1
|
Tang J, Zhou C, Ye F, Zuo S, Zhou M, Lu L, Chai P, Fan X. RNA methylation homeostasis in ocular diseases: All eyes on Me. Prog Retin Eye Res 2025; 105:101335. [PMID: 39880118 DOI: 10.1016/j.preteyeres.2025.101335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
RNA methylation is a pivotal epigenetic modification that adjusts various aspects of RNA biology, including nuclear transport, stability, and the efficiency of translation for specific RNA candidates. The methylation of RNA involves the addition of methyl groups to specific bases and can occur at different sites, resulting in distinct forms, such as N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), and 7-methylguanosine (m7G). Maintaining an optimal equilibrium of RNA methylation is crucial for fundamental cellular activities such as cell survival, proliferation, and migration. The balance of RNA methylation is linked to various pathophysiological conditions, including senescence, cancer development, stress responses, and blood vessel formation, all of which are pivotal for comprehending a spectrum of eye diseases. Recent findings have highlighted the significant role of diverse RNA methylation patterns in ophthalmological conditions such as age-related macular degeneration, diabetic retinopathy, cataracts, glaucoma, uveitis, retinoblastoma, uveal melanoma, thyroid eye disease, and myopia, which are critical for vision health. This thorough review endeavors to dissect the influence of RNA methylation on common and vision-impairing ocular disorders. It explores the nuanced roles that RNA methylation plays in key pathophysiological mechanisms, such as oxidative stress and angiogenesis, which are integral to the onset and progression of these diseases. By synthesizing the latest research, this review offers valuable insights into how RNA methylation could be harnessed for therapeutic interventions in the field of ophthalmology.
Collapse
Affiliation(s)
- Jieling Tang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China
| | - Chuandi Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China
| | - Fuxiang Ye
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China
| | - Sipeng Zuo
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China
| | - Min Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China
| | - Linna Lu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China.
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China.
| |
Collapse
|
2
|
Guan J, Chen X, Li Z, Deng S, Wumaier A, Ma Y, Xie L, Huang S, Zhu Y, Zhuo Y. Role of N6-methyladenosine-related lncRnas in pseudoexfoliation glaucoma. Epigenetics 2024; 19:2348840. [PMID: 38716769 PMCID: PMC11086004 DOI: 10.1080/15592294.2024.2348840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
To explore the role of lncRNA m6A methylation modification in aqueous humour (AH) of patients with pseudoexfoliation glaucoma (PXG). Patients with open-angle PXG under surgery from June 2021 to December 2021 were selected. Age- and gender-matched patients with age-related cataract (ARC) were chosen as control. Patients underwent detailed ophthalmic examinations. 0.05-0.1 ml AH were extracted during surgery for MeRIP-Seq and RNA-Seq. Joint analysis was used to screen lncRNAs with differential m6A methylation modification and expression. Online software tools were used to draw lncRNA-miRNA-mRNA network (ceRNA). Expression of lncRNAs and mRNAs was confirmed using quantitative real-time PCR. A total of 4151 lncRNAs and 4386 associated m6A methylation modified peaks were identified in the PXG group. Similarly, 2490 lncRNAs and 2595 associated m6A methylation modified peaks were detected in the control. Compared to the ARC group, the PXG group had 234 hypermethylated and 402 hypomethylated m6A peaks, with statistically significant differences (| Fold Change (FC) |≥2, p < 0.05). Bioinformatic analysis revealed that these differentially methylated lncRNA enriched in extracellular matrix formation, tight adhesion, TGF- β signalling pathway, AMPK signalling pathway, and MAPK signalling pathway. Joint analysis identified 10 lncRNAs with differential m6A methylation and expression simultaneously. Among them, the expression of ENST000000485383 and ROCK1 were confirmed downregulated in the PXG group by RT-qPCR. m6A methylation modification may affect the expression of lncRNA and participate in the pathogenesis of PXG through the ceRNA network. ENST000000485383-hsa miR592-ROCK1 May be a potential target pathway for further investigation in PXG m6A methylation.
Collapse
Affiliation(s)
- Jieying Guan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, World Health Organization Collaborating Center for Eye Care and Vision, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, World Health Organization Collaborating Center for Eye Care and Vision, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Zhidong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, World Health Organization Collaborating Center for Eye Care and Vision, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Shuifeng Deng
- The Department of Ophthalmology, Huizhou Hospital Affiliated to Guangzhou Medical University (Huizhou Third People’s Hospital), Huizhou, China
| | - Aizezi Wumaier
- The Affiliated Kashi Hospital, Sun Yat-sen University, Kashi, Xinjiang, China
- The First Department of Ophthalmology, The First People’s Hospital of Kashi Prefecture, Kashi, Xinjiang, China
| | - Yuncheng Ma
- The Affiliated Kashi Hospital, Sun Yat-sen University, Kashi, Xinjiang, China
- The First Department of Ophthalmology, The First People’s Hospital of Kashi Prefecture, Kashi, Xinjiang, China
| | - Lingling Xie
- The Affiliated Kashi Hospital, Sun Yat-sen University, Kashi, Xinjiang, China
- The First Department of Ophthalmology, The First People’s Hospital of Kashi Prefecture, Kashi, Xinjiang, China
| | - Shengsong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, World Health Organization Collaborating Center for Eye Care and Vision, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yingting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, World Health Organization Collaborating Center for Eye Care and Vision, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, World Health Organization Collaborating Center for Eye Care and Vision, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| |
Collapse
|
3
|
Liu S, Cao Y, Zhang Y. Regulatory roles of RNA methylation in vascular lesions in ocular and cardiopulmonary diseases. Crit Rev Clin Lab Sci 2024; 61:726-740. [PMID: 38957015 DOI: 10.1080/10408363.2024.2370267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/12/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
RNA methylation is a widespread regulatory mechanism that controls gene expression in physiological processes. In recent years, the mechanisms and functions of RNA methylation under diseased conditions have been increasingly unveiled by RNA sequencing technologies with large scale and high resolution. In this review, the fundamental concept of RNA methylation is introduced, and the common types of transcript methylation and their machineries are described. Then, the regulatory roles of RNA methylation, particularly N6-methyladenosine and 5-methylcytosine, in the vascular lesions of ocular and cardiopulmonary diseases are discussed and compared. The ocular diseases include corneal neovascularization, retinopathy of prematurity, diabetic retinopathy, and pathologic myopia; whereas the cardiopulmonary ailments involve atherosclerosis and pulmonary hypertension. This review hopes to shed light on the common regulatory mechanisms underlying the vascular lesions in these ocular and cardiopulmonary diseases, which may be conducive to developing therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Siyi Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yunshan Cao
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, China
| | - Yan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
4
|
Ye HF, Zhang X, Zhao ZN, Zheng C, Fei P, Xu Y, Lyu J, Chen JL, Guo XX, Zhu H, Zhao PQ. Characterization of N 6-methyladenosine long non-coding RNAs in sporadic congenital cataract and age-related cataract. Int J Ophthalmol 2024; 17:1973-1986. [PMID: 39559306 PMCID: PMC11528264 DOI: 10.18240/ijo.2024.11.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/09/2024] [Indexed: 11/20/2024] Open
Abstract
AIM To characterize the N6-methyladenosine (m6A) modification patterns in long non-coding RNAs (lncRNAs) in sporadic congenital cataract (CC) and age-related cataract (ARC). METHODS Anterior capsule of the lens were collected from patients with CC and ARC. Methylated RNA immunoprecipitation with next-generation sequencing and RNA sequencing were performed to identify m6A-tagged lncRNAs and lncRNAs expression. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses and Gene Ontology annotation were used to predict potential functions of the m6A-lncRNAs. RESULTS Large amount of m6A peaks within lncRNA were identified for both CC and ARC, while the level was much higher in ARC (49 870 peaks) than that in CC (18 688 peaks), yet those difference between ARC in younger age group (ARC-1) and ARC in elder age group (ARC-2) was quite slight. A total of 1305 hypermethylated and 1178 hypomethylated lncRNAs, as well as 182 differential expressed lncRNAs were exhibited in ARC compared with CC. On the other hand, 5893 hypermethylated and 5213 hypomethylated lncRNAs, as well as 155 significantly altered lncRNA were identified in ARC-2 compared with ARC-1. Altered lncRNAs in ARC were mainly associated with the organization and biogenesis of intracellular organelles, as well as nucleotide excision repair. CONCLUSION Our results for the first time present an overview of the m6A methylomes of lncRNA in CC and ARC, providing a solid basis and uncovering a new insight to reveal the potential pathogenic mechanism of CC and ARC.
Collapse
Affiliation(s)
- Hong-Fei Ye
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiang Zhang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhen-Nan Zhao
- Department of Ophthalmology and Vision Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai 200031, China
| | - Ce Zheng
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ping Fei
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yu Xu
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jiao Lyu
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ji-Li Chen
- Department of Ophthalmology, Shanghai Shibei Hospital of Jing'an District, Shanghai 200040, China
| | - Xun-Xiang Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Huang Zhu
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Pei-Quan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
5
|
Dong S, Zhang J, Fu Y, Tang G, Chen J, Sun D, Qi Y, Zhou N. METTL3-mediated m6A modification of SIRT1 mRNA affects the progression of diabetic cataracts through cellular autophagy and senescence. J Transl Med 2024; 22:865. [PMID: 39334185 PMCID: PMC11429169 DOI: 10.1186/s12967-024-05691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The increasing incidence of diabetes mellitus has established diabetic cataracts (DC) as a significant worldwide public health issue. The mechanisms underlying DC remain unknown, and effective prevention and treatment strategies are lacking. Accordingly, we aimed to explore the role and mechanism behind N6-methyladenosine (m6A) in DC progression. METHODS Methyltransferase-like 3 (METTL3), p21, Beclin1, LC3, and p62 expression levels were measured in human tissues. This study assessed total m6A levels and common m6A-regulated biomarkers in both in vitro and in vivo DC models. Autophagy flux was detected in vitro through Ad-mCherry-GFP-LC3B and Monodansylcadaverine (MDC) staining. Cellular senescence was assessed utilizing the senescence-associated β-galactosidase (SA-β-Gal) assay. Furthermore, the effect of METTL3 on SIRT1 mRNA modification was demonstrated, and its mechanism was elucidated using RT-qPCR, western blot, RNA stability assays, and RIP analysis. RESULTS METTL3, p21, and p62 expression levels were elevated in lens epithelial cells (LECs) from DC patients, while Beclin1 and LC3 levels were reduced. Silencing METTL3-mediated m6A modifications restored high-glucose-induced autophagy inhibition and prevented premature senescence in LECs. Notably, SIRT1720 and Metformin significantly enhanced autophagosome generation and delayed cellular senescence. The m6A-reading protein YTHDF2 bound to m6A modifications, and YTHDF2 silencing significantly reduced METTL3-mediated SIRT1 inactivation. CONCLUSIONS METTL3 induces senescence in DC by destabilizing SIRT1 mRNA in an m6A-YTHDF2-dependent manner. The METTL3-YTHDF2-SIRT1 axis is a key target and potential pathogenic mechanism in DC.
Collapse
Affiliation(s)
- Su Dong
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jiajia Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yushan Fu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Gege Tang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jianfeng Chen
- Laboratory Animal Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Dawei Sun
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Yanhua Qi
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Nan Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
6
|
Wen K, Fu M, Li Y, Zhang H, Wang X, Cai Y, Li Y, Su R, Huang Y, Liu M, Zhang Y, Zhao S, Sun J. The effect of age on aqueous humor of humans with high myopia. Mol Vis 2024; 30:137-149. [PMID: 39377095 PMCID: PMC11457953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 03/18/2024] [Indexed: 10/09/2024] Open
Abstract
Background High myopia is a common cause of vision loss. Age is an important factor in the development of high myopia. However, the effect of age on aqueous humor proteins in the context of high myopia is unknown. This study explored the effect of age on the aqueous humor protein of humans with high myopia. Methods The aqueous humor of high myopia patients of different ages with implantable collamer lens implantation (ICL) was collected. Data-independent acquisition proteomic analysis was employed to explore differentially expressed proteins (DEPs). Two different bioinformatics analysis methods were used to interpret the proteomic results. Furthermore, three proteins were confirmed by enzyme-linked immunosorbent assay (ELISA). Results The study showed 18 upregulated and 20 downregulated proteins. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the upregulated DEPs were highly enriched in coagulation and complement cascades. Weighted gene coexpression network analysis showed that the blue module was identified as a key module for high myopia and that the plasminogen (PLG) protein is a hub protein. ELISA confirmed that the expression levels of Alpha-1-antitrypsin were significantly upregulated in the aqueous humor of older patients presenting with high myopia. Conclusions This is the first study to investigate the effect of age on the level of aqueous humor protein in high myopia. Our study provided a comprehensive data set on the overall protein changes of different ages of human high myopia, shedding light on its potential molecular mechanism in high myopia damage to the eyeball.
Collapse
Affiliation(s)
- Kai Wen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital
| | | | - Yongtao Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital
| | | | - Xiu Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital
| | - Yang Cai
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital
| | - Yaoling Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital
| | - Ruihong Su
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital
| | - Yifang Huang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital
| | - Ming Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital
| | - Yufeng Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital
| | - Shaozhen Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital
| | - Jing Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital
| |
Collapse
|
7
|
Zhang Y, Liu Y, An M. Analysis and validation of potential ICD-related biomarkers in development of myopia using machine learning. Int Ophthalmol 2024; 44:116. [PMID: 38411755 DOI: 10.1007/s10792-024-02986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/19/2023] [Indexed: 02/28/2024]
Abstract
PURPOSE We aimed to identify and verify potential biomarkers in the development of myopia associated with immunogenic cell death (ICD). METHODS We download high myopia (HM) dataset GSE136701 from Gene Expression Omnibus. Differentially expressed genes in HM were identified to overlapped with ICD-related genes. Least absolute shrinkage and selection operator were used to select the Hub genes. Furthermore, the correlation between the hub genes and immune infiltration, immune response activities, and hub genes Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis was investigated using Spearman's rank correlation. Prediction of the miRNAs upstream of the Hub genes was based on the TargetScan database. We used guinea pig lens-induced myopia model's scleral tissues performed quantitative real-time polymerase chain reaction. RESULTS We identified overlapped with ICD-related genes (LY96, IL1A, IL33, and AGER) and two genes (LY96 and AGER) as hub genes. Single sample gene set enrichment analysis and Spearman's rank correlation revealed that hub gene expression levels in HM were significantly correlated with the infiltration percentages of CD56dim natural killer cells, macrophages, immature B cells, and the immune response activities of APC co-stimulation and Kyoto Encyclopedia of Genes and Genomes pathways, such as terpenoid backbone biosynthesis, aminoacyl-trna biosynthesis, Huntington's disease, oxidative phosphorylation; there were a few additional signaling pathways compared to normal samples. Additionally, several miRNA were predicted as upstream regulators of LY96 and AGER. LY96 was identified as a significantly differentially expressed biomarker in myopia guinea pig's scleral tissues, as verified by qPCR. CONCLUSION LY96 was identified and verified as a ICD-related potential myopia biomarker. Molecular mechanisms or pathways involved in myopia development by LY96 requires further research.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Ophthalmology, The Third Affiliated Hospital of Southern Medical University, Number 183, Zhongshan Avenue West, Tianhe District, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Yanli Liu
- Department of Ophthalmology, The Third Affiliated Hospital of Southern Medical University, Number 183, Zhongshan Avenue West, Tianhe District, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Meixia An
- Department of Ophthalmology, The Third Affiliated Hospital of Southern Medical University, Number 183, Zhongshan Avenue West, Tianhe District, Guangzhou, 510630, People's Republic of China.
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Li B, Wang Z, Zhou H, Zou J, Yoshida S, Zhou Y. N6-methyladenosine methylation in ophthalmic diseases: From mechanisms to potential applications. Heliyon 2024; 10:e23668. [PMID: 38192819 PMCID: PMC10772099 DOI: 10.1016/j.heliyon.2023.e23668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 01/10/2024] Open
Abstract
N6-methyladenosine (m6A) modification, as the most common modification method in eukaryotes, is widely involved in numerous physiological and pathological processes, such as embryonic development, malignancy, immune regulation, and premature aging. Under pathological conditions of ocular diseases, changes in m6A modification and its metabolism can be detected in aqueous and vitreous humor. At the same time, an increasing number of studies showed that m6A modification is involved in the normal development of eye structures and the occurrence and progress of many ophthalmic diseases, especially ocular neovascular diseases, such as diabetic retinopathy, age-related macular degeneration, and melanoma. In this review, we summarized the latest progress regarding m6A modification in ophthalmic diseases, changes in m6A modification-related enzymes in various pathological states and their upstream and downstream regulatory networks, provided new prospects for m6A modification in ophthalmic diseases and new ideas for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
9
|
Xue M, Li B, Lu Y, Zhang L, Yang B, Shi L. FOXM1 Participates in Scleral Remodeling in Myopia by Upregulating APOA1 Expression Through METTL3/YTHDF2. Invest Ophthalmol Vis Sci 2024; 65:19. [PMID: 38190128 PMCID: PMC10777875 DOI: 10.1167/iovs.65.1.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024] Open
Abstract
Purpose Apolipoprotein A1 (APOA1) is a potential crucial protein and treatment goal for pathological myopia in humans. This study set out to discover the function of APOA1 in scleral remodeling in myopia and its underlying mechanisms. Methods A myopic cell model was induced using hypoxia. Following loss- and gain-of function experiments, the expression of the myofibroblast transdifferentiation-related and collagen production-related factors Forkhead box M1 (FOXM1), APOA1, and methyltransferase-like 3 (METTL3) in the myopic cell model was examined by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting. The proliferation and apoptosis were determined by Cell Counting Kit-8 assay and flow cytometry, respectively. Chromatin immunoprecipitation (ChIP) was employed to examine FOXM1 enrichment in the METTL3 promoter, methylated RNA immunoprecipitation (Me-RIP) to examine the N6-methyladenosine (m6A) modification level of APOA1, and photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) to examine the binding between METTL3 and APOA1. Results Hypoxia-induced human scleral fibroblasts (HSFs) had high APOA1 and FOXM1 expression and low METTL3 expression. FOXM1 knockdown elevated METTL3 expression and downregulated APOA1 expression. FOXM1 was enriched in METTL3 promoter. APOA1 or FOXM1 knockdown or METTL3 overexpression reversed the hypoxia-induced elevation in vinculin, paxillin, and α-smooth muscle actin (α-SMA) levels and apoptosis and the reduction in collagen, type I, alpha 1 (COL1A1) level and cell proliferation in HSFs. METTL3 or YTH N6-methyladenosine RNA binding protein F2 (YTHDF2) knockdown or APOA1 overexpression reversed the impacts of FOXM1 knockdown on vinculin, paxillin, α-SMA, and COL1A1 expression and cell proliferation and apoptosis. Conclusions FOXM1 elevated the m6A methylation level of APOA1 by repressing METTL3 transcription and enhanced APOA1 mRNA stability and transcription by reducing the YTHDF2-recognized m6A methylated transcripts.
Collapse
Affiliation(s)
- Min Xue
- Department of Ophthalmology, Anhui No. 2 Provincial People's Hospital/Anhui No. 2 Provincial People's Hospital Clinical College, Anhui Medical University/Anhui No. 2 Provincial People's Hospital Clinical College, Bengbu Medical University/Anhui Eye Hospital, Hefei, Anhui, China
| | - Boai Li
- Dehong People's Hospital, The Affiliated Dehong Hospital of Kunming Medical University, Dehong, Yunan, China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, China
| | - Yao Lu
- Graduate School of Bengbu Medical University, Bengbu, Anhui, China
- Department of Ophthalmology, Anhui No. 2 Provincial People's Hospital/Anhui Eye Hospital, Hefei, Anhui, China
| | - Luyuan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Bing Yang
- School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Lei Shi
- Department of Ophthalmology, Anhui No. 2 Provincial People's Hospital/Anhui No. 2 Provincial People's Hospital Clinical College, Anhui Medical University/Anhui No. 2 Provincial People's Hospital Clinical College, Bengbu Medical University/Anhui Eye Hospital, Hefei, Anhui, China
| |
Collapse
|
10
|
Zhang J, Liu T, Wang Y, Yan X, Li Y, Xu F, Zhang R. Dynamic alterations of the transcriptome-wide m 6A methylome in cytogenetically normal acute myeloid leukaemia during initial diagnosis and relapse. Genomics 2023; 115:110725. [PMID: 37820824 DOI: 10.1016/j.ygeno.2023.110725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/08/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Accumulating studies have indicated that N6-methyladenosine (m6A) plays an important role in acute myeloid leukaemia (AML). However, little is known about the m6A methylome at a transcriptome-wide scale in AML patients. We obtained three pairs of bone marrow (BM) samples from cytogenetically normal AML patients at the timepoints of diagnosis (AML) and relapse (R_AML) and three BM samples from healthy donors used as normal controls (NCs). Methylated RNA immunoprecipitation next-generation sequencing (MeRIP-Seq) was conducted to identify differences in the m6A methylomes between AML and NC and between R_AML and AML. We identified a total of 11,076 and 11,962 differential m6A peaks in AML and R_AML group, respectively. These dysregulated m6A peaks were detected on all chromosomes, especially chr1, chr19 and chr17, and were mainly enriched in 3' untranslated regions, stop codon and coding sequence regions. Moreover, GO and KEGG analyses indicated that m6A -modified genes were significantly enriched in cancer-related biological functions and pathways. Additionally, we identified a link between the m6A methylome and RNA transcriptome via combined analyses of MeRIP-seq and RNA-seq data. In addition, 5 genes, HSPG2, HOMER3, TSPO2, CXCL12 and FUT1 regulated by m6A modification potentially, were shown to be related to the prognosis of AML patients. Additionally, we detected the mRNA expression of major m6A regulators and potential target mRNA on the leukemogenesis and found that the expression of IGF2BP2, HSPG2 and HOMER3 were upregulated in AML at the time of diagnosis. Moreover, their expression became downregulated after remission and then elevated again at relapse. Our study provides the first data on the differential m6A methylome in AML patients during initial diagnosis and relapse. This study demonstrates a novel relationship between m6A modification and AML relapse and paves the way for further studies aimed at elucidating the epigenic mechanisms involved in the relapse of AML.
Collapse
Affiliation(s)
- Jinjing Zhang
- Department of Hematology, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Tong Liu
- Department of Hematology, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yue Wang
- Department of Hematology, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xiaojing Yan
- Department of Hematology, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yan Li
- Department of Hematology, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Feng Xu
- Department of Hematology, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Rui Zhang
- Department of Hematology, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
11
|
Sánchez-Cazorla E, González-Atienza C, López-Vázquez A, Arruti N, Nieves-Moreno M, Noval S, Mena R, Rodríguez-Jiménez C, Rodríguez-Solana P, González-Iglesias E, Guerrero-Carretero M, D’Anna Mardero O, Coca-Robinot J, Acal JC, Blasco J, Castañeda C, Fraile Maya J, Del Pozo Á, Gómez-Pozo MV, Montaño VEF, Dios-Blázquez LD, Rodríguez-Antolín C, Gómez-Cano MDLÁ, Delgado-Mora L, Vallespín E. Whole-Exome Sequencing of 21 Families: Candidate Genes for Early-Onset High Myopia. Int J Mol Sci 2023; 24:15676. [PMID: 37958660 PMCID: PMC10649067 DOI: 10.3390/ijms242115676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
High myopia is the most severe and pathological form of myopia. It occurs when the spherical refractive error exceeds -6.00 spherical diopters (SDs) or the axial length (AL) of the eye is greater than 26 mm. This article focuses on early-onset high myopia, an increasingly common condition that affects children under 10 years of age and can lead to other serious ocular pathologies. Through the genetic analysis of 21 families with early-onset high myopia, this study seeks to contribute to a better understanding of the role of genetics in this disease and to propose candidate genes. Whole-exome sequencing studies with a panel of genes known to be involved in the pathology were performed in families with inconclusive results: 3% of the variants found were classified as pathogenic, 6% were likely pathogenic and the remaining 91% were variants of uncertain significance. Most of the families in this study were found to have alterations in several of the proposed genes. This suggests a polygenic inheritance of the pathology due to the cumulative effect of the alterations. Further studies are needed to validate and confirm the role of these alterations in the development of early-onset high myopia and its polygenic inheritance.
Collapse
Affiliation(s)
- Eloísa Sánchez-Cazorla
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (E.S.-C.); (C.G.-A.); (R.M.); (C.R.-J.); (P.R.-S.); (E.G.-I.); (M.V.G.-P.); (V.E.F.M.)
| | - Carmen González-Atienza
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (E.S.-C.); (C.G.-A.); (R.M.); (C.R.-J.); (P.R.-S.); (E.G.-I.); (M.V.G.-P.); (V.E.F.M.)
| | - Ana López-Vázquez
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
| | - Natalia Arruti
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
- European Reference Network on Eye Diseases (ERN-EYE), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - María Nieves-Moreno
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
- European Reference Network on Eye Diseases (ERN-EYE), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Susana Noval
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
- European Reference Network on Eye Diseases (ERN-EYE), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Rocío Mena
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (E.S.-C.); (C.G.-A.); (R.M.); (C.R.-J.); (P.R.-S.); (E.G.-I.); (M.V.G.-P.); (V.E.F.M.)
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain;
| | - Carmen Rodríguez-Jiménez
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (E.S.-C.); (C.G.-A.); (R.M.); (C.R.-J.); (P.R.-S.); (E.G.-I.); (M.V.G.-P.); (V.E.F.M.)
| | - Patricia Rodríguez-Solana
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (E.S.-C.); (C.G.-A.); (R.M.); (C.R.-J.); (P.R.-S.); (E.G.-I.); (M.V.G.-P.); (V.E.F.M.)
| | - Eva González-Iglesias
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (E.S.-C.); (C.G.-A.); (R.M.); (C.R.-J.); (P.R.-S.); (E.G.-I.); (M.V.G.-P.); (V.E.F.M.)
| | - Marta Guerrero-Carretero
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
| | - Oriana D’Anna Mardero
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
| | - Javier Coca-Robinot
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
| | - Juan Carlos Acal
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
| | - Joana Blasco
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
| | - Carlos Castañeda
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
| | - Jesús Fraile Maya
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
| | - Ángela Del Pozo
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain;
- Clinical Bioinformatics Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; (L.D.D.-B.); (C.R.-A.)
| | - María V. Gómez-Pozo
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (E.S.-C.); (C.G.-A.); (R.M.); (C.R.-J.); (P.R.-S.); (E.G.-I.); (M.V.G.-P.); (V.E.F.M.)
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain;
| | - Victoria E. F. Montaño
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (E.S.-C.); (C.G.-A.); (R.M.); (C.R.-J.); (P.R.-S.); (E.G.-I.); (M.V.G.-P.); (V.E.F.M.)
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain;
| | - Lucía De Dios-Blázquez
- Clinical Bioinformatics Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; (L.D.D.-B.); (C.R.-A.)
| | - Carlos Rodríguez-Antolín
- Clinical Bioinformatics Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; (L.D.D.-B.); (C.R.-A.)
| | - María de Los Ángeles Gómez-Cano
- Clinical Genetics Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; (M.d.L.Á.G.-C.); (L.D.-M.)
| | - Luna Delgado-Mora
- Clinical Genetics Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; (M.d.L.Á.G.-C.); (L.D.-M.)
| | - Elena Vallespín
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (E.S.-C.); (C.G.-A.); (R.M.); (C.R.-J.); (P.R.-S.); (E.G.-I.); (M.V.G.-P.); (V.E.F.M.)
- European Reference Network on Eye Diseases (ERN-EYE), Hospital Universitario La Paz, 28046 Madrid, Spain
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain;
| |
Collapse
|
12
|
Guan J, Li Z, Wumaier A, Ma Y, Xie L, Wu H, Chen R, Zhu Y, Zhuo Y. Critical role of transcriptome-wide m6A methylation in the aqueous humor of patients with pseudoexfoliation glaucoma. Exp Eye Res 2023; 231:109473. [PMID: 37061115 DOI: 10.1016/j.exer.2023.109473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/13/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
N6-methyladenosine (m6A) modification is one of the most common types of methylation modifications in eukaryotic mRNA. However, its role in the pathogenesis of pseudoexfoliation glaucoma (PXG) has not yet been reported. To enhance understanding in this regard, we assessed the m6A methylome in the aqueous humor of patients with PXG. MeRIP-Seq and RNA-Seq analyses were performed to compare the m6A methylomes and gene expression profiles of the aqueous humor of patients with PXG with those of patients with age-related cataract (ARC). Colorimetric m6A quantification was performed to detect global m6A levels. Quantitative reverse transcription PCR confirmed the expression of m6A-related enzymes and mRNAs in both groups. Results showed significantly higher aqueous humor m6A levels in the PXG group than in the ARC group. Five m6A-related enzymes, including METTL3, YTHDC2, HNRNPA2B1, HNRNPC, and LRPPRC, were significantly up-regulated in PXG specimens. We also observed 9728 m6A-modified peaks related to 6126 gene transcripts in the PXG group, with more than 250 genes containing one m6A peak (hypomethylated or hypermethylated). The distribution of the m6A peaks was enriched in coding sequences and 3'-untranslated regions for both groups. GGAC motif structures were also significantly enriched. Bioinformatics analysis further revealed that m6A plays a critical role in extracellular matrix formation and histone deacetylation. Additionally, MMP14, ADAMTSL1, FN1, and HDAC1 showed significant changes in m6A methylation and mRNA expression in the PXG group. Therefore, m6A methylation may regulate extracellular matrix composition in PXG and METTL3 may be a pivotal regulator of this process. In the future, it would be necessary to investigate MMP14, ADAMTSL1, FN1, and HDAC1, which are potential target genes.
Collapse
Affiliation(s)
- Jieying Guan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China; The Affiliated Kashi Hospital, Sun Yat-sen University, Kashi, Xinjiang, 844000, China; The First Department of Ophthalmology, The First People's Hospital of Kashi Prefecture, Kashi, Xinjiang, 844000, China.
| | - Zhidong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| | - Aizezi Wumaier
- The Affiliated Kashi Hospital, Sun Yat-sen University, Kashi, Xinjiang, 844000, China; The First Department of Ophthalmology, The First People's Hospital of Kashi Prefecture, Kashi, Xinjiang, 844000, China.
| | - Yuncheng Ma
- The Affiliated Kashi Hospital, Sun Yat-sen University, Kashi, Xinjiang, 844000, China; The First Department of Ophthalmology, The First People's Hospital of Kashi Prefecture, Kashi, Xinjiang, 844000, China.
| | - Lingling Xie
- The Affiliated Kashi Hospital, Sun Yat-sen University, Kashi, Xinjiang, 844000, China; The First Department of Ophthalmology, The First People's Hospital of Kashi Prefecture, Kashi, Xinjiang, 844000, China.
| | - Heping Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| | - Rongxin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| | - Yingting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| |
Collapse
|
13
|
Li X, Ma B, Zhang W, Song Z, Zhang X, Liao M, Li X, Zhao X, Du M, Yu J, He S, Yan H. The essential role of N6-methyladenosine RNA methylation in complex eye diseases. Genes Dis 2023; 10:505-520. [PMID: 37223523 PMCID: PMC10201676 DOI: 10.1016/j.gendis.2022.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/29/2022] [Accepted: 05/08/2022] [Indexed: 11/20/2022] Open
Abstract
There are many complex eye diseases which are the leading causes of blindness, however, the pathogenesis of the complex eye diseases is not fully understood, especially the underlying molecular mechanisms of N6-methyladenosine (m6A) RNA methylation in the eye diseases have not been extensive clarified. Our review summarizes the latest advances in the studies of m6A modification in the pathogenesis of the complex eye diseases, including cornea disease, cataract, diabetic retinopathy, age-related macular degeneration, proliferative vitreoretinopathy, Graves' disease, uveal melanoma, retinoblastoma, and traumatic optic neuropathy. We further discuss the possibility of developing m6A modification signatures as biomarkers for the diagnosis of the eye diseases, as well as potential therapeutic approaches.
Collapse
Affiliation(s)
- Xiaohua Li
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Binyun Ma
- Department of Medicine/Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Wenfang Zhang
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Zongming Song
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Xiaodan Zhang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Mengyu Liao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Xue Li
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Xueru Zhao
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Mei Du
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Jinguo Yu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Shikun He
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
- Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| |
Collapse
|
14
|
Li R, Zhu H, Li Q, Tang J, Jin Y, Cui H. METTL3-mediated m6A modification of has_circ_0007905 promotes age-related cataract progression through miR-6749-3p/EIF4EBP1. PeerJ 2023; 11:e14863. [PMID: 36908822 PMCID: PMC9997201 DOI: 10.7717/peerj.14863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/17/2023] [Indexed: 03/08/2023] Open
Abstract
Many cases of blindness are caused by age-related cataracts (ARCs). N6-methyladenosine (m6A)-modified circRNA widely participates in disease progression. However, the role of m6A modification of circRNA in ARC is unclear. We mined and elucidated the functions and mechanisms of key circRNAs with m6A modification involved in ARC progression. The GSE153722 dataset was used to mine m6A-mediated key circRNA. Loss-of-function assays and rescue assays were used to explore the effect and mechanism of circRNA on ARC cell proliferation and apoptosis. Has_circ_0007905 was a hypermethylated and upregulated expression in the ARC group relative to the control group both in vivo and in vitro. Silencing of has_circ_0007905 promoted proliferation and inhibited the apoptosis of HLE-B3 cells. METTL3 was upregulated in HLE-B3 cells after ARC modeling and had four binding sites with has_circ_0007905 and a mediated m6A modification of has_circ_0007905. Proliferation was significantly inhibited and apoptosis of HLE-B3 cells was facilitated by METTL3 overexpression, whereas these effects were prevented by has_circ_0007905 silencing. Silencing of has_circ_0007905 led to an alteration in the transcriptome landscape. Differentially expressed genes were mainly involved in immune-related processes and pathways. EIF4EBP1 overexpression promoted apoptosis and suppressed proliferation, and also significantly reversed effects of has_circ_0007905 silencing. Moreover, miR-6749-3p significantly decreased the luciferase activities of wild type plasmids with both of has_circ_0007905 and EIF4EBP1. MiR-6749-3p inhibitor blocked elevation in proliferation and reduced EIF4EBP1 expression and apoptosis conferred by has_circ_0007905 silencing. We reveal for the first time that the commitment of ARC progression is guided by METTL3/has_circ_0007905/miR-6749-3p/EIF4EBP1 axis, and the results provide new insights into ARC pathology.
Collapse
Affiliation(s)
- Rui Li
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haohao Zhu
- Department of Ophthalmology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Qian Li
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiancen Tang
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiping Jin
- Department of Ophthalmology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Hongping Cui
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
15
|
Zhou Y, Jiang R, Jiang Y, Fu Y, Manafhan Y, Zhu J, Jia E. Exploration of N6-Methyladenosine Profiles of mRNAs and the Function of METTL3 in Atherosclerosis. Cells 2022; 11:cells11192980. [PMID: 36230944 PMCID: PMC9563305 DOI: 10.3390/cells11192980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives: N6-methylladenosine (m6A) modification has not been fully studied in atherosclerosis. The objectives of this study were to investigate differentially expressed m6A methylated peaks and mRNAs, along with the regulatory role of methyltransferase 3 (METTL3) in pathological processes of atherosclerosis. Methods: The pathological models of human coronary artery smooth muscle cells (HCASMCs) were induced in vitro. The differentially expressed mRNAs and m6A peaks were identified by RNA-Seq and meRIP-Seq. The potential mechanisms were analyzed via bioinformatic assays. Methylases expression was tested by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting (WB) in HCASMCs, and by immunohistochemical assays in 40 human coronary arteries. The knockdown of METTL3 expression in cells was performed by siRNA transfection, and cell proliferation and migration were detected after transfection. Results: We identified 5121 m6A peaks and 883 mRNAs that were expressed differentially in the pathological processes of HCASMCs. Bioinformatic analyses showed that the different m6A peaks were associated with cell growth and cell adhesion, and the 883 genes showed that the extracellular matrix and PI3K/AKT pathway regulate the processes of HCASMCs. Additionally, 10 hub genes and 351 mRNAs with differential methylation and expression levels were found. METTL3 was upregulated in the arteries with atherosclerotic lesions and in the proliferation and migration model of HCASMCs, and pathological processes of HCASMCs could be inhibited by the knockdown of METTL3. The mechanisms behind regulation of migration and proliferation reduced by siMETTL3 are concerned with protein synthesis and energy metabolism. Conclusions: These results revealed a new m6A epigenetic method to regulate the progress of atherosclerosis, which suggest approaches for potential therapeutic interventions that target METTL3 for the prevention and treatment of coronary artery diseases.
Collapse
Affiliation(s)
- Yaqing Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| | - Rongli Jiang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| | - Yali Jiang
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture,Ili & Jiangsu Joint Institute of Health, Yining 835000, China
| | - Yahong Fu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| | - Yerbolat Manafhan
- Department of Hypertension, Yili Friendship Hospital, Stalin Road 92, Yining 835000, China
- Correspondence: (Y.M.); (J.Z.); (E.J.); Tel.: +86-13951623205 (E.J.); +86-13809049659 (J.Z.); +86-13899798859 (Y.M.)
| | - Jinfu Zhu
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Correspondence: (Y.M.); (J.Z.); (E.J.); Tel.: +86-13951623205 (E.J.); +86-13809049659 (J.Z.); +86-13899798859 (Y.M.)
| | - Enzhi Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
- Correspondence: (Y.M.); (J.Z.); (E.J.); Tel.: +86-13951623205 (E.J.); +86-13809049659 (J.Z.); +86-13899798859 (Y.M.)
| |
Collapse
|
16
|
Li W, Xing C, Bao L, Han S, Luo T, Wang Z, Fan H. Comprehensive analysis of RNA m6A methylation in pressure overload-induced cardiac hypertrophy. BMC Genomics 2022; 23:576. [PMID: 35953789 PMCID: PMC9373449 DOI: 10.1186/s12864-022-08833-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Aim To analyze and compare the mRNA N6-methyladenosine modifications in transverse aortic constriction induced mice hearts and normal mice hearts. Materials and methods Colorimetric quantification was used to probe the changes in m6A modifications in the total RNA. The expression of m6A-related enzymes was analyzed via qRT-PCR and western blotting. RNA-seq and MeRIP-seq were performed to identify genes with differences in m6A modifications or expression in the transcriptome profile. Results Compared with the control group, the TAC group exhibited higher m6A methylation levels. FTO and WTAP were downregulated after TAC, while METTL3 was significantly downregulated at the protein level. MeRIP-seq revealed that 1179 m6A peaks were upmethylated and 733 m6A peaks were downmethylated, and biological analysis of these genes exhibited a strong relationship with heart function. Conclusion Our findings provide novel information regarding m6A modification and gene expression changes in cardiac hypertrophy, which may be fundamental for further research. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08833-w.
Collapse
Affiliation(s)
- Weidong Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou, 450000, China
| | - Chenxv Xing
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou, 450000, China
| | - Limeng Bao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou, 450000, China
| | - Shengna Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou, 450000, China
| | - Tianxia Luo
- Department of Physiology, School of Medicine, Henan University of Chinese Medicine, No.156 Jinshui Road, Zhengzhou, 450052, China
| | - Zhiju Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou, 450000, China
| | - Hongkun Fan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou, 450000, China.
| |
Collapse
|
17
|
Jiapaer Z, Su D, Hua L, Lehmann HI, Gokulnath P, Vulugundam G, Song S, Zhang L, Gong Y, Li G. Regulation and roles of RNA modifications in aging-related diseases. Aging Cell 2022; 21:e13657. [PMID: 35718942 PMCID: PMC9282851 DOI: 10.1111/acel.13657] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/03/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
With the aging of the global population, accumulating interest is focused on manipulating the fundamental aging-related signaling pathways to delay the physiological aging process and eventually slow or prevent the appearance or severity of multiple aging-related diseases. Recently, emerging evidence has shown that RNA modifications, which were historically considered infrastructural features of cellular RNAs, are dynamically regulated across most of the RNA species in cells and thereby critically involved in major biological processes, including cellular senescence and aging. In this review, we summarize the current knowledge about RNA modifications and provide a catalog of RNA modifications on different RNA species, including mRNAs, miRNAs, lncRNA, tRNAs, and rRNAs. Most importantly, we focus on the regulation and roles of these RNA modifications in aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, cataracts, osteoporosis, and fertility decline. This would be an important step toward a better understanding of fundamental aging mechanisms and thereby facilitating the development of novel diagnostics and therapeutics for aging-related diseases.
Collapse
Affiliation(s)
- Zeyidan Jiapaer
- College of Life Science & Technology, Xinjiang University, Urumqi, China.,Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Urumqi, China
| | - Dingwen Su
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Lingyang Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Helge Immo Lehmann
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Priyanka Gokulnath
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gururaja Vulugundam
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Naples, Italy
| | - Shannan Song
- College of Life Science & Technology, Xinjiang University, Urumqi, China.,Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Urumqi, China
| | - Lingying Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi, China.,Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Urumqi, China
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Liu SH, Ma XY, Yue TT, Wang ZC, Qi KL, Li JC, Lin F, Rushdi HE, Gao YY, Fu T, Li M, Gao TY, Yang LG, Han XL, Deng TX. Transcriptome-Wide m6A Analysis Provides Novel Insights Into Testicular Development and Spermatogenesis in Xia-Nan Cattle. Front Cell Dev Biol 2021; 9:791221. [PMID: 35004687 PMCID: PMC8728086 DOI: 10.3389/fcell.2021.791221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Testis is the primary organ of the male reproductive tract in mammals that plays a substantial role in spermatogenesis. Improvement of our knowledge regarding the molecular mechanisms in testicular development and spermatogenesis will be reflected in producing spermatozoa of superior fertility. Evidence showed that N6-Methyladenosine (m6A) plays a dynamic role in post-transcription gene expression regulation and is strongly associated with production traits. However, the role of m6A in bovine testis has not been investigated yet. In this study, we conducted MeRIP-Seq analysis to explore the expression profiles of the m6A and its potential mechanism underlying spermatogenesis in nine bovine testes at three developmental stages (prepuberty, puberty and postpuberty). The experimental animals with triplicate in each stage were chosen based on their semen volume and sperm motility except for the prepuberty bulls and used for testes collection. By applying MeRIP-Seq analysis, a total of 8,774 m6A peaks and 6,206 m6A genes among the studied groups were identified. All the detected peaks were found to be mainly enriched in the coding region and 3'- untranslated regions. The cross-analysis of m6A and mRNA expression exhibited 502 genes with concomitant changes in the mRNA expression and m6A modification. Notably, 30 candidate genes were located in the largest network of protein-protein interactions. Interestingly, four key node genes (PLK4, PTEN, EGR1, and PSME4) were associated with the regulation of mammal testis development and spermatogenesis. This study is the first to present a map of RNA m6A modification in bovine testes at distinct ages, and provides new insights into m6A topology and related molecular mechanisms underlying bovine spermatogenesis, and establishes a basis for further studies on spermatogenesis in mammals.
Collapse
Affiliation(s)
- Shen-He Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xiao-Ya Ma
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Ting-Ting Yue
- Henan Dairy Herd Improvement Co., Ltd, Zhengzhou, China
| | - Zi-Chen Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Kun-Long Qi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ji-Chao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Feng Lin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hossam E Rushdi
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Yu-Yang Gao
- Henan Dingyuan Cattle Breeding Co., Ltd., Wuhan, China
| | - Tong Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Teng-Yun Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Li-Guo Yang
- China Ministry of Education, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xue-Lei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ting-Xian Deng
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
19
|
Gao JF, Zhang L. The role of N6-methyladenosine (m6A) in eye diseases. Mol Biol Rep 2021; 48:6145-6150. [PMID: 34331665 DOI: 10.1007/s11033-021-06596-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/24/2021] [Indexed: 11/26/2022]
Abstract
N6-methyladenosine (m6A) is the most common form of internal RNA modification in eukaryotes. The dynamic regulation of m6A modification mainly rely on three proteases, installed by m6A methyltransferase, removed by m6A demethylase and recognized by m6A reader protein, which regulates the metabolism of RNA, thereby regulating the processes of cell proliferation, migration, invasion and apoptosis. Recently, a number of studies have found that m6A aberrant methylation in some eye diseases. This review was to summarize the recent research progress on the role of m6A modification in eye diseases and give a perspective on its prospective applications in eye diseases.
Collapse
Affiliation(s)
- Jing-Fan Gao
- Eye Hospital, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Lu Zhang
- Eye Hospital, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
20
|
Han Z, Yang B, Wang Q, Hu Y, Wu Y, Tian Z. Comprehensive analysis of the transcriptome-wide m 6A methylome in invasive malignant pleomorphic adenoma. Cancer Cell Int 2021; 21:142. [PMID: 33653351 PMCID: PMC7923655 DOI: 10.1186/s12935-021-01839-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Background Invasive malignant pleomorphic adenoma (IMPA) is a highly invasive parotid gland tumor and lacks effective therapy. N6-Methyladenosine (m6A) is the most prevalent post-transcriptional modification of mRNAs in eukaryotes and plays an important role in the pathogenesis of multiple tumors. However, the significance of m6A-modified mRNAs in IMPA has not been elucidated to date. Hence, in this study, we attempted to profile the effect of IMPA in terms of m6A methylation in mRNA. Methods Methylated RNA immunoprecipitation with next-generation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were utilized to acquire the first transcriptome-wide profiling of the m6A methylome map in IMPA followed by bioinformatics analysis. Results In this study, we obtained m6A methylation maps of IMPA samples and normal adjacent tissues through MeRIP-seq. In total, 25,490 m6A peaks associated with 13,735 genes were detected in the IMPA group, whereas 33,930 m6A peaks associated with 18,063 genes were detected in the control group. Peaks were primarily enriched within coding regions and near stop codons with AAACC and GGAC motifs. Moreover, functional enrichment analysis demonstrated that m6A-containing genes were significantly enriched in cancer and metabolism relevant pathways. Furthermore, we identified a relationship between the m6A methylome and the RNA transcriptome, indicating a mechanism by which m6A modulates gene expression. Conclusions Our study is the first to provide comprehensive and transcriptome-wide profiles to determine the potential roles played by m6A methylation in IMPA. These results may open new avenues for in-depth research elucidating the m6A topology of IMPA and the molecular mechanisms governing the formation and progression of IMPA.
Collapse
Affiliation(s)
- Zhenyuan Han
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| | - Biao Yang
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Qin Wang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yuhua Hu
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuqiong Wu
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China. .,Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Zhen Tian
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|