1
|
Movahedi A, Hwarari D, Dzinyela R, Ni S, Yang L. A close-up of regulatory networks and signaling pathways of MKK5 in biotic and abiotic stresses. Crit Rev Biotechnol 2025; 45:473-490. [PMID: 38797669 DOI: 10.1080/07388551.2024.2344584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 05/29/2024]
Abstract
Mitogen-activated protein Kinase Kinase 5 (MKK5) is a central hub in the complex phosphorylation chain reaction of the Mitogen-activated protein kinases (MAPK) cascade, regulating plant responses to biotic and abiotic stresses. This review manuscript aims to provide a comprehensive analysis of the regulatory mechanism of the MKK5 involved in stress adaptation. This review will delve into the intricate post-transcriptional and post-translational modifications of the MKK5, discussing how they affect its expression, activity, and subcellular localization in response to stress signals. We also discuss the integration of the MKK5 into complex signaling pathways, orchestrating plant immunity against pathogens and its modulating role in regulating abiotic stresses, such as: drought, cold, heat, and salinity, through the phytohormonal signaling pathways. Furthermore, we highlight potential applications of the MKK5 for engineering stress-resilient crops and provide future perspectives that may pave the way for future studies. This review manuscript aims to provide valuable insights into the mechanisms underlying MKK5 regulation, bridge the gap from numerous previous findings, and offer a firm base in the knowledge of MKK5, its regulating roles, and its involvement in environmental stress regulation.
Collapse
Affiliation(s)
- Ali Movahedi
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
- College of Arts and Sciences, Arlington International University, Wilmington, DE, USA
| | - Delight Hwarari
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Raphael Dzinyela
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Siyi Ni
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Liming Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Wawrzyńska A, Sirko A. Sulfate Availability and Hormonal Signaling in the Coordination of Plant Growth and Development. Int J Mol Sci 2024; 25:3978. [PMID: 38612787 PMCID: PMC11012643 DOI: 10.3390/ijms25073978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Sulfur (S), one of the crucial macronutrients, plays a pivotal role in fundamental plant processes and the regulation of diverse metabolic pathways. Additionally, it has a major function in plant protection against adverse conditions by enhancing tolerance, often interacting with other molecules to counteract stresses. Despite its significance, a thorough comprehension of how plants regulate S nutrition and particularly the involvement of phytohormones in this process remains elusive. Phytohormone signaling pathways crosstalk to modulate growth and developmental programs in a multifactorial manner. Additionally, S availability regulates the growth and development of plants through molecular mechanisms intertwined with phytohormone signaling pathways. Conversely, many phytohormones influence or alter S metabolism within interconnected pathways. S metabolism is closely associated with phytohormones such as abscisic acid (ABA), auxin (AUX), brassinosteroids (BR), cytokinins (CK), ethylene (ET), gibberellic acid (GA), jasmonic acid (JA), salicylic acid (SA), and strigolactones (SL). This review provides a summary of the research concerning the impact of phytohormones on S metabolism and, conversely, how S availability affects hormonal signaling. Although numerous molecular details are yet to be fully understood, several core signaling components have been identified at the crossroads of S and major phytohormonal pathways.
Collapse
Affiliation(s)
- Anna Wawrzyńska
- Laboratory of Plant Protein Homeostasis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5A, 02-106 Warsaw, Poland;
| | | |
Collapse
|
3
|
Wei YL, Jin JP, Liang D, Gao J, Li J, Xie Q, Lu CQ, Yang FX, Zhu GF. Genome-wide identification of Cymbidium sinense WRKY gene family and the importance of its Group III members in response to abiotic stress. FRONTIERS IN PLANT SCIENCE 2022; 13:969010. [PMID: 35968117 PMCID: PMC9365948 DOI: 10.3389/fpls.2022.969010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/07/2022] [Indexed: 05/13/2023]
Abstract
Transcription factors (TFs) of the WRKY family play pivotal roles in defense responses and secondary metabolism of plants. Although WRKY TFs are well documented in numerous plant species, no study has performed a genome-wide investigation of the WRKY gene family in Cymbidium sinense. In the present work, we found 64 C. sinense WRKY (CsWRKY) TFs, and they were further divided into eight subgroups. Chromosomal distribution of CsWRKYs revealed that the majority of these genes were localized on 16 chromosomes, especially on Chromosome 2. Syntenic analysis implied that 13 (20.31%) genes were derived from segmental duplication events, and 17 orthologous gene pairs were identified between Arabidopsis thaliana WRKY (AtWRKY) and CsWRKY genes. Moreover, 55 of the 64 CsWRKYs were detectable in different plant tissues in response to exposure to plant hormones. Among them, Group III members were strongly induced in response to various hormone treatments, indicating their potential essential roles in hormone signaling. We subsequently analyzed the function of CsWRKY18 in Group III. The CsWRKY18 was localized in the nucleus. The constitutive expression of CsWRKY18 in Arabidopsis led to enhanced sensitivity to ABA-mediated seed germination and root growth and elevated plant tolerance to abiotic stress within the ABA-dependent pathway. Overall, our study represented the first genome-wide characterization and functional analysis of WRKY TFs in C. sinense, which could provide useful clues about the evolution and functional description of CsWRKY genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Feng-Xi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Gen-Fa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
4
|
Shi J, He H, Hu D, Song B. Defense Mechanism of Capsicum annuum L. Infected with Pepper Mild Mottle Virus Induced by Vanisulfane. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3618-3632. [PMID: 35297641 DOI: 10.1021/acs.jafc.2c00659] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pepper mild mottle virus (PMMoV), an RNA virus, is one of the most devastating pathogens in pepper crops and has a significant influence on global crop yields. PMMoV poses a major threat to the global shortage of pepper plants and other Solanaceae crops due to the lack of an effective antiviral agent. In this study, we have developed a plant immune inducer (vanisulfane), as a "plant vaccine" that boosts plant immunity against PMMoV, and studied its resistance mechanism. The protective activity of vanisulfane against PMMoV was 59.4%. Vanisulfane can enhance the activity of defense enzymes and improve the content of chlorophyll, flavonoids, and total phenols for removing harmful free radicals from plants. Furthermore, vanisulfane was found to enhance defense genes. Label-free quantitative proteomics would tackle disease resistance pathways of vanisulfane. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, differentially abundant proteins (DAPs) are mainly involved in starch and sucrose metabolism, photosynthesis, MAPK signaling pathway, and oxidative phosphorylation pathway. These results are crucial for the discovery of new pesticides, understanding the improvement of plant immunity and the antiviral activity of plant immune inducers.
Collapse
Affiliation(s)
- Jing Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hongfu He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
5
|
Chen H, Wang Y, Liu J, Zhao T, Yang C, Ding Q, Zhang Y, Mu J, Wang D. Identification of WRKY transcription factors responding to abiotic stresses in Brassica napus L. PLANTA 2021; 255:3. [PMID: 34837557 DOI: 10.1007/s00425-021-03733-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
A total of 278 BnWRKYs were identified and analyzed. Ectopic expression of BnWRKY149 and BnWRKY217 suggests that they function in the ABA signaling pathway. WRKY transcription factors play an important role in plant development, however, their function in Brassica napus L. abiotic stress response is still unclear. In this study, a total of 278 BnWRKY transcription factors were identified from the B. napus genome data, and they were subsequently distributed in three main groups. The protein motifs and classification of BnWRKY transcription factors were analyzed, and the locations of their corresponding encoding genes were mapped on the chromosomes of B. napus. Transcriptome analysis of rapeseed seedlings exposed to drought, salt, heat, cold and abscisic acid treatment revealed that 99 BnWRKYs responded to at least one of these stresses. The expression profiles of 12 BnWRKYs were examined with qPCR and the result coincided with RNA-seq analysis. Two genes of interest, BnWRKY149 and BnWRKY217 (homologs of AtWRKY40), were overexpressed in Arabidopsis, and the corresponding proteins were located to the nucleus. Transgene plants of BnWRKY149 and BnWRKY217 were less sensitive to ABA than Arabidopsis Col-0 plants, suggesting they might play important roles in the responses of rapeseed to abiotic stress.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Yongfeng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Jiong Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Tian Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Cuiling Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Qunying Ding
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, 710065, Shaanxi, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shanxi Province, Yangling, 712100, Shaanxi, China
| | - Jianxin Mu
- Hybrid Rapeseed Research Center of Shanxi Province, Yangling, 712100, Shaanxi, China
| | - DaoJie Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
6
|
Eisner N, Maymon T, Sanchez EC, Bar-Zvi D, Brodsky S, Finkelstein R, Bar-Zvi D. Phosphorylation of Serine 114 of the transcription factor ABSCISIC ACID INSENSITIVE 4 is essential for activity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110847. [PMID: 33691973 DOI: 10.1016/j.plantsci.2021.110847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
The transcription factor ABA-INSENSITIVE(ABI)4 has diverse roles in regulating plant growth, including inhibiting germination and reserve mobilization in response to ABA and high salinity, inhibiting seedling growth in response to high sugars, inhibiting lateral root growth, and repressing light-induced gene expression. ABI4 activity is regulated at multiple levels, including gene expression, protein stability, and activation by phosphorylation. Although ABI4 can be phosphorylated at multiple residues by MAPKs, we found that S114 is the preferred site of MPK3. To examine the possible biological role of S114 phosphorylation, we transformed abi4-1 mutant plants with ABI4pro::ABI4 constructs encoding wild type (114S), phosphorylation-null (S114A) or phosphomimetic (S114E) forms of ABI4. Phosphorylation of S114 is necessary for the response to ABA, glucose, salt stress, and lateral root development, where the abi4 phenotype could be complemented by expressing ABI4 (114S) or ABI4 (S114E) but not ABI4 (S114A). Comparison of root transcriptomes in ABA-treated roots of abi4-1 mutant plants transformed with constructs encoding the different phosphorylation-forms of S114 of ABI4 revealed that 85 % of the ABI4-regulated genes whose expression pattern could be restored by expressing ABI4 (114S) are down-regulated by ABI4. Phosphorylation of S114 was required for regulation of 35 % of repressed genes, but only 17 % of induced genes. The genes whose repression requires the phosphorylation of S114 are mainly involved in embryo and seedling development, growth and differentiation, and regulation of gene expression.
Collapse
Affiliation(s)
- Nadav Eisner
- Department of Life Sciences and The Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410500, Israel
| | - Tzofia Maymon
- Department of Life Sciences and The Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410500, Israel
| | - Ester Cancho Sanchez
- Department of Life Sciences and The Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410500, Israel
| | - Dana Bar-Zvi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sagie Brodsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ruth Finkelstein
- Department of Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Dudy Bar-Zvi
- Department of Life Sciences and The Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410500, Israel.
| |
Collapse
|
7
|
Xu W, Gao S, Song J, Yang Q, Wang T, Zhang Y, Zhang J, Li H, Yang C, Ye Z. NDW, encoding a receptor-like protein kinase, regulates plant growth, cold tolerance and susceptibility to Botrytis cinerea in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110684. [PMID: 33218645 DOI: 10.1016/j.plantsci.2020.110684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 05/29/2023]
Abstract
Plants utilize different mechanisms to respond and adapt to continuously changing environmental factors. Receptor-like protein kinases (RLKs) comprise one of the largest families of plant transmembrane signaling proteins, which play critical and diverse roles in plant growth, development, and stress response. Here, we identified the necrotic dwarf (ndw) mutant introgression line (IL) 6-2, which demonstrated stunting, leaf curl, and progressive necrosis at low temperatures. Based on map-based cloning and transgenic analysis, we determined that the phenotype of ndw mutant is caused by decreased expression of NDW, which encodes an RLK. NDW is a plasma membrane and cytoplasmic located protein. Overexpression of NDW can restore both of the semi-dwarf and necrotic phenotype in IL6-2 at low temperatures, further we found that NDW could significantly reduce susceptibility to Botrytis cinerea. On the contrary, knockdown NDW in M82 plants could increase the sensitivity to B. cinerea. Furthermore, transcriptional expression analysis showed that NDW affects the expression of genes related to the abscisic acid (ABA) signaling pathway. Taken together, these results indicate that NDW plays an important role in regulating plant growth, cold tolerance and mitigating susceptibility to Botrytis cinerea.
Collapse
Affiliation(s)
- Wei Xu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization (Xinjiang Production and Construction Crops), College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Shenghua Gao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, Hubei, China; Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, Hubei, China
| | - Jianwen Song
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qihong Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Changxian Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
8
|
Fan FF, Liu F, Yang X, Wan H, Kang Y. Global analysis of expression profile of members of DnaJ gene families involved in capsaicinoids synthesis in pepper (Capsicum annuum L). BMC PLANT BIOLOGY 2020; 20:326. [PMID: 32646388 PMCID: PMC7350186 DOI: 10.1186/s12870-020-02476-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The DnaJ proteins play critical roles in plant development and stress responses. Recently, seventy-six DnaJ genes were identified through a comprehensive bioinformatics analysis in the pepper genome. However, there were no reports on understanding of phylogenetic relationships and diverse expression profile of pepper DnaJ genes to date. Herein, we performed the systemic analysis of the phylogenetic relationships and expression profile of pepper DnaJ genes in different tissues and in response to both abiotic stress and plant hormones. RESULTS Phylogenetic analysis showed that all the pepper DnaJ genes were grouped into 7 sub-families (sub-family I, II, III, IV, V, VI and VII) according to sequence homology. The expression of pepper DnaJs in different tissues revealed that about 38% (29/76) of pepper DnaJs were expressed in at least one tissue. The results demonstrate the potentially critical role of DnaJs in pepper growth and development. In addition, to gain insight into the expression difference of pepper DnaJ genes in placenta between pungent and non-pungent, their expression patterns were also analyzed using RNA-seq data and qRT-PCR. Comparison analysis revealed that eight genes presented distinct expression profiles in pungent and non-pungent pepper. The CaDnaJs co-expressed with genes involved in capsaicinoids synthesis during placenta development. What is more, our study exposed the fact that these eight DnaJ genes were probably regulated by stress (heat, drought and salt), and were also regulated by plant hormones (ABA, GA3, MeJA and SA). CONCLUSIONS In summary, these results showed that some DnaJ genes expressed in placenta may be involved in plant response to abiotic stress during biosynthesis of compounds related with pungency. The study provides wide insights to the expression profiles of pepper DanJ genes and contributes to our knowledge about the function of DnaJ genes in pepper.
Collapse
Affiliation(s)
- Fang Fei Fan
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, PR China
| | - Fawan Liu
- Horticultural Research Institute, Yunnan Academy of Agricultural Science, Kunming, 650231, PR China
| | - Xian Yang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, PR China
| | - Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
- China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Yunyan Kang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
9
|
Wei H, Liu J, Guo Q, Pan L, Chai S, Cheng Y, Ruan M, Ye Q, Wang R, Yao Z, Zhou G, Wan H. Genomic Organization and Comparative Phylogenic Analysis of NBS-LRR Resistance Gene Family in Solanum pimpinellifolium and Arabidopsis thaliana. Evol Bioinform Online 2020; 16:1176934320911055. [PMID: 32214791 PMCID: PMC7065440 DOI: 10.1177/1176934320911055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 12/23/2022] Open
Abstract
NBS-LRR (nucleotide-binding site and leucine-rich repeat) is one of the largest resistance gene families in plants. The completion of the genome sequencing of wild tomato Solanum pimpinellifolium provided an opportunity to conduct a comprehensive analysis of the NBS-LRR gene superfamily at the genome-wide level. In this study, gene identification, chromosome mapping, and phylogenetic analysis of the NBS-LRR gene family were analyzed using the bioinformatics methods. The results revealed 245 NBS-LRRs in total, similar to that in the cultivated tomato. These genes are unevenly distributed on 12 chromosomes, and ~59.6% of them form gene clusters, most of which are tandem duplications. Phylogenetic analysis divided the NBS-LRRs into 2 subfamilies (CNL-coiled-coil NBS-LRR and TNL-TIR NBS-LRR), and the expansion of the CNL subfamily was more extensive than the TNL subfamily. Novel conserved structures were identified through conserved motif analysis between the CNL and TNL subfamilies. Compared with the NBS-LRR sequences from the model plant Arabidopsis thaliana, wide genetic variation occurred after the divergence of S. pimpinellifolium and A thaliana. Species-specific expansion was also found in the CNL subfamily in S. pimpinellifolium. The results of this study provide the basis for the deeper analysis of NBS-LRR resistance genes and contribute to mapping and isolation of candidate resistance genes in S. pimpinellifolium.
Collapse
Affiliation(s)
- Huawei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Jia Liu
- Wulanchabu Academy of Agricultural and Husbandry Sciences, Wulanchabu, China
| | - Qinwei Guo
- Quzhou Academy of Agricultural Sciences, Quzhou, China
| | - Luzhao Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Songlin Chai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuan Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Meiying Ruan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qingjing Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rongqing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhuping Yao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guozhi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
10
|
Xu P, Guo Q, Pang X, Zhang P, Kong D, Liu J. New Insights into Evolution of Plant Heat Shock Factors (Hsfs) and Expression Analysis of Tea Genes in Response to Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2020; 9:E311. [PMID: 32131389 PMCID: PMC7154843 DOI: 10.3390/plants9030311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 11/17/2022]
Abstract
Heat shock transcription factor (Hsf) is one of key regulators in plant abotic stress response. Although the Hsf gene family has been identified from several plant species, original and evolution relationship have been fragmented. In addition, tea, an important crop, genome sequences have been completed and function of the Hsf family genes in response to abiotic stresses was not illuminated. In this study, a total of 4208 Hsf proteins were identified within 163 plant species from green algae (Gonium pectorale) to angiosperm (monocots and dicots), which were distributed unevenly into each of plant species tested. The result indicated that Hsf originated during the early evolutionary history of chlorophytae algae and genome-wide genetic varies had occurred during the course of evolution in plant species. Phylogenetic classification of Hsf genes from the representative nine plant species into ten subfamilies, each of which contained members from different plant species, imply that gene duplication had occurred during the course of evolution. In addition, based on RNA-seq data, the member of the Hsfs showed different expression levels in the different organs and at the different developmental stages in tea. Expression patterns also showed clear differences among Camellia species, indicating that regulation of Hsf genes expression varied between organs in a species-specific manner. Furthermore, expression of most Hsfs in response to drought, cold and salt stresses, imply a possible positive regulatory role under abiotic stresses. Expression profiles of nineteen Hsf genes in response to heat stress were also analyzed by quantitative real-time RT-PCR. Several stress-responsive Hsf genes were highly regulated by heat stress treatment. In conclusion, these results lay a solid foundation for us to elucidate the evolutionary origin of plant Hsfs and Hsf functions in tea response to abiotic stresses in the future.
Collapse
Affiliation(s)
- Ping Xu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China;
| | - Qinwei Guo
- Quzhou Academy of Agricultural Sciences, Quzhou 324000, Zhejiang, China;
| | - Xin Pang
- Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China;
| | - Peng Zhang
- Wulanchabu Academy of Agricultural and Husbandry Sciences, Wulanchabu 012000, Inner Mongolia, China; (P.Z.); (D.K.)
| | - Dejuan Kong
- Wulanchabu Academy of Agricultural and Husbandry Sciences, Wulanchabu 012000, Inner Mongolia, China; (P.Z.); (D.K.)
| | - Jia Liu
- Wulanchabu Academy of Agricultural and Husbandry Sciences, Wulanchabu 012000, Inner Mongolia, China; (P.Z.); (D.K.)
| |
Collapse
|
11
|
Wu M, Ge Y, Xu C, Wang J. Metabolome and Transcriptome Analysis of Hexaploid Solidago canadensis Roots Reveals its Invasive Capacity Related to Polyploidy. Genes (Basel) 2020; 11:genes11020187. [PMID: 32050732 PMCID: PMC7074301 DOI: 10.3390/genes11020187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/08/2020] [Accepted: 02/08/2020] [Indexed: 12/29/2022] Open
Abstract
Polyploid plants are more often invasive species than their diploid counterparts. As the invasiveness of a species is often linked to its production of allelopathic compounds, we hypothesize that differences in invasive ability between cytotypes may be due to their different ability to synthesize allelopathic metabolites. We test this using two cytotypes of Solidago canadensis as the model and use integrated metabolome and transcriptome data to resolve the question. Metabolome analysis identified 122 metabolites about flavonoids, phenylpropanoids and terpenoids, of which 57 were differentially accumulated between the two cytotypes. Transcriptome analysis showed that many differentially expressed genes (DEGs) were enriched in ‘biosynthesis of secondary metabolites’, ‘plant hormone signal transduction’, and ‘MAPK signaling’, covering most steps of plant allelopathic metabolite synthesis. Importantly, the differentially accumulated flavonoids, phenylpropanoids and terpenoids were closely correlated with related DEGs. Furthermore, 30 miRNAs were found to be negatively associated with putative targets, and they were thought to be involved in target gene expression regulation. These miRNAs probably play a vital role in the regulation of metabolite synthesis in hexaploid S. canadensis. The two cytotypes of S. canadensis differ in the allelopathic metabolite synthesis and this difference is associated with regulation of expression of a range of genes. These results suggest that changes in gene expression may underlying the increased invasive potential of the polyploidy.
Collapse
|
12
|
Qin Y, Bai S, Li W, Sun T, Galbraith DW, Yang Z, Zhou Y, Sun G, Wang B. Transcriptome analysis reveals key genes involved in the regulation of nicotine biosynthesis at early time points after topping in tobacco (Nicotiana tabacum L.). BMC PLANT BIOLOGY 2020; 20:30. [PMID: 31959100 PMCID: PMC6971868 DOI: 10.1186/s12870-020-2241-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/07/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Nicotiana tabacum is an important economic crop. Topping, a common agricultural practice employed with flue-cured tobacco, is designed to increase leaf nicotine contents by increasing nicotine biosynthesis in roots. Many genes are found to be differentially expressed in response to topping, particularly genes involved in nicotine biosynthesis, but comprehensive analyses of early transcriptional responses induced by topping are not yet available. To develop a detailed understanding of the mechanisms regulating nicotine biosynthesis after topping, we have sequenced the transcriptomes of Nicotiana tabacum roots at seven time points following topping. RESULTS Differential expression analysis revealed that 4830 genes responded to topping across all time points. Amongst these, nine gene families involved in nicotine biosynthesis and two gene families involved in nicotine transport showed significant changes during the immediate 24 h period following topping. No obvious preference to the parental species was detected in the differentially expressed genes (DEGs). Significant changes in transcript levels of nine genes involved in nicotine biosynthesis and phytohormone signal transduction were validated by qRT-PCR assays. 549 genes encoding transcription factors (TFs), found to exhibit significant changes in gene expression after topping, formed 15 clusters based on similarities of their transcript level time-course profiles. 336 DEGs involved in phytohormone signal transduction, including genes functionally related to the phytohormones jasmonic acid, abscisic acid, auxin, ethylene, and gibberellin, were identified at the earliest time point after topping. CONCLUSIONS Our research provides the first detailed analysis of the early transcriptional responses to topping in N. tabacum, and identifies excellent candidates for further detailed studies concerning the regulation of nicotine biosynthesis in tobacco roots.
Collapse
Affiliation(s)
- Yan Qin
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Shenglong Bai
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Wenzheng Li
- Tobacco Breeding Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021 Yunnan China
| | - Ting Sun
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - David W. Galbraith
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004 China
- School of Plant Sciences and Bio5 Institute, The University of Arizona, Tucson, AZ 85721 USA
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009 China
| | - Yun Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Guiling Sun
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Bingwu Wang
- Tobacco Breeding Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021 Yunnan China
| |
Collapse
|
13
|
Pokotylo I, Kravets V, Martinec J, Ruelland E. The phosphatidic acid paradox: Too many actions for one molecule class? Lessons from plants. Prog Lipid Res 2018; 71:43-53. [PMID: 29842906 DOI: 10.1016/j.plipres.2018.05.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 11/29/2022]
Abstract
Phosphatidic acid (PA) is a simple phospholipid observed in most organisms. PA acts as a key metabolic intermediate and a second messenger that regulates many cell activities. In plants, PA is involved in numerous cell responses induced by hormones, stress inputs and developmental processes. Interestingly, PA production can be triggered by opposite stressors, such as cold and heat, or by hormones that are considered to be antagonistic, such as abscisic acid and salicylic acid. This property questions the specificity of the responses controlled by PA. Are there generic responses to PA, meaning that cell regulation triggered by PA would be always the same, even in opposite physiological situations? Alternatively, do the responses to PA differ according to the physiological context within the cells? If so, the mechanisms that regulate the divergence of PA-controlled reactions are poorly defined. This review summarizes the latest opinions on how PA signalling is directed in plant cells and examines the intrinsic properties of PA that enable its regulatory diversity. We propose a concept whereby PA regulatory messages are perceived as complex "signatures" that take into account their production site, the availability of target proteins and the relevant cellular environments.
Collapse
Affiliation(s)
- Igor Pokotylo
- Université Paris-Est, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Créteil, France; Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Volodymyr Kravets
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Jan Martinec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eric Ruelland
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine; CNRS, UMR7618, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Créteil, France.
| |
Collapse
|