1
|
Steensma P, Eisenhut M, Colinas M, Rosado-Souza L, Fernie AR, Weber APM, Fitzpatrick TB. PYRIDOX(AM)INE 5'-PHOSPHATE OXIDASE3 of Arabidopsis thaliana maintains carbon/nitrogen balance in distinct environmental conditions. PLANT PHYSIOLOGY 2023; 193:1433-1455. [PMID: 37453131 PMCID: PMC10517258 DOI: 10.1093/plphys/kiad411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
The identification of factors that regulate C/N utilization in plants can make a substantial contribution to optimization of plant health. Here, we explored the contribution of pyridox(am)ine 5'-phosphate oxidase3 (PDX3), which regulates vitamin B6 homeostasis, in Arabidopsis (Arabidopsis thaliana). Firstly, N fertilization regimes showed that ammonium application rescues the leaf morphological phenotype of pdx3 mutant lines but masks the metabolite perturbance resulting from impairment in utilizing soil nitrate as a source of N. Without fertilization, pdx3 lines suffered a C/N imbalance and accumulated nitrogenous compounds. Surprisingly, exploration of photorespiration as a source of endogenous N driving this metabolic imbalance, by incubation under high CO2, further exacerbated the pdx3 growth phenotype. Interestingly, the amino acid serine, critical for growth and N management, alleviated the growth phenotype of pdx3 plants under high CO2, likely due to the requirement of pyridoxal 5'-phosphate for the phosphorylated pathway of serine biosynthesis under this condition. Triggering of thermomorphogenesis by growth of plants at 28 °C (instead of 22 °C) did not appear to require PDX3 function, and we observed that the consequent drive toward C metabolism counters the C/N imbalance in pdx3. Further, pdx3 lines suffered a salicylic acid-induced defense response, probing of which unraveled that it is a protective strategy mediated by nonexpressor of pathogenesis related1 (NPR1) and improves fitness. Overall, the study demonstrates the importance of vitamin B6 homeostasis as managed by the salvage pathway enzyme PDX3 to growth in diverse environments with varying nutrient availability and insight into how plants reprogram their metabolism under such conditions.
Collapse
Affiliation(s)
- Priscille Steensma
- Department of Plant Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Marion Eisenhut
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Maite Colinas
- Department of Plant Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Laise Rosado-Souza
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | | |
Collapse
|
2
|
Wang H, Ma Q, Shan F, Tian L, Gong J, Quan W, Yang W, Hou Q, Zhang F, Zhang S. Transcriptional regulation mechanism of wheat varieties with different nitrogen use efficiencies in response to nitrogen deficiency stress. BMC Genomics 2022; 23:727. [PMID: 36289540 PMCID: PMC9597979 DOI: 10.1186/s12864-022-08948-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background As one of the microelements, nitrogen play essential roles in cereal production. Although the use of chemical fertilizers has significantly improved the yield of wheat, it has also caused increasingly adverse environmental pollution. Revealing the molecular mechanism manipulating wheat nitrogen use efficiency (NUE), and cultivating wheat germplasms with high nitrogen use efficiency has become important goals for wheat researchers. In this study, we investigated the physiological and transcriptional differences of three wheat cultivars with different NUE under low nitrogen stress. Results The results showed that, under low nitrogen conditions, the activities of nitrogen metabolism-related enzymes (GS, NR, GDH), antioxidant enzymes (SOD, POD, CAT) and soluble protein contents of ZM366 (high NUE cultivar) were higher than those of JD8 (low NUE cultivar). The hybrid cultivar of ZM366 and JD8 showed mid-parent or over-parent heterosis. Transcriptome analysis revealed that ‘alanine, aspartate and glutamate metabolism’, ‘terpenoid backbone biosynthesis’ and ‘vitamin B6 metabolism’ pathways play key roles in nitrogen use efficiency in wheat. The significant enhancement of the ‘Calvin cycle’ and ‘photorespiration’ in ZM366 contributed to its higher level of carbon metabolism under low nitrogen stress, which is an important attribute differs from the other two varieties. In addition, the activation of ABA signal transduction and biosynthesis pathways also helps to maintain NUE under low- nitrogen conditions. Moreover, bHLH transcription factors were also found to play a positive role in wheat NUE. Conclusions In conclusion, these results enriched our knowledge of the mechanism of wheat NUE, and provided a theoretical basis for improving wheat NUE and breeding new cultivars. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08948-0.
Collapse
Affiliation(s)
- Hanxia Wang
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| | - Qiaoyun Ma
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| | - Fuhua Shan
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| | - Liping Tian
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| | - Jie Gong
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| | - Wei Quan
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| | - Weibing Yang
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| | - Qiling Hou
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| | - Fengting Zhang
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| | - Shengquan Zhang
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| |
Collapse
|
3
|
Ahmad N, Ibrahim S, Tian Z, Kuang L, Wang X, Wang H, Dun X. Quantitative trait loci mapping reveals important genomic regions controlling root architecture and shoot biomass under nitrogen, phosphorus, and potassium stress in rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:994666. [PMID: 36172562 PMCID: PMC9511887 DOI: 10.3389/fpls.2022.994666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Plants rely on root systems for nutrient uptake from soils. Marker-assisted selection helps breeders to select desirable root traits for effective nutrient uptake. Here, 12 root and biomass traits were investigated at the seedling stage under low nitrogen (LN), low phosphorus (LP), and low potassium (LK) conditions, respectively, in a recombinant inbred line (RIL) population, which was generated from Brassica napus L. Zhongshuang11 and 4D122 with significant differences in root traits and nutrient efficiency. Significant differences for all the investigated traits were observed among RILs, with high heritabilities (0.43-0.74) and high correlations between the different treatments. Quantitative trait loci (QTL) mapping identified 57, 27, and 36 loci, explaining 4.1-10.9, 4.6-10.8, and 4.9-17.4% phenotypic variances under LN, LP, and LK, respectively. Through QTL-meta analysis, these loci were integrated into 18 significant QTL clusters. Four major QTL clusters involved 25 QTLs that could be repeatedly detected and explained more than 10% phenotypic variances, including two NPK-common and two specific QTL clusters (K and NK-specific), indicating their critical role in cooperative nutrients uptake of N, P, and K. Moreover, 264 genes within the four major QTL clusters having high expressions in roots and SNP/InDel variations between two parents were identified as potential candidate genes. Thirty-eight of them have been reported to be associated with root growth and development and/or nutrient stress tolerance. These key loci and candidate genes lay the foundation for deeper dissection of the NPK starvation response mechanisms in B. napus.
Collapse
Affiliation(s)
- Nazir Ahmad
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Sani Ibrahim
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Ze Tian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Lieqiong Kuang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiaoling Dun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
4
|
Brinca AT, Ramalhinho AC, Sousa Â, Oliani AH, Breitenfeld L, Passarinha LA, Gallardo E. Follicular Fluid: A Powerful Tool for the Understanding and Diagnosis of Polycystic Ovary Syndrome. Biomedicines 2022; 10:1254. [PMID: 35740276 PMCID: PMC9219683 DOI: 10.3390/biomedicines10061254] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) represents one of the leading causes of anovulatory infertility and affects 5% to 20% of women worldwide. Until today, both the subsequent etiology and pathophysiology of PCOS remain unclear, and patients with PCOS that undergo assisted reproductive techniques (ART) might present a poor to exaggerated response, low oocyte quality, ovarian hyperstimulation syndrome, as well as changes in the follicular fluid metabolites pattern. These abnormalities originate a decrease of Metaphase II (MII) oocytes and decreased rates for fertilization, cleavage, implantation, blastocyst conversion, poor egg to follicle ratio, and increased miscarriages. Focus on obtaining high-quality embryos has been taken into more consideration over the years. Nowadays, the use of metabolomic analysis in the quantification of proteins and peptides in biological matrices might predict, with more accuracy, the success in assisted reproductive technology. In this article, we review the use of human follicular fluid as the matrix in metabolomic analysis for diagnostic and ART predictor of success for PCOS patients.
Collapse
Affiliation(s)
- Ana Teresa Brinca
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (A.T.B.); (Â.S.); (L.B.)
| | - Ana Cristina Ramalhinho
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (A.T.B.); (Â.S.); (L.B.)
- Assisted Reproduction Laboratory of Academic Hospital of Cova da Beira, 6200-251 Covilhã, Portugal;
- C4-Cloud Computing Competence Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Ângela Sousa
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (A.T.B.); (Â.S.); (L.B.)
| | - António Hélio Oliani
- Assisted Reproduction Laboratory of Academic Hospital of Cova da Beira, 6200-251 Covilhã, Portugal;
- São José do Rio Preto School of Medicine, Gynaecology and Obstetrics, São José do Rio Preto 15090-000, Brazil
| | - Luiza Breitenfeld
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (A.T.B.); (Â.S.); (L.B.)
- C4-Cloud Computing Competence Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Luís A. Passarinha
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (A.T.B.); (Â.S.); (L.B.)
- UCIBIO–Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- Laboratório de Fármaco-Toxicologia, UBIMedical, University of Beira Interior, 6200-284 Covilhã, Portugal
| | - Eugenia Gallardo
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (A.T.B.); (Â.S.); (L.B.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, University of Beira Interior, 6200-284 Covilhã, Portugal
| |
Collapse
|
5
|
Analysis of the Composition of Substrate for Industrial Fermentation of Agaricus bisporus Based on Secondary and Tertiary Fermentation Mode Composition Analysis of Industrial Fermentation Substrates of A. bisporus. FERMENTATION 2022. [DOI: 10.3390/fermentation8050222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, changes in metabolites during the fermentation of Agaricus bisporus compost under the Shanghai Lianzhong secondary fermentation method and Jiangsu Yuguan tertiary fermentation method were analysed by applying gas chromatography–mass spectrometry (GC–MS) to understand the differences in metabolites under different fermentation methods and find metabolic markers at different fermentation stages in different fermentation methods. The results showed that 1002 compounds were identified. Based on the differential metabolites from pathways of significant enrichment, it was found that L-aspartic acid and 5-aminobenzolevulinic acid could be used as potential metabolic markers to evaluate the phase 2 fermentation method of Shanghai Lianzhong and the phase 3 fermentation method of Jiangsu Yuguan, respectively. This study provides a reference for the preparation of quality-stable fermentation materials and further understanding of the cultivation of A. bisporus with fermentation materials.
Collapse
|
6
|
Phase-Selective Synthesis of Anatase and Rutile TiO2 Nanocrystals and Their Impacts on Grapevine Leaves: Accumulation of Mineral Nutrients and Triggering the Plant Defense. NANOMATERIALS 2022; 12:nano12030483. [PMID: 35159827 PMCID: PMC8838626 DOI: 10.3390/nano12030483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023]
Abstract
Titanium dioxide nanocrystals (TiO2 NCs), through their photocatalytic activity, are able to generate charge carriers and induce the formation of various reactive oxygen species (ROS) in the presence of O2 and H2O. This special feature makes TiO2 an important and promising material in several industrial applications. Under appropriate antioxidant balancing, the presence of ROS is crucial in plant growth and development, therefore, the regulated ROS production through the photocatalytic activity of TiO2 NCs may be also exploited in the agricultural sector. However, the effects of TiO2 NCs on plants are not fully understood and/or phase-pure TiO2 NCs are rarely used in plant experiments. In this work, we present a phase-selective synthesis of TiO2 NCs with anatase and rutile crystal phases. The nanomaterials obtained were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance UV-Vis spectroscopy, and electron paramagnetic resonance spectroscopy (EPR). In field experiments, Vitis vinifera cv. Cabernet Sauvignon leaves developed under natural sunlight were treated with aqueous dispersions of TiO2 NCs at concentrations of 0.001, 0.01, 0.1, and 1 w/v%. The effect of the applied nanocrystals was characterized via leaf photochemistry, mineral nutrient contents, and pyridoxine levels. We found that stress responses of grapevine to anatase and rutile NCs treatments are different, which can be related to the different ROS profiles of the two polymorphs. Our results indicate that TiO2 NCs may be utilized not only for direct pathogen inactivation but also for eliciting plant defense mechanisms.
Collapse
|
7
|
Non-Targeted Metabolite Profiling Reveals Host Metabolomic Reprogramming during the Interaction of Black Pepper with Phytophthora capsici. Int J Mol Sci 2021; 22:ijms222111433. [PMID: 34768864 PMCID: PMC8583951 DOI: 10.3390/ijms222111433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 01/04/2023] Open
Abstract
Phytophthora capsici is one of the most destructive pathogens causing quick wilt (foot rot) disease in black pepper (Piper nigrum L.) to which no effective resistance has been defined. To better understand the P. nigrum-P. capsici pathosystem, we employed metabolomic approaches based on flow-infusion electrospray-high-resolution mass spectrometry. Changes in the leaf metabolome were assessed in infected and systemic tissues at 24 and 48 hpi. Principal Component Analysis of the derived data indicated that the infected leaves showed a rapid metabolic response by 24 hpi whereas the systemic leaves took 48 hpi to respond to the infection. The major sources of variations between infected leaf and systemic leaf were identified, and enrichment pathway analysis indicated, major shifts in amino acid, tricarboxylic acid cycle, nucleotide and vitamin B6 metabolism upon infection. Moreover, the individual metabolites involved in defensive phytohormone signalling were identified. RT-qPCR analysis of key salicylate and jasmonate biosynthetic genes indicated a transient reduction of expression at 24 hpi but this increased subsequently. Exogenous application of jasmonate and salicylate reduced P. capsici disease symptoms, but this effect was suppressed with the co-application of abscisic acid. The results are consistent with abscisic acid reprogramming, salicylate and jasmonate defences in infected leaves to facilitate the formation of disease. The augmentation of salicylate and jasmonate defences could represent an approach through which quick wilt disease could be controlled in black pepper.
Collapse
|
8
|
Gazengel K, Aigu Y, Lariagon C, Humeau M, Gravot A, Manzanares-Dauleux MJ, Daval S. Nitrogen Supply and Host-Plant Genotype Modulate the Transcriptomic Profile of Plasmodiophora brassicae. Front Microbiol 2021; 12:701067. [PMID: 34305867 PMCID: PMC8298192 DOI: 10.3389/fmicb.2021.701067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Nitrogen fertilization can affect the susceptibility of Brassica napus to the telluric pathogen Plasmodiophora brassicae. Our previous works highlighted that the influence of nitrogen can strongly vary regarding plant cultivar/pathogen strain combinations, but the underlying mechanisms are unknown. The present work aims to explore how nitrogen supply can affect the molecular physiology of P. brassicae through its life epidemiological cycle. A time-course transcriptome experiment was conducted to study the interaction, under two conditions of nitrogen supply, between isolate eH and two B. napus genotypes (Yudal and HD-018), harboring (or not harboring) low nitrogen-conditional resistance toward this isolate (respectively). P. brassicae transcriptional patterns were modulated by nitrogen supply, these modulations being dependent on both host-plant genotype and kinetic time. Functional analysis allowed the identification of P. brassicae genes expressed during the secondary phase of infection, which may play a role in the reduction of Yudal disease symptoms in low-nitrogen conditions. Candidate genes included pathogenicity-related genes ("NUDIX," "carboxypeptidase," and "NEP-proteins") and genes associated to obligate biotrophic functions of P. brassicae. This work illustrates the importance of considering pathogen's physiological responses to get a better understanding of the influence of abiotic factors on clubroot resistance/susceptibility.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stéphanie Daval
- IGEPP, INRAE, Institut Agro, Université Rennes 1, Le Rheu, France
| |
Collapse
|
9
|
Chen X, Lu T, Wang X, Sun X, Zhang J, Zhou K, Ji X, Sun R, Wang X, Chen M, Ling X. Metabolic alterations associated with polycystic ovary syndrome: A UPLC Q-Exactive based metabolomic study. Clin Chim Acta 2019; 502:280-286. [PMID: 31758934 DOI: 10.1016/j.cca.2019.11.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 10/24/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The polycystic ovary syndrome (PCOS) is the most common endocrine and metabolic disorder syndrome of women in reproductive age. Metabolomic studies of the follicular fluid can reveal the potential metabolic pathways related to PCOS. The objection of this study was to explore the changes of metabolites in the follicular fluid of PCOS. METHODS We collected follicular fluid samples of 35 patients with PCOS and 33 controls without PCOS for metabolomic analysis with UPLC Q-Exactive. The identified metabolites were annotated with KEGG and HMDB to determine the disturbances of metabolic pathways in PCOS. Based on the regression model, we conducted the ROC analysis to find the biomarker of PCOS in the follicular fluid. RESULTS Metabolomic analysis identified 21 differential metabolites in PCOS, which revealed that the Vitamin B6 metabolism, phenylalanine metabolism and carnitine synthesis were the key changed pathways. We found that 7β-Hydroxycholesterol was potential biomarker of PCOS based on the ROC analysis. CONCLUSION We identified metabolic alterations and biomarker in the follicular fluid of PCOS, providing novel ways for the diagnosis and treatment of PCOS.
Collapse
Affiliation(s)
- Xiaojiao Chen
- State Key Laboratory of Reproductive Medicine, Department of Reproduction, the Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Jiangsu Province, Nanjing, 210004, China
| | - Ting Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoxiao Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xian Sun
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Junqiang Zhang
- State Key Laboratory of Reproductive Medicine, Department of Reproduction, the Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Jiangsu Province, Nanjing, 210004, China
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoming Ji
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Xiufeng Ling
- State Key Laboratory of Reproductive Medicine, Department of Reproduction, the Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Jiangsu Province, Nanjing, 210004, China.
| |
Collapse
|
10
|
Mangel N, Fudge JB, Li K, Wu T, Tohge T, Fernie AR, Szurek B, Fitzpatrick TB, Gruissem W, Vanderschuren H. Enhancement of vitamin B 6 levels in rice expressing Arabidopsis vitamin B 6 biosynthesis de novo genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:1047-1065. [PMID: 31063672 PMCID: PMC6852651 DOI: 10.1111/tpj.14379] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/19/2019] [Accepted: 04/10/2019] [Indexed: 05/06/2023]
Abstract
Vitamin B6 (pyridoxine) is vital for key metabolic reactions and reported to have antioxidant properties in planta. Therefore, enhancement of vitamin B6 content has been hypothesized to be a route to improve resistance to biotic and abiotic stresses. Most of the current studies on vitamin B6 in plants are on eudicot species, with monocots remaining largely unexplored. In this study, we investigated vitamin B6 biosynthesis in rice, with a view to examining the feasibility and impact of enhancing vitamin B6 levels. Constitutive expression in rice of two Arabidopsis thaliana genes from the vitamin B6 biosynthesis de novo pathway, AtPDX1.1 and AtPDX2, resulted in a considerable increase in vitamin B6 in leaves (up to 28.3-fold) and roots (up to 12-fold), with minimal impact on general growth. Rice lines accumulating high levels of vitamin B6 did not display enhanced tolerance to abiotic stress (salt) or biotic stress (resistance to Xanthomonas oryzae infection). While a significant increase in vitamin B6 content could also be achieved in rice seeds (up to 3.1-fold), the increase was largely due to its accumulation in seed coat and embryo tissues, with little enhancement observed in the endosperm. However, seed yield was affected in some vitamin B6 -enhanced lines. Notably, expression of the transgenes did not affect the expression of the endogenous rice PDX genes. Intriguingly, despite transgene expression in leaves and seeds, the corresponding proteins were only detectable in leaves and could not be observed in seeds, possibly pointing to a mode of regulation in this organ.
Collapse
Affiliation(s)
- Nathalie Mangel
- Plant Biotechnology, Department of BiologyETH ZürichZürichSwitzerland
| | - Jared B. Fudge
- Department of Botany and Plant BiologyUniversity of GenevaGeneva1211Switzerland
| | - Kuan‐Te Li
- Plant Biotechnology, Department of BiologyETH ZürichZürichSwitzerland
| | - Ting‐Ying Wu
- Plant Biotechnology, Department of BiologyETH ZürichZürichSwitzerland
| | - Takayuki Tohge
- Max‐Planck‐Institute for Molecular Plant PhysiologyPotsdam‐Gölm14476Germany
- Present address:
Graduate School of Biological SciencesNara Institute of Science and TechnologyIkomaNara630‐0192Japan
| | - Alisdair R. Fernie
- Max‐Planck‐Institute for Molecular Plant PhysiologyPotsdam‐Gölm14476Germany
| | - Boris Szurek
- IRDCiradUniversity of MontpellierIPMEMontpellier34394France
| | | | - Wilhelm Gruissem
- Plant Biotechnology, Department of BiologyETH ZürichZürichSwitzerland
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichung City40227Taiwan
| | - Hervé Vanderschuren
- Plant Biotechnology, Department of BiologyETH ZürichZürichSwitzerland
- Plant Genetics LabTERRA Research and Teaching CentreGembloux Agro BioTechUniversity of LiègeGembloux5030Belgium
| |
Collapse
|
11
|
Fudge J, Mangel N, Gruissem W, Vanderschuren H, Fitzpatrick TB. Rationalising vitamin B6 biofortification in crop plants. Curr Opin Biotechnol 2017; 44:130-137. [DOI: 10.1016/j.copbio.2016.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/17/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022]
|