1
|
Razgonova MP, Shinkaruk PA, Maksimenko AA, Podvolotskaya AB, Tekutyeva LA. Supercritical CO 2 Extraction of Bioactive Compounds from Corn Grains ( Zea mays L., Hybrid Pri-15-7-16) with Metabolomic Profiling and Confocal Laser Microscopy. PLANTS (BASEL, SWITZERLAND) 2025; 14:913. [PMID: 40265870 PMCID: PMC11946826 DOI: 10.3390/plants14060913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 04/24/2025]
Abstract
This study aimed to optimize supercritical CO2 extraction conditions, analyze bioactive compounds, and visualize their distribution in corn grains (Zea mays L., hybrid Pri-15-7-16). The optimal extraction conditions were identified as a pressure of 200 bar and a temperature of 55 °C, yielding 2.2 mg/g of bioactive compounds. The distribution of autofluorescent compounds within corn grain tissues was visualized using confocal laser scanning microscopy. Image analysis showed that the pericarp and aleurone layer cell walls were rich in autofluorescent compounds, while the endosperm cell walls exhibited low autofluorescence. Metabolomic analysis, combining high-performance liquid chromatography and mass spectrometry, identified 44 compounds in the extracts, including 30 polyphenolic compounds from subgroups such as polyphenolic acids, flavones, flavan-3-ols, flavonols, and anthocyanidins as well as 14 compounds from other chemical groups, including amino acids and fatty acids.
Collapse
Affiliation(s)
- Mayya P. Razgonova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 42, 44 Bolshaya Morskaya, 190031 Saint Petersburg, Russia
- Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (P.A.S.); (A.A.M.); (A.B.P.); (L.A.T.)
| | - Pavel A. Shinkaruk
- Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (P.A.S.); (A.A.M.); (A.B.P.); (L.A.T.)
| | - Anastasiia A. Maksimenko
- Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (P.A.S.); (A.A.M.); (A.B.P.); (L.A.T.)
| | - Anna B. Podvolotskaya
- Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (P.A.S.); (A.A.M.); (A.B.P.); (L.A.T.)
| | - Liudmila A. Tekutyeva
- Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (P.A.S.); (A.A.M.); (A.B.P.); (L.A.T.)
| |
Collapse
|
2
|
Salsinha YCF, Rini DS, Indradewa D, Rachmawati D, Alam T, Purwestri YA. Exogenously applied Casuarina equisetifolia leaf extracts act as an osmoprotectant on proline accumulation under drought stress in local rice from Indonesia. FRONTIERS IN PLANT SCIENCE 2023; 14:1210241. [PMID: 37600188 PMCID: PMC10437820 DOI: 10.3389/fpls.2023.1210241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023]
Abstract
The effects of exogenously supplied osmoprotectants in crops have not yet been extensively studied. In this study, an osmoprotectant containing a high concentration of proline (2.5 g mol-1 FW) was obtained from a Casuarina equisetifolia leaf extract. The effect of the extract was evaluated in local Indonesian rice cultivars Boawae Seratus Malam (BSM), Gogo Jak (GJ), Situ Bagendit (SB) (drought-tolerant), Kisol Manggarai (KM) and Ciherang (drought-susceptible) cultivars under drought at the morphological, physiological, and genetic levels. Under drought, the KM showed an increased level of OsWRKY, OsNAC, OsDREB1A, and OsDREB2A expression after application of the osmoprotectant, leading to the activation of proline synthesis genes including OsP5CS1, OsP5CR, and OsProDH, while the tolerant cultivars (BSM, GJ, and SB) showed no difference. The content of chlorophyll, carotenoids, anthocyanins, ascorbate peroxidase, catalase, and superoxide dismutase activities also increased in GJ and KM, during drought stress and applied osmoprotectants, but remained low in the BSM. We conclude that the foliar application of osmoprotectants derived from C.equisetifolia caused an accumulation of proline in susceptible plants. The existence of these extracts stabilizes leaf cells and supports photosynthetic compartments and carbon assimilation in plants, leading to growth.
Collapse
Affiliation(s)
- Yustina Carolina Febrianti Salsinha
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor, West Java, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dwi Setyo Rini
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor, West Java, Indonesia
| | - Didik Indradewa
- Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Diah Rachmawati
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Taufan Alam
- Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yekti Asih Purwestri
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
3
|
Janarny G, Ranaweera K, Gunathilake K. Antioxidant activities of hydro-methanolic extracts of Sri Lankan edible flowers. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
4
|
Adithya J, Nair B, Aishwarya TS, Nath LR. The Plausible Role of Indian Traditional Medicine in Combating Corona Virus (SARS-CoV 2): A Mini-Review. Curr Pharm Biotechnol 2021; 22:906-919. [PMID: 32767920 DOI: 10.2174/1389201021666200807111359] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023]
Abstract
SARS-CoV 2 is a novel virus strain of Coronavirus, reported in China in late December 2019. Its highly contagious nature in humans has prompted WHO to designate the ongoing pandemic as a Public Health Emergency of International Concern. At this moment, there is no specific treatment and the therapeutic strategies to deal with the infection are only supportive, with prevention aimed at reducing community transmission. A permanent solution for the pandemic, which has brought the world economy to the edge of collapse, is the need of the hour. This situation has brought intense research in traditional systems of medicine. Indian Traditional System, Ayurveda, has a clear concept of the cause and treatment of pandemics. Through this review, information on the potential antiviral traditional medicines along with their immunomodulatory pathways are discussed. We have covered the seven most important Indian traditional plants with antiviral properties: Withania somnifera (L.) Dunal (family: Solanaceae), Tinospora cordifolia (Thunb.) Miers (family: Menispermaceae), Phyllanthus emblica L. (family: Euphorbiaceae), Asparagus racemosus L. (family: Liliaceae), Glycyrrhiza glabra L. (family: Fabaceae), Ocimum sanctum L. (family: Lamiaceae) and Azadirachta indica A. Juss (family: Meliaceae) in this review. An attempt is also made to bring into limelight the importance of dietary polyphenol, Quercetin, which is a potential drug candidate in the making against the SARS-CoV2 virus.
Collapse
Affiliation(s)
- J Adithya
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala 682041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala 682041, India
| | - T S Aishwarya
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala 682041, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala 682041, India
| |
Collapse
|
5
|
Rastogi S, Shah S, Kumar R, Vashisth D, Akhtar MQ, Kumar A, Dwivedi UN, Shasany AK. Ocimum metabolomics in response to abiotic stresses: Cold, flood, drought and salinity. PLoS One 2019; 14:e0210903. [PMID: 30726239 PMCID: PMC6364901 DOI: 10.1371/journal.pone.0210903] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/03/2019] [Indexed: 11/19/2022] Open
Abstract
Ocimum tenuiflorum is a widely used medicinal plant since ancient times and still continues to be irreplaceable due to its properties. The plant has been explored chemically and pharmacologically, however, the molecular studies have been started lately. In an attempt to get a comprehensive overview of the abiotic stress response in O. tenuiflorum, de novo transcriptome sequencing of plant leaves under the cold, drought, flood and salinity stresses was carried out. A comparative differential gene expression (DGE) study was carried out between the common transcripts in each stress with respect to the control. KEGG pathway analysis and gene ontology (GO) enrichment studies exhibited several modifications in metabolic pathways as the result of four abiotic stresses. Besides this, a comparative metabolite profiling of stress and control samples was performed. Among the cold, drought, flood and salinity stresses, the plant was most susceptible to the cold stress. Severe treatments of all these abiotic stresses also decreased eugenol which is the main secondary metabolite present in the O. tenuiflorum plant. This investigation presents a comprehensive analysis of the abiotic stress effects in O. tenuiflorum. Current study provides an insight to the status of pathway genes’ expression that help synthesizing economically valuable phenylpropanoids and terpenoids related to the adaptation of the plant. This study identified several putative abiotic stress tolerant genes which can be utilized to either breed stress tolerant O. tenuiflorum through pyramiding or generating transgenic plants.
Collapse
Affiliation(s)
- Shubhra Rastogi
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Saumya Shah
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Ritesh Kumar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Divya Vashisth
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Md Qussen Akhtar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Ajay Kumar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Upendra Nath Dwivedi
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Ajit Kumar Shasany
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|