1
|
Cai Y, Wang D, Che Y, Wang L, Zhang F, Liu T, Sheng Y. Multiple Localization Analysis of the Major QTL- sfw 2.2 for Controlling Single Fruit Weight Traits in Melon Based on SLAF Sequencing. Genes (Basel) 2024; 15:1138. [PMID: 39336729 PMCID: PMC11430989 DOI: 10.3390/genes15091138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Cucumis melo is an annual dicotyledonous trailing herb. It is fruity, cool, and refreshing to eat and is widely loved by consumers worldwide. The single fruit weight is an important factor affecting the yield, and thus the income and economic benefits, of melon crops. In this study, to identify the main QTLs (quantitative trait locus) controlling the single fruit weight of melon and thereby identify candidate genes controlling this trait, specific-locus amplified fragment sequencing (SLAF) analysis was performed on the offspring of female 1244 plants crossed with male MS-5 plants. A total of 115 individual plants in the melon F2 population were analyzed to construct a genetic linkage map with a total map distance of 1383.88 cM by the group in the early stages of the project, which was divided into 12 linkage groups with a total of 10,596 SLAF markers spaced at an average genetic distance of 0.13 cM. A total of six QTLs controlling single fruit weight (sfw loci) were detected. Seven pairs of markers with polymorphisms were obtained by screening candidate intervals from the SLAF data. The primary QTL sfw2.2 was further studied in 300 F2:3 family lines grown in 2020 and 2021, respectively, a positioning sfw2.2 between the markers CY Indel 11 and CY Indel 16, between 18,568,142 and 18,704,724 on chromosome 2. This interval contained 136.58 kb and included three genes with functional annotations, MELO3C029673, MELO3C029669, and MELO3C029674. Gene expression information for different fruit development stages was obtained from 1244 and MS-5 fruits on the 15d, 25d, and 35d after pollination, and qRT-PCR (quantitative reverse transcription-PCR) indicated that the expression of the MELO3C029669 gene significantly differed between the parents during the three periods. The gene sequences between the parents of MELO3C029669 were analyzed and compared, a base mutation was found to occur in the intronic interval between the parents of the gene, from A-G. Phylogenetic evolutionary tree analysis revealed that the candidate gene MELO3C029669 is most closely related to Pisum sativum Fimbrin-5 variant 2 and most distantly related to Cucumis melo var. makuwa. Therefore, it was hypothesized that MELO3C029669 is the primary major locus controlling single fruit weight in melon. These results not only provide a theoretical basis for further studies to find genes with functions in melon single fruit weight but also lay the foundation for accelerating breakthroughs and innovations in melon breeding.
Collapse
Affiliation(s)
- Yi Cai
- Horticulture and Landscape Department, Heilongjiang Bayi Agriculture University, Daqing 163000, China; (Y.C.); (L.W.); (F.Z.)
- Horticultural Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150069, China
| | - Di Wang
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163000, China; (D.W.); (Y.C.); (T.L.)
| | - Ye Che
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163000, China; (D.W.); (Y.C.); (T.L.)
| | - Ling Wang
- Horticulture and Landscape Department, Heilongjiang Bayi Agriculture University, Daqing 163000, China; (Y.C.); (L.W.); (F.Z.)
| | - Fan Zhang
- Horticulture and Landscape Department, Heilongjiang Bayi Agriculture University, Daqing 163000, China; (Y.C.); (L.W.); (F.Z.)
| | - Tai Liu
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163000, China; (D.W.); (Y.C.); (T.L.)
| | - Yunyan Sheng
- Horticulture and Landscape Department, Heilongjiang Bayi Agriculture University, Daqing 163000, China; (Y.C.); (L.W.); (F.Z.)
| |
Collapse
|
2
|
Deep A, Pandey DK. Genome-Wide Analysis of VILLIN Gene Family Associated with Stress Responses in Cotton ( Gossypium spp.). Curr Issues Mol Biol 2024; 46:2278-2300. [PMID: 38534762 DOI: 10.3390/cimb46030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
The VILLIN (VLN) protein plays a crucial role in regulating the actin cytoskeleton, which is involved in numerous developmental processes, and is crucial for plant responses to both biotic and abiotic factors. Although various plants have been studied to understand the VLN gene family and its potential functions, there has been limited exploration of VLN genes in Gossypium and fiber crops. In the present study, we characterized 94 VLNs from Gossypium species and 101 VLNs from related higher plants such as Oryza sativa and Zea mays and some fungal, algal, and animal species. By combining these VLN sequences with other Gossypium spp., we classified the VLN gene family into three distinct groups, based on their phylogenetic relationships. A more in-depth examination of Gossypium hirsutum VLNs revealed that 14 GhVLNs were distributed across 12 of the 26 chromosomes. These genes exhibit specific structures and protein motifs corresponding to their respective groups. GhVLN promoters are enriched with cis-elements related to abiotic stress responses, hormonal signals, and developmental processes. Notably, a significant number of cis-elements were associated with the light responses. Additionally, our analysis of gene-expression patterns indicated that most GhVLNs were expressed in various tissues, with certain members exhibiting particularly high expression levels in sepals, stems, and tori, as well as in stress responses. The present study potentially provides fundamental insights into the VLN gene family and could serve as a valuable reference for further elucidating the diverse functions of VLN genes in cotton.
Collapse
Affiliation(s)
- Akash Deep
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi 835303, India
| | - Dhananjay K Pandey
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi 835303, India
| |
Collapse
|
3
|
Ishida H, Woodman AG, Kitada N, Aizawa T, Vogel HJ. The Dictyostelium discoideum FimA protein, unlike yeast and plant fimbrins, is regulated by calcium similar to mammalian plastins. Sci Rep 2023; 13:16208. [PMID: 37758724 PMCID: PMC10533516 DOI: 10.1038/s41598-023-42682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Plastins, also known as fimbrins, are highly conserved eukaryotic multidomain proteins that are involved in actin-bundling. They all contain four independently folded Calponin Homology-domains and an N-terminal headpiece that is comprised of two calcium-binding EF-hand motifs. Since calcium-binding has been shown to be integral to regulating the activity of the three mammalian plastin proteins, we decided to study the properties of the headpiece regions of fimbrins from the model plant Arabidopsis thaliana, the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe and the amoeba Dictyostelium discoideum. Of these protein domains only the FimA headpiece from the amoeba protein possesses calcium binding properties. Structural characterization of this protein domain by multidimensional NMR and site-directed mutagenesis studies indicates that this EF-hand region of FimA also contains a regulatory 'switch helix' that is essential to regulating the activity of the human L-plastin protein. Interestingly this regulatory helical region seems to be lacking in the plant and yeast proteins and in fimbrins from all other nonmotile systems. Typical calmodulin antagonists can displace the switch-helix from the FimA headpiece, suggesting that such drugs can deregulate the Ca2+-regulation of the actin-bunding in the amoeba, thereby making it a useful organism for drug screening against mammalian plastins.
Collapse
Affiliation(s)
- Hiroaki Ishida
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Andrew G Woodman
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Naoya Kitada
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Tomoyasu Aizawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
4
|
Stephan OOH. Effects of environmental stress factors on the actin cytoskeleton of fungi and plants: Ionizing radiation and ROS. Cytoskeleton (Hoboken) 2023; 80:330-355. [PMID: 37066976 DOI: 10.1002/cm.21758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023]
Abstract
Actin is an abundant and multifaceted protein in eukaryotic cells that has been detected in the cytoplasm as well as in the nucleus. In cooperation with numerous interacting accessory-proteins, monomeric actin (G-actin) polymerizes into microfilaments (F-actin) which constitute ubiquitous subcellular higher order structures. Considering the extensive spatial dimensions and multifunctionality of actin superarrays, the present study analyses the issue if and to what extent environmental stress factors, specifically ionizing radiation (IR) and reactive oxygen species (ROS), affect the cellular actin-entity. In that context, this review particularly surveys IR-response of fungi and plants. It examines in detail which actin-related cellular constituents and molecular pathways are influenced by IR and related ROS. This comprehensive survey concludes that the general integrity of the total cellular actin cytoskeleton is a requirement for IR-tolerance. Actin's functions in genome organization and nuclear events like chromatin remodeling, DNA-repair, and transcription play a key role. Beyond that, it is highly significant that the macromolecular cytoplasmic and cortical actin-frameworks are affected by IR as well. In response to IR, actin-filament bundling proteins (fimbrins) are required to stabilize cables or patches. In addition, the actin-associated factors mediating cellular polarity are essential for IR-survivability. Moreover, it is concluded that a cellular homeostasis system comprising ROS, ROS-scavengers, NADPH-oxidases, and the actin cytoskeleton plays an essential role here. Consequently, besides the actin-fraction which controls crucial genome-integrity, also the portion which facilitates orderly cellular transport and polarized growth has to be maintained in order to survive IR.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Bavaria, 91058, Germany
| |
Collapse
|
5
|
Zhou Y, He L, Zhou S, Wu Q, Zhou X, Mao Y, Zhao B, Wang D, Zhao W, Wang R, Hu H, Chen J. Genome-Wide Identification and Expression Analysis of the VILLIN Gene Family in Soybean. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112101. [PMID: 37299081 DOI: 10.3390/plants12112101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
The VILLIN (VLN) protein is an important regulator of the actin cytoskeleton, which orchestrates many developmental processes and participates in various biotic and abiotic responses in plants. Although the VLN gene family and their potential functions have been analyzed in several plants, knowledge of VLN genes in soybeans and legumes remains rather limited. In this study, a total of 35 VLNs were characterized from soybean and five related legumes. Combining with the VLN sequences from other nine land plants, we categorized the VLN gene family into three groups according to phylogenetic relationships. Further detailed analysis of the soybean VLNs indicated that the ten GmVLNs were distributed on 10 of the 20 chromosomes, and their gene structures and protein motifs showed high group specificities. The expression pattern analysis suggested that most GmVLNs are widely expressed in various tissues, but three members have a very high level in seeds. Moreover, we observed that the cis-elements enriched in the promoters of GmVLNs are mainly related to abiotic stresses, hormone signals, and developmental processes. The largest number of cis-elements were associated with light responses, and two GmVLNs, GmVLN5a, and GmVLN5b were significantly increased under the long light condition. This study not only provides some basic information about the VLN gene family but also provides a good reference for further characterizing the diverse functions of VLN genes in soybeans.
Collapse
Affiliation(s)
- Yueqiong Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shaoli Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qing Wu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xuan Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yawen Mao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Baolin Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Dongfa Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- College of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Weiyue Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ruoruo Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- Guizhou Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Huabin Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- College of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650106, China
| |
Collapse
|
6
|
Liu RX, Li HL, Rui L, Liu GD, Wang T, Wang XF, Li LG, Zhang Z, You CX. An apple NITRATE REDUCTASE 2 gene positively regulates nitrogen utilization and abiotic stress tolerance in Arabidopsis and apple callus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:23-32. [PMID: 36689830 DOI: 10.1016/j.plaphy.2023.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Nitrogen (N) is an essential element that plays an important role in crop biomass accumulation and quality formation. Increased crop yield is relied on excessive application of fertilizers, which usually leads to environmental pollution and unsustainable development. Thus, identification and characterization of genes involved in promoting nitrogen use efficiency is of high priority in crop breeding. The activity of nitrate reductase (NR) plays a critical role in nitrogen metabolism. In model plant Arabidopsis, NITRATE REDUCTASE 2 (NIA2), one of the two NRs, is responsible for about 90% of the NR activity. In this study, MdNIA2 gene in apple (Malus domestica) genome was screened out and identified by using AtNIA2 as bait. Phylogenetic analysis revealed that MdNIA2 had the closest evolutionary relationship with MbNIA from Malus baccata. Ectopic expression of MdNIA2 in Arabidopsis elevated the nitrogen use efficiency and increased root hair elongation and formation, resulting in promoted plant growth. Furthermore, the overexpression of MdNIA2 improved salt and drought tolerance in transgenic Arabidopsis and improved the salt tolerance of transgenic apple callus, and MdNIA2-reagualted NO metabolism might contribute to the abiotic stress tolerance. Overall, our data indicate the critical role of MdNIA2 in regulating nitrogen utilization efficiency and abiotic stress responses.
Collapse
Affiliation(s)
- Ran-Xin Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hong-Liang Li
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Lin Rui
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Guo-Dong Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Tian Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Lin-Guang Li
- Shandong Institute of Pomology, Tai-An, Shandong, 271000, China
| | - Zhenlu Zhang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
7
|
Zhang P, Qian D, Luo C, Niu Y, Li T, Li C, Xiang Y, Wang X, Niu Y. Arabidopsis ADF5 Acts as a Downstream Target Gene of CBFs in Response to Low-Temperature Stress. Front Cell Dev Biol 2021; 9:635533. [PMID: 33585491 PMCID: PMC7876393 DOI: 10.3389/fcell.2021.635533] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Low temperature is a major adverse environment that affects normal plant growth. Previous reports showed that the actin cytoskeleton plays an important role in the plant response to low-temperature stress, but the regulatory mechanism of the actin cytoskeleton in this process is not clear. C-repeat binding factors (CBFs) are the key molecular switches for plants to adapt to cold stress. However, whether CBFs are involved in the regulation of the actin cytoskeleton has not been reported. We found that Arabidopsis actin depolymerizing factor 5 (ADF5), an ADF that evolved F-actin bundling function, was up-regulated at low temperatures. We also demonstrated that CBFs bound to the ADF5 promoter directly in vivo and in vitro. The cold-induced expression of ADF5 was significantly inhibited in the cbfs triple mutant. The freezing resistance of the adf5 knockout mutant was weaker than that of wild type (WT) with or without cold acclimation. After low-temperature treatment, the actin cytoskeleton of WT was relatively stable, but the actin cytoskeletons of adf5, cbfs, and adf5 cbfs were disturbed to varying degrees. Compared to WT, the endocytosis rate of the amphiphilic styryl dye FM4-64 in adf5, cbfs, and adf5 cbfs at low temperature was significantly reduced. In conclusion, CBFs directly combine with the CRT/DRE DNA regulatory element of the ADF5 promoter after low-temperature stress to transcriptionally activate the expression of ADF5; ADF5 further regulates the actin cytoskeleton dynamics to participate in the regulation of plant adaptation to a low-temperature environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yue Niu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|