1
|
Long Y, Mao C, Liu S, Tao Y, Xiao D. Epigenetic modifications in obesity-associated diseases. MedComm (Beijing) 2024; 5:e496. [PMID: 38405061 PMCID: PMC10893559 DOI: 10.1002/mco2.496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
The global prevalence of obesity has reached epidemic levels, significantly elevating the susceptibility to various cardiometabolic conditions and certain types of cancer. In addition to causing metabolic abnormalities such as insulin resistance (IR), elevated blood glucose and lipids, and ectopic fat deposition, obesity can also damage pancreatic islet cells, endothelial cells, and cardiomyocytes through chronic inflammation, and even promote the development of a microenvironment conducive to cancer initiation. Improper dietary habits and lack of physical exercise are important behavioral factors that increase the risk of obesity, which can affect gene expression through epigenetic modifications. Epigenetic alterations can occur in early stage of obesity, some of which are reversible, while others persist over time and lead to obesity-related complications. Therefore, the dynamic adjustability of epigenetic modifications can be leveraged to reverse the development of obesity-associated diseases through behavioral interventions, drugs, and bariatric surgery. This review provides a comprehensive summary of the impact of epigenetic regulation on the initiation and development of obesity-associated cancers, type 2 diabetes, and cardiovascular diseases, establishing a theoretical basis for prevention, diagnosis, and treatment of these conditions.
Collapse
Affiliation(s)
- Yiqian Long
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
| | - Chao Mao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic MedicineCentral South UniversityChangshaChina
| | - Shuang Liu
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yongguang Tao
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic MedicineCentral South UniversityChangshaChina
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Department of Thoracic SurgerySecond Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Desheng Xiao
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
| |
Collapse
|
2
|
Flore G, Deledda A, Lombardo M, Armani A, Velluzzi F. Effects of Functional and Nutraceutical Foods in the Context of the Mediterranean Diet in Patients Diagnosed with Breast Cancer. Antioxidants (Basel) 2023; 12:1845. [PMID: 37891924 PMCID: PMC10603973 DOI: 10.3390/antiox12101845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Several studies report that breast cancer survivors (BCS) tend to have a poor diet, as fruit, vegetable, and legume consumption is often reduced, resulting in a decreased intake of nutraceuticals. Moreover, weight gain has been commonly described among BCS during treatment, increasing recurrence rate and mortality. Improving lifestyle and nutrition after the diagnosis of BC may have important benefits on patients' general health and on specific clinical outcomes. The Mediterranean diet (MD), known for its multiple beneficial effects on health, can be considered a nutritional pool comprising several nutraceuticals: bioactive compounds and foods with anti-inflammatory and antioxidant effects. Recent scientific advances have led to the identification of nutraceuticals that could amplify the benefits of the MD and favorably influence gene expression in these patients. Nutraceuticals could have beneficial effects in the postdiagnostic phase of BC, including helping to mitigate the adverse effects of chemotherapy and radiotherapy. Moreover, the MD could be a valid and easy-to-follow option for managing excess weight. The aim of this narrative review is to evaluate the recent scientific literature on the possible beneficial effects of consuming functional and nutraceutical foods in the framework of MD in BCS.
Collapse
Affiliation(s)
- Giovanna Flore
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| | - Andrea Deledda
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Andrea Armani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Fernanda Velluzzi
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| |
Collapse
|
3
|
Tang Y, Lin TC, Kim YC, Chung S, Liu Z. High-Fat Diet Exposure in Early Life Alters Mammary Metabolic and Inflammatory Microenvironment in Favor of Breast Tumorigenesis Later in Life in Mice. Curr Oncol 2023; 30:4197-4207. [PMID: 37185433 PMCID: PMC10136975 DOI: 10.3390/curroncol30040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Emerging evidence highlights the important impact of early-life exposures on cancer development later in life. The present study aimed to investigate the impacts of a high-fat diet in early life on the mammary microenvironment in relation to breast tumorigenesis. Forty-four female C57BL/6 mice were fed a low-fat diet (LF, 10 kcal% fat) or a high-fat diet (HF, 60 kcal% fat) for 8 weeks starting at ~4 weeks of age. Twenty-two mice were sacrificed immediately after an 8 week feeding, and the rest of mice were switched to a normal diet for maintenance (Lab Diet, #5P76) for additional 12 weeks. A panel of metabolic parameters, inflammatory cytokines, as well as tumorigenic Wnt-signaling target genes were analyzed. The HF diet increased body weight and exacerbated mammary metabolic and inflammatory status. The disrupted microenvironment remains significant to the later life equivalent to young adulthood (p < 0.05). Mammary Wnt-signaling was elevated right after the HF diet as indicated by the upregulated expression of its downstream genes, whereas it was surprisingly suppressed after switching diets (p < 0.05). In summary, HF-induced overweight/obesity in early life altered the mammary metabolic and inflammatory microenvironments in favor of breast tumorigenesis, although its overall impact to breast cancer later in life warrants further investigation.
Collapse
Affiliation(s)
- Ying Tang
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Ting-Chun Lin
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Young-Cheul Kim
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Soonkyu Chung
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Zhenhua Liu
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
- UMass Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
4
|
Li G, Meng H, Bai Y, Wei W, Feng Y, Li M, Li H, He M, Zhang X, Wei S, Li Y, Guo H. DNA methylome analysis identifies BMI-related epigenetic changes associated with non-small cell lung cancer susceptibility. Cancer Med 2021; 10:3770-3781. [PMID: 33939316 PMCID: PMC8178488 DOI: 10.1002/cam4.3906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 12/20/2022] Open
Abstract
Background Body mass index (BMI) has been reported to be inversely associated with incident risk of non‐small cell lung cancer (NSCLC). However, the underlying mechanism is still unclear. This study aimed to investigate the role of DNA methylation in the relationship between BMI and NSCLC. Methods We carried out a genome‐wide DNA methylation study of BMI in peripheral blood among 2266 Chinese participants by using Illumina Methylation arrays. For the BMI‐related DNA methylation changes, their associations with NSCLC risk were further analyzed and their mediation effects on BMI‐NSCLC association were also evaluated. Results The methylation levels of four CpGs (cg12593793, cg17061862, cg11024682, and cg06500161, annotated to LMNA, ZNF143, SREBF1, and ABCG1, respectively) were found to be significantly associated with BMI. Methylation levels of cg12593793, cg11024682, and cg06500161 were observed to be inversely associated with NSCLC risk [OR (95%CI) =0.22 (0.16, 0.31), 0.39 (0.30, 0.50), and 0.66 (0.53, 0.82), respectively]. Additionally, cg11024682 in SREBF1 and cg06500161 in ABCG1 mediated 45.3% and 19.5% of the association between BMI and decreased NSCLC risk, respectively. Conclusions In this study, we identified four DNA methylation sites associated with BMI in the Chinese populations at the genome‐wide significant level. We also found that the BMI‐related methylations of SREBF1 and ABCG1 could mediate about a quintile‐to‐half of the effect of BMI on reduced NSCLC risk, which adds a potential mechanism underlying this association.
Collapse
Affiliation(s)
- Guyanan Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hua Meng
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yansen Bai
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Wei
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Feng
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengying Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hang Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangkai Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|