensive Cancer Center, UConn Health, Farmington, CT 06030, USA
| | | | - Olivia Ang-Olson
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Paromita Das
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Luisa Ladel
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
- Department of Internal Medicine, Norwalk Hospital, Norwalk, CT 06850, USA
| | - Bethsebie Sailo
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Linda He
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Anup Sharma
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Nita Ahuja
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520-8000, USA
- Biological and Biomedical Sciences Program (BBS), Yale University, New Haven, CT 06520-8084, USA
| |
Collapse
|
9
|
Campbell TL, Xie LY, Johnson RH, Hultman CM, van den Oord EJCG, Aberg KA. Investigating neonatal health risk variables through cell-type specific methylome-wide association studies. Clin Epigenetics 2024; 16:69. [PMID: 38778395 PMCID: PMC11112760 DOI: 10.1186/s13148-024-01681-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Adverse neonatal outcomes are a prevailing risk factor for both short- and long-term mortality and morbidity in infants. Given the importance of these outcomes, refining their assessment is paramount for improving prevention and care. Here we aim to enhance the assessment of these often correlated and multifaceted neonatal outcomes. To achieve this, we employ factor analysis to identify common and unique effects and further confirm these effects using criterion-related validity testing. This validation leverages methylome-wide profiles from neonatal blood. Specifically, we investigate nine neonatal health risk variables, including gestational age, Apgar score, three indicators of body size, jaundice, birth diagnosis, maternal preeclampsia, and maternal age. The methylomic profiles used for this research capture data from nearly all 28 million methylation sites in human blood, derived from the blood spot collected from 333 neonates, within 72 h post-birth. Our factor analysis revealed two common factors, size factor, that captured the shared effects of weight, head size, height, and gestational age and disease factor capturing the orthogonal shared effects of gestational age, combined with jaundice and birth diagnosis. To minimize false positives in the validation studies, validation was limited to variables with significant cumulative association as estimated through an in-sample replication procedure. This screening resulted in that the two common factors and the unique effects for gestational age, jaundice and Apgar were further investigated with full-scale cell-type specific methylome-wide association analyses. Highly significant, cell-type specific, associations were detected for both common effect factors and for Apgar. Gene Ontology analyses revealed multiple significant biologically relevant terms for the five fully investigated neonatal health risk variables. Given the established links between adverse neonatal outcomes and both immediate and long-term health, the distinct factor effects (representing the common and unique effects of the risk variables) and their biological profiles confirmed in our work, suggest their potential role as clinical biomarkers for assessing health risks and enhancing personalized care.
Collapse
Affiliation(s)
- Thomas L Campbell
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, 1112 East Clay Street, P. O. Box 980533, Richmond, VA, 23298-0581, USA
| | - Lin Y Xie
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, 1112 East Clay Street, P. O. Box 980533, Richmond, VA, 23298-0581, USA
| | - Ralen H Johnson
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, 1112 East Clay Street, P. O. Box 980533, Richmond, VA, 23298-0581, USA
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Edwin J C G van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, 1112 East Clay Street, P. O. Box 980533, Richmond, VA, 23298-0581, USA
| | - Karolina A Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, 1112 East Clay Street, P. O. Box 980533, Richmond, VA, 23298-0581, USA.
| |
Collapse
|
10
|
Davyson E, Shen X, Huider F, Adams M, Borges K, McCartney D, Barker L, Van Dongen J, Boomsma D, Weihs A, Grabe H, Kühn L, Teumer A, Völzke H, Zhu T, Kaprio J, Ollikainen M, David FS, Meinert S, Stein F, Forstner AJ, Dannlowski U, Kircher T, Tapuc A, Czamara D, Binder EB, Brückl T, Kwong A, Yousefi P, Wong C, Arseneault L, Fisher HL, Mill J, Cox S, Redmond P, Russ TC, van den Oord E, Aberg KA, Penninx B, Marioni RE, Wray NR, McIntosh AM. Antidepressant Exposure and DNA Methylation: Insights from a Methylome-Wide Association Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.01.24306640. [PMID: 38746357 PMCID: PMC11092700 DOI: 10.1101/2024.05.01.24306640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Importance Understanding antidepressant mechanisms could help design more effective and tolerated treatments. Objective Identify DNA methylation (DNAm) changes associated with antidepressant exposure. Design Case-control methylome-wide association studies (MWAS) of antidepressant exposure were performed from blood samples collected between 2006-2011 in Generation Scotland (GS). The summary statistics were tested for enrichment in specific tissues, gene ontologies and an independent MWAS in the Netherlands Study of Depression and Anxiety (NESDA). A methylation profile score (MPS) was derived and tested for its association with antidepressant exposure in eight independent cohorts, alongside prospective data from GS. Setting Cohorts; GS, NESDA, FTC, SHIP-Trend, FOR2107, LBC1936, MARS-UniDep, ALSPAC, E-Risk, and NTR. Participants Participants with DNAm data and self-report/prescription derived antidepressant exposure. Main Outcomes and Measures Whole-blood DNAm levels were assayed by the EPIC/450K Illumina array (9 studies, N exposed = 661, N unexposed = 9,575) alongside MBD-Seq in NESDA (N exposed = 398, N unexposed = 414). Antidepressant exposure was measured by self- report and/or antidepressant prescriptions. Results The self-report MWAS (N = 16,536, N exposed = 1,508, mean age = 48, 59% female) and the prescription-derived MWAS (N = 7,951, N exposed = 861, mean age = 47, 59% female), found hypermethylation at seven and four DNAm sites (p < 9.42x10 -8 ), respectively. The top locus was cg26277237 ( KANK1, p self-report = 9.3x10 -13 , p prescription = 6.1x10 -3 ). The self-report MWAS found a differentially methylated region, mapping to DGUOK-AS1 ( p adj = 5.0x10 -3 ) alongside significant enrichment for genes expressed in the amygdala, the "synaptic vesicle membrane" gene ontology and the top 1% of CpGs from the NESDA MWAS (OR = 1.39, p < 0.042). The MPS was associated with antidepressant exposure in meta-analysed data from external cohorts (N studies = 9, N = 10,236, N exposed = 661, f3 = 0.196, p < 1x10 -4 ). Conclusions and Relevance Antidepressant exposure is associated with changes in DNAm across different cohorts. Further investigation into these changes could inform on new targets for antidepressant treatments. 3 Key Points Question: Is antidepressant exposure associated with differential whole blood DNA methylation?Findings: In this methylome-wide association study of 16,536 adults across Scotland, antidepressant exposure was significantly associated with hypermethylation at CpGs mapping to KANK1 and DGUOK-AS1. A methylation profile score trained on this sample was significantly associated with antidepressant exposure (pooled f3 [95%CI]=0.196 [0.105, 0.288], p < 1x10 -4 ) in a meta-analysis of external datasets. Meaning: Antidepressant exposure is associated with hypermethylation at KANK1 and DGUOK-AS1 , which have roles in mitochondrial metabolism and neurite outgrowth. If replicated in future studies, targeting these genes could inform the design of more effective and better tolerated treatments for depression.
Collapse
|
11
|
Naya-Català F, Belenguer A, Montero D, Torrecillas S, Soriano B, Calduch-Giner J, Llorens C, Fontanillas R, Sarih S, Zamorano MJ, Izquierdo M, Pérez-Sánchez J. Broodstock nutritional programming differentially affects the hepatic transcriptome and genome-wide DNA methylome of farmed gilthead sea bream (Sparus aurata) depending on genetic background. BMC Genomics 2023; 24:670. [PMID: 37936076 PMCID: PMC10631108 DOI: 10.1186/s12864-023-09759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/21/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Broodstock nutritional programming improves the offspring utilization of plant-based diets in gilthead sea bream through changes in hepatic metabolism. Attention was initially focused on fatty acid desaturases, but it can involve a wide range of processes that remain largely unexplored. How all this can be driven by a different genetic background is hardly underlined, and the present study aimed to assess how broodstock nutrition affects differentially the transcriptome and genome-wide DNA methylome of reference and genetically selected fish within the PROGENSA® selection program. RESULTS After the stimulus phase with a low fish oil diet, two offspring subsets of each genetic background received a control or a FUTURE-based diet. This highlighted a different hepatic transcriptome (RNA-seq) and genome-wide DNA methylation (MBD-seq) pattern depending on the genetic background. The number of differentially expressed transcripts following the challenge phase varied from 323 in reference fish to 2,009 in genetically selected fish. The number of discriminant transcripts, and associated enriched functions, were also markedly higher in selected fish. Moreover, correlation analysis depicted a hyper-methylated and down-regulated gene expression state in selected fish with the FUTURE diet, whereas the opposite pattern appeared in reference fish. After filtering for highly represented functions in selected fish, 115 epigenetic markers were retrieved in this group. Among them, lipid metabolism genes (23) were the most reactive following ordering by fold-change in expression, rendering a final list of 10 top markers with a key role on hepatic lipogenesis and fatty acid metabolism (cd36, pitpna, cidea, fasn, g6pd, lipt1, scd1a, acsbg2, acsl14, acsbg2). CONCLUSIONS Gene expression profiles and methylation signatures were dependent on genetic background in our experimental model. Such assumption affected the magnitude, but also the type and direction of change. Thus, the resulting epigenetic clock of reference fish might depict an older phenotype with a lower methylation for the epigenetically responsive genes with a negative methylation-expression pattern. Therefore, epigenetic markers will be specific of each genetic lineage, serving the broodstock programming in our selected fish to prevent and mitigate later in life the risk of hepatic steatosis through changes in hepatic lipogenesis and fatty acid metabolism.
Collapse
Affiliation(s)
- F Naya-Català
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de La Sal (IATS, CSIC), 12595, Castellón, Spain
| | - A Belenguer
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de La Sal (IATS, CSIC), 12595, Castellón, Spain
| | - D Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte S/N, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - S Torrecillas
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte S/N, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - B Soriano
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de La Sal (IATS, CSIC), 12595, Castellón, Spain
- Biotechvana, Parc Científic Universitat de València, 46980, Paterna, Spain
| | - J Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de La Sal (IATS, CSIC), 12595, Castellón, Spain
| | - C Llorens
- Biotechvana, Parc Científic Universitat de València, 46980, Paterna, Spain
| | - R Fontanillas
- Skretting Aquaculture Research Centre, Stavanger, Norway
| | - S Sarih
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte S/N, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - M J Zamorano
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte S/N, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - M Izquierdo
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte S/N, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - J Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de La Sal (IATS, CSIC), 12595, Castellón, Spain.
| |
Collapse
|
12
|
Hettema JM, van den Oord EJCG, Zhao M, Xie LY, Copeland WE, Penninx BWJH, Aberg KA, Clark SL. Methylome-wide association study of anxiety disorders. Mol Psychiatry 2023; 28:3484-3492. [PMID: 37542162 PMCID: PMC10838347 DOI: 10.1038/s41380-023-02205-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Anxiety Disorders (ANX) such as panic disorder, generalized anxiety disorder, and phobias, are highly prevalent conditions that are moderately heritable. Evidence suggests that DNA methylation may play a role, as it is involved in critical adaptations to changing environments. Applying an enrichment-based sequencing approach covering nearly 28 million autosomal CpG sites, we conducted a methylome-wide association study (MWAS) of lifetime ANX in 1132 participants (618 cases/514 controls) from the Netherlands Study of Depression and Anxiety. Using epigenomic deconvolution, we performed MWAS for the main cell types in blood: granulocytes, T-cells, B-cells and monocytes. Cell-type specific analyses identified 280 and 82 methylome-wide significant associations (q-value < 0.1) in monocytes and granulocytes, respectively. Our top finding in monocytes was located in ZNF823 on chromosome 19 (p = 1.38 × 10-10) previously associated with schizophrenia. We observed significant overlap (p < 1 × 10-06) with the same direction of effect in monocytes (210 sites), T-cells (135 sites), and B-cells (727 sites) between this Discovery MWAS signal and a comparable replication dataset from the Great Smoky Mountains Study (N = 433). Overlapping Discovery-Replication MWAS signal was enriched for findings from published GWAS of ANX, major depression, and post-traumatic stress disorder. In monocytes, two specific sites in the FZR1 gene showed significant replication after Bonferroni correction with an additional 15 nominally replicated sites in monocytes and 4 in T-cells. FZR1 regulates neurogenesis in the hippocampus, and its knockout leads to impairments in associative fear memory and long-term potentiation in mice. In the largest and most extensive methylome-wide study of ANX, we identified replicable methylation sites located in genes of potential relevance for brain mechanisms of psychiatric conditions.
Collapse
Affiliation(s)
- John M Hettema
- Department of Psychiatry & Behavioral Sciences, Texas A&M University, College Station, TX, USA
| | - Edwin J C G van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Min Zhao
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Lin Y Xie
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Brenda W J H Penninx
- Department of Psychiatry, VU University Medical Center / GGZ inGeest, Amsterdam, 1081 HV, the Netherlands
| | - Karolina A Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Shaunna L Clark
- Department of Psychiatry & Behavioral Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
13
|
Mozhui K, O’Callaghan JP, Ashbrook DG, Prins P, Zhao W, Lu L, Jones BC. Epigenetic analysis in a murine genetic model of Gulf War illness. FRONTIERS IN TOXICOLOGY 2023; 5:1162749. [PMID: 37389175 PMCID: PMC10300436 DOI: 10.3389/ftox.2023.1162749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/22/2023] [Indexed: 07/01/2023] Open
Abstract
Of the nearly 1 million military personnel who participated in the 1990-1991 Gulf War, between 25% and 35% became ill with what now is referred to as Gulf War Illness (GWI) by the Department of Defense. Symptoms varied from gastrointestinal distress to lethargy, memory loss, inability to concentrate, depression, respiratory, and reproductive problems. The symptoms have persisted for 30 years in those afflicted but the basis of the illness remains largely unknown. Nerve agents and other chemical exposures in the war zone have been implicated but the long-term effects of these acute exposures have left few if any identifiable signatures. The major aim of this study is to elucidate the possible genomic basis for the persistence of symptoms, especially of the neurological and behavioral effects. To address this, we performed a whole genome epigenetic analysis of the proposed cause of GWI, viz., exposure to organophosphate neurotoxicants combined with high circulating glucocorticoids in two inbred mouse strains, C57BL/6J and DBA/2J. The animals received corticosterone in their drinking water for 7 days followed by injection of diisopropylfluorophosphate, a nerve agent surrogate. Six weeks after DFP injection, the animals were euthanized and medial prefrontal cortex harvested for genome-wide DNA methylation analysis using high-throughput sequencing. We observed 67 differentially methylated genes, notably among them, Ttll7, Akr1c14, Slc44a4, and Rusc2, all related to different symptoms of GWI. Our results support proof of principle of genetic differences in the chronic effects of GWI-related exposures and may reveal why the disease has persisted in many of the now aging Gulf War veterans.
Collapse
Affiliation(s)
- Khyobeni Mozhui
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - James P. O’Callaghan
- Molecular Neurotoxicology Laboratory, Toxicology, and Molecular Biology Branch, Health Effects Laboratory Division, U. S. Centers for Disease Control and Prevention, NIOSH, Morgantown, WV, United States
| | - David G. Ashbrook
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Wenyuan Zhao
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Byron C. Jones
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
14
|
van den Oord EJCG, Xie LY, Zhao M, Campbell TL, Turecki G, Kähler AK, Dean B, Mors O, Hultman CM, Staunstrup NH, Aberg KA. Genes implicated by a methylome-wide schizophrenia study in neonatal blood show differential expression in adult brain samples. Mol Psychiatry 2023; 28:2088-2094. [PMID: 37106120 DOI: 10.1038/s41380-023-02080-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Schizophrenia is a disabling disorder involving genetic predisposition in combination with environmental influences that likely act via dynamic alterations of the epigenome and the transcriptome but its detailed pathophysiology is largely unknown. We performed cell-type specific methylome-wide association study of neonatal blood (N = 333) from individuals who later in life developed schizophrenia and controls. Suggestively significant associations (P < 1.0 × 10-6) were detected in all cell-types and in whole blood with methylome-wide significant associations in monocytes (P = 2.85 × 10-9-4.87 × 10-9), natural killer cells (P = 1.72 × 10-9-7.82 × 10-9) and B cells (P = 3.8 × 10-9). Validation of methylation findings in post-mortem brains (N = 596) from independent schizophrenia cases and controls showed significant enrichment of transcriptional differences (enrichment ratio = 1.98-3.23, P = 2.3 × 10-3-1.0 × 10-5), with specific highly significant differential expression for, for example, BDNF (t = -6.11, P = 1.90 × 10-9). In addition, expression difference in brain significantly predicted schizophrenia (multiple correlation = 0.15-0.22, P = 3.6 × 10-4-4.5 × 10-8). In summary, using a unique design combining pre-disease onset (neonatal) blood methylomic data and post-disease onset (post-mortem) brain transcriptional data, we have identified genes of likely functional relevance that are associated with schizophrenia susceptibility, rather than confounding disease associated artifacts. The identified loci may be of clinical value as a methylation-based biomarker for early detection of increased schizophrenia susceptibility.
Collapse
Affiliation(s)
- Edwin J C G van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Lin Y Xie
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Min Zhao
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Thomas L Campbell
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Gustavo Turecki
- Douglas Mental Health University Institute and McGill University, Montréal, Québec, Canada
| | - Anna K Kähler
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Brian Dean
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Ole Mors
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Risskov, Denmark
- Center for Genomics and Personalized Medicine, University of Aarhus, Aarhus, Denmark
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Nicklas H Staunstrup
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, University of Aarhus, Aarhus, Denmark
- Department of Biomedicine, University of Aarhus, Aarhus C, Denmark
| | - Karolina A Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
15
|
Copeland WE, Shanahan L, McGinnis EW, Aberg KA, van den Oord EJ. Early adversities accelerate epigenetic aging into adulthood: a 10-year, within-subject analysis. J Child Psychol Psychiatry 2022; 63:1308-1315. [PMID: 35137412 PMCID: PMC9842095 DOI: 10.1111/jcpp.13575] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Longitudinal studies are needed to clarify whether early adversities are associated with advanced methylation age or if they actually accelerate methylation aging. This study test whether different dimensions of childhood adversity accelerate biological aging from childhood to adulthood, and, if so, via which mechanisms. METHODS 381 participants provided one blood sample in childhood (average age 15.0; SD = 2.3) and another in young adulthood (average age 23.1; SD = 2.8). Participants and their parents provided a median of 6 childhood assessments (total = 1,950 childhood observations), reporting exposures to different types of adversity dimensions (i.e. threat, material deprivation, loss, unpredictability). The blood samples were assayed to estimate DNA methylation age in both childhood and adulthood and also change in methylation age across this period. RESULTS Cross-sectional associations between the childhood adversity dimensions and childhood measures of methylation age were non-significant. In contrast, multiple adversity dimensions were associated with accelerated within-person change in methylation age from adolescence to young adulthood. These associations attenuated in model testing all dimensions at the same time. Accelerated aging increased with increasing number of childhood adversities: Individuals with highest number of adversities experienced 2+ additional years of methylation aging compared to those with no exposure to childhood adversities. The association between total childhood adversity exposure and accelerated aging was partially explained by childhood depressive symptoms, but not anxiety or behavioral symptoms. CONCLUSIONS Early adversities accelerate epigenetic aging long after they occur, in proportion to the total number of such experiences, and in a manner consistent with a shared effect that crosses multiple early dimensions of risk.
Collapse
Affiliation(s)
| | - Lilly Shanahan
- Jacobs Center for Productive Youth Development & Department of Psychology, University of Zurich
| | | | - Karolina A. Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University
| | | |
Collapse
|
16
|
van den Oord CLJD, Copeland WE, Zhao M, Xie LY, Aberg KA, van den Oord EJCG. DNA methylation signatures of childhood trauma predict psychiatric disorders and other adverse outcomes 17 years after exposure. Mol Psychiatry 2022; 27:3367-3373. [PMID: 35546634 PMCID: PMC9649837 DOI: 10.1038/s41380-022-01597-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 02/03/2023]
Abstract
Childhood trauma is robustly linked to a broad range of adverse outcomes with consequences persisting far into adulthood. We conducted a prospective longitudinal study to predict psychiatric disorders and other adverse outcomes from trauma-related methylation changes 16.9 years after trauma exposure in childhood. Methylation was assayed using a sequencing-based approach that provides near-complete coverage of all 28 million sites in the blood methylome. Methylation data involved 673 assays from 489 participants aged 13.6 years (SD = 1.9) with outcomes measures collected at age 30.4 (SD = 2.26). For a subset of 303 participants we also generated methylation data in adulthood. Trauma-related methylation risk scores (MRSs) significantly predicted adult depression, externalizing problems, nicotine dependence, alcohol use disorder, serious medical problems, social problems and poverty. The predictive power of the MRSs was higher than that of reported trauma and could not be explained by the reported trauma, correlations with demographic variables, or a continuity of the predicted health problems from childhood to adulthood. Rather than measuring the occurrence of traumatic events, the MRSs seemed to capture the subject-specific impact of trauma. The majority of predictive sites did not remain associated with the outcomes suggesting the signatures of trauma do not become biologically embedded in the blood methylome. Instead, the long-term effects of trauma therefore seemed more consistent with a developmental mechanism where the initial subject-specific impacts of trauma are magnified over time. The MRSs have the potential to be a novel clinical biomarker for the assessment of trauma-related health risks.
Collapse
Affiliation(s)
- Charlie LJD van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - William E. Copeland
- Vermont Center for Children, Youth, and Families, Department of Psychiatry, University of Vermont Medical Center, Burlington.,Duke University Medical Center, Durham
| | - Min Zhao
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Lin Ying Xie
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Karolina A. Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Edwin JCG van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
17
|
Chu S, Avery A, Yoshimoto J, Bryan JN. Genome wide exploration of the methylome in aggressive B-cell lymphoma in Golden Retrievers reveals a conserved hypermethylome. Epigenetics 2022; 17:2022-2038. [PMID: 35912844 PMCID: PMC9665123 DOI: 10.1080/15592294.2022.2105033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Few recurrent DNA mutations are seen in aggressive canine B cell lymphomas (cBCL), suggesting other frequent drivers. The methylated island recovery assay (MIRA-seq) or methylated CpG-binding domain sequencing (MBD-seq) was used to define the genome-wide methylation profiles in aggressive cBCL in Golden Retrievers to determine if cBCL can be better defined by epigenetic changes than by DNA mutations. DNA hypermethylation patterns were relatively homogenous within cBCL samples in Golden Retrievers, in different breeds and in geographical regions. Aberrant hypermethylation is thus suspected to be a central and early event in cBCL lymphomagenesis. Distinct subgroups within cBCL in Golden Retrievers were not identified with DNA methylation profiles. In comparison, the methylome profile of human DLBCL (hDLBCL) is relatively heterogeneous. Only moderate similarity between hDLBCL and cBCL was seen and cBCL likely cannot be accurately classified into the subtypes seen in hDLBCL. Genes with hypermethylated regions in the promoter-TSS-first exon of cBCL compared to normal B cells often also had additional hyper- and hypomethylated regions distributed throughout the gene suggesting non-randomized repeat targeting of key genes by epigenetic mechanisms. The prevalence of hypermethylation in transcription factor families in aggressive cBCL may represent a fundamental step in lymphomagenesis.
Collapse
Affiliation(s)
- Shirley Chu
- Department of Veterinary Medicine and Surgery, University of Missouri, 900 E. Campus Drive, Columbia, MO, USA
| | - Anne Avery
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Janna Yoshimoto
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jeffrey N Bryan
- Department of Veterinary Medicine and Surgery, University of Missouri, 900 E. Campus Drive, Columbia, MO, USA
| |
Collapse
|
18
|
Chan RF, Copeland WE, Zhao M, Xie LY, Costello EJ, Aberg KA, van den Oord EJCG. A methylation study implicates the rewiring of brain neural circuits during puberty in the emergence of sex differences in depression symptoms. J Child Psychol Psychiatry 2022; 63:802-809. [PMID: 34541665 PMCID: PMC8933287 DOI: 10.1111/jcpp.13522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Women are 1.5-3 times more likely to suffer from depression than men. This sex bias first emerges during puberty and then persists across the reproductive years. As the cause remains largely elusive, we performed a methylation-wide association study (MWAS) to generate novel hypotheses. METHODS We assayed nearly all 28 million possible methylation sites in blood in 595 blood samples from 487 participants aged 9-17. MWASs were performed to identify methylation sites associated with increasing sex differences in depression symptoms as a function of pubertal stage. Epigenetic deconvolution was applied to perform analyses on a cell-type specific level. RESULTS In monocytes, a substantial number of significant associations were detected after controlling the FDR at 0.05. These results could not be explained by plasma testosterone/estradiol or current/lifetime trauma. Our top results in monocytes were significantly enriched (ratio of 2.48) for genes in the top of a large genome-wide association study (GWAS) meta-analysis of depression and neurodevelopment-related Gene Ontology (GO) terms that remained significant after correcting for multiple testing. Focusing on our most robust findings (70 genes overlapping with the GWAS meta-analysis and the significant GO terms), we find genes coding for members of each of the major classes of axon guidance molecules (netrins, slits, semaphorins, ephrins, and cell adhesion molecules). Many of these genes were previously implicated in rodent studies of brain development and depression-like phenotypes, as well as human methylation, gene expression and GWAS studies. CONCLUSIONS Our study suggests that the emergence of sex differences in depression may be related to the differential rewiring of brain circuits between boys and girls during puberty.
Collapse
Affiliation(s)
- Robin F. Chan
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - William E. Copeland
- Vermont Center for Children, Youth, and Families, Department of Psychiatry, University of Vermont Medical Center, Burlington
| | - Min Zhao
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Lin Ying Xie
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Karolina A. Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Edwin JCG van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
19
|
Clark SL, Chan RF, Zhao M, Xie LY, Copeland WE, Penninx BW, Aberg KA, van den Oord EJ. Dual methylation and hydroxymethylation study of alcohol use disorder. Addict Biol 2022; 27:e13114. [PMID: 34791764 PMCID: PMC8891051 DOI: 10.1111/adb.13114] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 09/16/2021] [Accepted: 10/30/2021] [Indexed: 12/11/2022]
Abstract
Using an integrative, multi-tissue design, we sought to characterize methylation and hydroxymethylation changes in blood and brain associated with alcohol use disorder (AUD). First, we used epigenomic deconvolution to perform cell-type-specific methylome-wide association studies within subpopulations of granulocytes/T-cells/B-cells/monocytes in 1132 blood samples. Blood findings were then examined for overlap with AUD-related associations with methylation and hydroxymethylation in 50 human post-mortem brain samples. Follow-up analyses investigated if overlapping findings mediated AUD-associated transcription changes in the same brain samples. Lastly, we replicated our blood findings in an independent sample of 412 individuals and aimed to replicate published alcohol methylation findings using our results. Cell-type-specific analyses in blood identified methylome-wide significant associations in monocytes and T-cells. The monocyte findings were significantly enriched for AUD-related methylation and hydroxymethylation in brain. Hydroxymethylation in specific sites mediated AUD-associated transcription in the same brain samples. As part of the most comprehensive methylation study of AUD to date, this work involved the first cell-type-specific methylation study of AUD conducted in blood, identifying and replicating a finding in DLGAP1 that may be a blood-based biomarker of AUD. In this first study to consider the role of hydroxymethylation in AUD, we found evidence for a novel mechanism for cognitive deficits associated with AUD. Our results suggest promising new avenues for AUD research.
Collapse
Affiliation(s)
| | - Robin F. Chan
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University
| | - Min Zhao
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University
| | - Lin Y. Xie
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University
| | | | - Brenda W.J.H. Penninx
- Department of Psychiatry, University of Vermont,Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Karolina A. Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University
| | | |
Collapse
|
20
|
DNA methylation of the KLK8 gene in depression symptomatology. Clin Epigenetics 2021; 13:200. [PMID: 34715912 PMCID: PMC8556955 DOI: 10.1186/s13148-021-01184-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/12/2021] [Indexed: 12/02/2022] Open
Abstract
Background Depression is a common, complex, and debilitating mental disorder estimated to be under-diagnosed and insufficiently treated in society. Liability to depression is influenced by both genetic and environmental risk factors, which are both capable of impacting DNA methylation (DNAm). Accordingly, numerous studies have researched for DNAm signatures of this disorder. Recently, an epigenome-wide association study of monozygotic twins identified an association between DNAm status in the KLK8 (neuropsin) promoter region and severity of depression symptomatology. Methods In this study, we aimed to investigate: (i) if blood DNAm levels, quantified by pyrosequencing, at two CpG sites in the KLK8 promoter are associated with depression symptomatology and depression diagnosis in an independent clinical cohort and (ii) if KLK8 DNAm levels are associated with depression, postpartum depression, and depression symptomatology in four independent methylomic cohorts, with blood and brain DNAm quantified by either MBD-seq or 450 k methylation array. Results DNAm levels in KLK8 were not significantly different between depression cases and controls, and were not significantly associated with any of the depression symptomatology scores after correction for multiple testing (minimum p value for KLK8 CpG1 = 0.12 for ‘Depressed mood,’ and for CpG2 = 0.03 for ‘Loss of self-confidence with other people’). However, investigation of the link between KLK8 promoter DNAm levels and depression-related phenotypes collected from four methylomic cohorts identified significant association (p value < 0.05) between severity of depression symptomatology and blood DNAm levels at seven CpG sites. Conclusions Our findings suggest that variance in blood DNAm levels in KLK8 promoter region is associated with severity of depression symptoms, but not depression diagnosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01184-5.
Collapse
|
21
|
van den Oord EJCG, Xie LY, Tran CJ, Zhao M, Aberg KA. A targeted solution for estimating the cell-type composition of bulk samples. BMC Bioinformatics 2021; 22:462. [PMID: 34565346 PMCID: PMC8474864 DOI: 10.1186/s12859-021-04385-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 09/20/2021] [Indexed: 12/04/2022] Open
Abstract
Background To avoid false-positive findings and detect cell-type specific associations in methylation and transcription investigations with bulk samples, it is critical to know the proportions of the major cell-types. Results We present a novel approach that allows for precise estimation of cell-type proportions using only a few highly informative methylation markers. The most reliable estimates were obtained with 17 amplicons (34 CpGs) using the MuSiC estimator, for which the average correlations between the estimated and the true cell-type proportions were 0.889. Furthermore, the estimates were not significantly different from the true values (P = 0.95) indicating that the estimator is unbiased and the standard deviation of the estimates further indicate high precision. Moreover, the overall variability of the estimates as measured by the Root Mean Squared Error (RMSE), which is a function of both bias and precision, was low (mean RMSE = 0.038). Taken together, these results indicate that the approach produced reliable estimates that are both unbiased and highly precise. Conclusion This cost-effective approach for estimating cell-type proportions in bulk samples allows for enhanced targeted analysis, which in turn will minimize the risk of reporting false-positive findings and allowing for detection of cell-type specific associations. The approach is applicable across platforms and can be extended to assess cell-type proportions for various tissues. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04385-0.
Collapse
Affiliation(s)
- Edwin J C G van den Oord
- Center for Biomarker Research and Precision Medicine (BPM), School of Pharmacy, Virginia Commonwealth University, 1112 East Clay Street, McGuire Hall, Room 217, P.O. Box 980533, Richmond, VA, 23298, USA
| | - Lin Y Xie
- Center for Biomarker Research and Precision Medicine (BPM), School of Pharmacy, Virginia Commonwealth University, 1112 East Clay Street, McGuire Hall, Room 217, P.O. Box 980533, Richmond, VA, 23298, USA
| | - Charles J Tran
- Center for Biomarker Research and Precision Medicine (BPM), School of Pharmacy, Virginia Commonwealth University, 1112 East Clay Street, McGuire Hall, Room 217, P.O. Box 980533, Richmond, VA, 23298, USA
| | - Min Zhao
- Center for Biomarker Research and Precision Medicine (BPM), School of Pharmacy, Virginia Commonwealth University, 1112 East Clay Street, McGuire Hall, Room 217, P.O. Box 980533, Richmond, VA, 23298, USA
| | - Karolina A Aberg
- Center for Biomarker Research and Precision Medicine (BPM), School of Pharmacy, Virginia Commonwealth University, 1112 East Clay Street, McGuire Hall, Room 217, P.O. Box 980533, Richmond, VA, 23298, USA.
| |
Collapse
|
22
|
Bundo M, Ueda J, Nakachi Y, Kasai K, Kato T, Iwamoto K. Decreased DNA methylation at promoters and gene-specific neuronal hypermethylation in the prefrontal cortex of patients with bipolar disorder. Mol Psychiatry 2021; 26:3407-3418. [PMID: 33875800 PMCID: PMC8505249 DOI: 10.1038/s41380-021-01079-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/06/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022]
Abstract
Bipolar disorder (BD) is a severe mental disorder characterized by repeated mood swings. Although genetic factors are collectively associated with the etiology of BD, the underlying molecular mechanisms, particularly how environmental factors affect the brain, remain largely unknown. We performed promoter-wide DNA methylation analysis of neuronal and nonneuronal nuclei in the prefrontal cortex of patients with BD (N = 34) and controls (N = 35). We found decreased DNA methylation at promoters in both cell types in the BD patients. Gene Ontology (GO) analysis of differentially methylated region (DMR)-associated genes revealed enrichment of molecular motor-related genes in neurons, chemokines in both cell types, and ion channel- and transporter-related genes in nonneurons. Detailed GO analysis further revealed that growth cone- and dendrite-related genes, including NTRK2 and GRIN1, were hypermethylated in neurons of BD patients. To assess the effect of medication, neuroblastoma cells were cultured under therapeutic concentrations of three mood stabilizers. We observed that up to 37.9% of DMRs detected in BD overlapped with mood stabilizer-induced DMRs. Interestingly, mood stabilizer-induced DMRs showed the opposite direction of changes in DMRs, suggesting the therapeutic effects of mood stabilizers. Among the DMRs, 12 overlapped with loci identified in a genome-wide association study (GWAS) of BD. We also found significant enrichment of neuronal DMRs in the loci reported in another GWAS of BD. Finally, we performed qPCR of DNA methylation-related genes and found that DNMT3B was overexpressed in BD. The cell-type-specific DMRs identified in this study will be useful for understanding the pathophysiology of BD.
Collapse
Affiliation(s)
- Miki Bundo
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junko Ueda
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | - Yutaka Nakachi
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan.
- Department of Psychiatry and Behavioral Science, Graduate School of Medicine, Juntendo University, Tokyo, Japan.
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
23
|
Qin Y, Li T, Zhao H, Mao Z, Ding C, Kang Y. Integrated Transcriptomic and Epigenetic Study of PCOS: Impact of Map3k1 and Map1lc3a Promoter Methylation on Autophagy. Front Genet 2021; 12:620241. [PMID: 33763111 PMCID: PMC7982605 DOI: 10.3389/fgene.2021.620241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent heterogeneous endocrine and metabolic disorder in women of reproductive age. Epigenetic mechanisms contribute to the development of PCOS. Nevertheless, the role of DNA methylation in the development of PCOS remains unclear. To investigate the molecular mechanisms underlying the hyperandrogenic phenotype of PCOS, dihydrotestosterone (DHT)-induced prenatally androgenized (PNA) mice were used to mimic this phenotype. Ovarian samples from PNA and control mice were subjected to methyl-CpG-binding domain (MBD)-seq and RNA-seq, and validation was conducted using methylation-specific polymerase chain reaction (MSP) and quantitative real-time PCR (RT-qPCR). Immunohistochemical analysis (using anti-LC3II antibody) and transmission electron microscopy were conducted using ovarian tissue sections (which included granulosa cells) from PNA and control mice. There were 857 genes with differentially methylated promoter regions and 3,317 differentially expressed genes (DEGs) in the PNA mice compared to the control mice. Downregulation of Dnmt1 (which encodes DNA methyltransferase 1), accompanied by global hypomethylation, was observed in the PNA mice compared to the control mice. The promoter regions of Map3k1 (which encodes MEKK1) and Map1lc3a (which encodes LC3II) were hypomethylated, accompanied by upregulation of Map3k1 and Map1lc3a mRNA expression. The autophagy profiling results showed that LC3II protein expression and autophagosomes were significantly increased in the granulosa cells of PNA mice. Additionally, the mRNA expression of genes related to the mitogen-activated protein kinase (MAPK)/p53 pathway (Mapk14, Mapkapk3, and Trp53) and the autophagy-related gene Becn1 were significantly increased. DHT could change the DNA methylation and transcription level of Map3k1 and lead to an activation of autophagy in granulosa cells. These observations indicated that the change in autophagy may be driven by MAPK/p53 pathway activation, which may have been caused by DHT-induced transcriptional, and the methylation level changed of the key upstream gene Map3k1. Our study provides a novel genetic basis and new insights regarding the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Yulan Qin
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Li
- Department of Obstetrics and Gynecology, Yuncheng Central Hospital, Yuncheng, China
| | - Hui Zhao
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, China
| | - Zhanrui Mao
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, China
| | - Chunxia Ding
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yani Kang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Broche J, Kungulovski G, Bashtrykov P, Rathert P, Jeltsch A. Genome-wide investigation of the dynamic changes of epigenome modifications after global DNA methylation editing. Nucleic Acids Res 2021; 49:158-176. [PMID: 33300025 PMCID: PMC7797067 DOI: 10.1093/nar/gkaa1169] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Chromatin properties are regulated by complex networks of epigenome modifications. Currently, it is unclear how these modifications interact and if they control downstream effects such as gene expression. We employed promiscuous chromatin binding of a zinc finger fused catalytic domain of DNMT3A to introduce DNA methylation in HEK293 cells at many CpG islands (CGIs) and systematically investigated the dynamics of the introduced DNA methylation and the consequent changes of the epigenome network. We observed efficient methylation at thousands of CGIs, but it was unstable at about 90% of them, highlighting the power of genome-wide molecular processes that protect CGIs against DNA methylation. Partially stable methylation was observed at about 1000 CGIs, which showed enrichment in H3K27me3. Globally, the introduced DNA methylation strongly correlated with a decrease in gene expression indicating a direct effect. Similarly, global but transient reductions in H3K4me3 and H3K27ac were observed after DNA methylation but no changes were found for H3K9me3 and H3K36me3. Our data provide a global and time-resolved view on the network of epigenome modifications, their connections with DNA methylation and the responses triggered by artificial DNA methylation revealing a direct repressive effect of DNA methylation in CGIs on H3K4me3, histone acetylation, and gene expression.
Collapse
Affiliation(s)
- Julian Broche
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Goran Kungulovski
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Pavel Bashtrykov
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Philipp Rathert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|