1
|
Valentovičová K, Demecsová L, Liptáková Ľ, Zelinová V, Tamás L. Barley root tip peroxidases convert DAF-FM and DAR-4M to an NO-independent fluorescent product using H 2O 2 derived from polyamine catabolism by polyamine oxidases. JOURNAL OF PLANT PHYSIOLOGY 2025; 308:154477. [PMID: 40138857 DOI: 10.1016/j.jplph.2025.154477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
The aim of our study was to investigate the possible involvement of barley root tip peroxidases and polyamine oxidases in the conversion of DAF-FM or DAR-4M into an NO-independent fluorescent product after the exogenous application of polyamines. Application of spermidine or spermine into the incubation medium increased H2O2 production by root tip segments in a dose-dependent manner. This spermidine- or spermine-induced increase in H2O2 production was accompanied by intensified fluorescence of both DAF-FM and DAR-4M in a polyamine dose-dependent manner, similarly to exogenously added H2O2. On the contrary, exogenous putrescine neither evoked H2O2 production nor increased DAF-FM or DAR-4M fluorescence. Application of guazatine, a polyamine oxidase inhibitor, into the incubation medium inhibited both H2O2 production and DAF-FM or DAR-4M fluorescence. Spermidine- or spermine-induced DAF-FM or DAR-4M fluorescence decreased with an increasing amount of catalase or guaiacol, a competitive substrate for peroxidase, in the incubation medium. Exogenous application of indole-3-acetic acid, a well-known activator of NO generation in roots, but not of H2O2, spermidine or spermine, induces NO accumulation in the root tips. Exogenous application of spermidine or spermine to plant tissues with high polyamine oxidase and peroxidase activity, as are the barley root tips, generates an NO-independent fluorescence signal from either DAF-FM or DAR-4M, giving a false positive signal for NO emission.
Collapse
Affiliation(s)
- Katarína Valentovičová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-84523, Bratislava, Slovak Republic
| | - Loriana Demecsová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-84523, Bratislava, Slovak Republic
| | - Ľubica Liptáková
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-84523, Bratislava, Slovak Republic
| | - Veronika Zelinová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-84523, Bratislava, Slovak Republic
| | - Ladislav Tamás
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-84523, Bratislava, Slovak Republic.
| |
Collapse
|
2
|
Samari E, Sharifi M, Karimi F, Sajedi RH, Sagharyan M. Regulation of lignan biosynthesis through signaling pathways mediated by H 2O 2 in Linum album cell culture in response to exogenous putrescine. Sci Rep 2025; 15:13553. [PMID: 40253489 PMCID: PMC12009434 DOI: 10.1038/s41598-025-96019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/25/2025] [Indexed: 04/21/2025] Open
Abstract
Polyamines are small aliphatic amines whose metabolic reprogramming is involved in the regulation of various plant cellular reactions. Our previous study showed that polyamines increased lignan production in Linum album; however, little is known about the underlying mechanisms. This study aimed to provide more details on how putrescine (Put) regulates lignan biosynthesis in L. album cell culture. Our results showed that Put leads to podophyllotoxin (PTOX) and 6-methoxy podophyllotoxin (6MPTOX) accumulation by increasing the expression levels of phenylalanine ammonia-lyase (PAL) and pinoresinol-lariciresinol reductase (PLR) genes, encoding lignan biosynthesis regulatory enzymes. Put also increased hydrogen peroxide (H2O2) content, while its level decreased in the presence of aminoguanidine (AG) and imidazole, inhibitors of diamine oxidase (DAO) and NADPH oxidase (NOX), respectively. Elevated levels of nitric oxide (NO) and cytosolic free Ca2+ caused by Put treatment were reduced after using inhibitors of nitrate reductase (NR) and nitric oxide synthesis-like (NOS-like) enzymes, as well as Ca2+ influx. Besides, pre-treatment of cells with AG, imidazole, ethylene glycol-bis (β-aminoethyl ether)-N, N,N',N'-tetraacetic acid (EGTA) (Ca2+ chelator), Nɷ-nitro-L-arginine methyl ester (L-NAME), and Sodium tungstate (TUN) (NO generation inhibitors) diminished PAL and PLR transcript levels and PTOX and 6MPTOX accumulation, indicating the involvement of H2O2, NO, and Ca2+ in regulating lignan biosynthesis in L. album cells. Put also stimulated salicylic acid (SA) accumulation, being sensitive to all inhibitors used. Overall, this study suggests that Put-induced H2O2 generation in combination with NO and Ca2+ signals can regulate PAL and PLR genes expression and lignan production, likely in a SA-dependent manner.
Collapse
Affiliation(s)
- Elaheh Samari
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Sharifi
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
- Center of Excellence in Medicinal Plant Metabolites, Tarbiat Modares University, Tehran, Iran.
| | - Farah Karimi
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mostafa Sagharyan
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Liu T, Qu J, Fang Y, Yang H, Lai W, Pan L, Liu JH. Polyamines: The valuable bio-stimulants and endogenous signaling molecules for plant development and stress response. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:582-595. [PMID: 39601632 DOI: 10.1111/jipb.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 11/29/2024]
Abstract
Polyamines (PAs) are nitrogenous and polycationic compounds containing more than two amine residues. Numerous investigations have demonstrated that cellular PA homeostasis plays a key role in various developmental and physiological processes. The PA balance, which may be affected by many environmental factors, is finely maintained by the pathways of PA biosynthesis and degradation (catabolism). In this review, the advances in PA transport and distribution and their roles in plants were summarized and discussed. In addition, the interplay between PAs and phytohormones, NO, and H2O2 were detailed during plant growth, senescence, fruit repining, as well as response to biotic and abiotic stresses. Moreover, it was elucidated how environmental signals such as light, temperature, and humidity modulate PA accumulation during plant development. Notably, PA has been shown to exert a potential role in shaping the domestication of rice. The present review comprehensively summarizes these latest advances, highlighting the importance of PAs as endogenous signaling molecules in plants, and as well proposes future perspectives on PA research.
Collapse
Affiliation(s)
- Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Qu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yinyin Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Haishan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenting Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Luyi Pan
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
4
|
Sathee L, Jain V. Interaction of elevated CO 2 and form of nitrogen nutrition alters leaf abaxial and adaxial epidermal and stomatal anatomy of wheat seedlings. PROTOPLASMA 2022; 259:703-716. [PMID: 34374877 DOI: 10.1007/s00709-021-01692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Plant's stomatal physiology and anatomical features are highly plastic and are influenced by diverse environmental signals including the concentration of atmospheric CO2 and nutrient availability. Recent reports suggest that the form of nitrogen (N) is a determinant of plant growth and nutrient nitrogen use efficiency (NUE) under elevated CO2 (EC). Previously, we found that high nitrate availability resulted in early senescence, enhanced reactive oxygen species (ROS), and reactive nitrogen species (RNS) production and also that mixed nutrition of nitrate and ammonium ions were beneficial than sole nitrate nutrition in wheat. In this study, the interactive effects of different N forms (nitrate, ammonium, mixed nutrition of nitrate, and ammonium) and EC on epidermal and stomatal morphology were analyzed. Wheat seedlings were grown at two different CO2 levels and supplied with media devoid of N (N0) or with nitrate-N (NN), mixed nutrition of ammonium and nitrate (MN), or only ammonium-N (AN). The stoma length increased significantly in nitrate nutrition with a consistent reduction in stoma width. Guard cell length was higher in EC treatment as compared to AC. The guard cell width was maximum in AN-grown plants at EC. Epidermal cell density and stomatal density were lower at EC. Nitrate nutrition increased the stomatal area at EC while the reverse was true for MN and AN. Wheat plants fertilized with AN showed a higher accumulation of superoxide radical (SOR) at EC, while in NN treatment, the accumulation of hydrogen peroxide (H2O2) was higher at EC. Reactive oxygen species, particularly H2O2, can trigger mitogen-activated protein kinase (MAPK) mediated signaling and its crosstalk with abscisic acid (ABA) signaling to regulate stomatal anatomy in nitrate-fed plants. The SOR accumulation in ammonium- and ammonium nitrate-fed plants and H2O2 in NN-fed plants might finely regulate the sensitivity of stomata to alter water/nutrient use efficiency and productivity under EC. The data reveals that the variation in anatomical attributes viz. cell length, number of cells, etc. affected the leaf growth responses to EC and forms of N nutrition. These attributes are fine targets for effective manipulation of growth responses to EC.
Collapse
Affiliation(s)
- Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Vanita Jain
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
- Agricultural Education Division, ICAR, KAB-II, New Delhi, India.
| |
Collapse
|
5
|
Ma S, Zhou X, Jahan MS, Guo S, Tian M, Zhou R, Liu H, Feng B, Shu S. Putrescine regulates stomatal opening of cucumber leaves under salt stress via the H 2O 2-mediated signaling pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:87-97. [PMID: 34861587 DOI: 10.1016/j.plaphy.2021.11.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 05/24/2023]
Abstract
The stomatal aperture is imperative for photosynthesis in higher plants. The function of polyamines (PAs) in stomatal regulation under a stressful environment has not been fully determined. In this study, we demonstrated the mechanism by which putrescine (Put) regulates stomatal changes in cucumber leaves under salt stress. The results showed that foliar application of Put alleviated the decrease of stomatal aperture and photosynthesis caused by salt stress and promoted plant growth. Exogenous Put caused a significant increase in endogenous PAs and hydrogen peroxide (H2O2) levels by 105.43% and 27.97%, respectively, while decreased abscisic acid (ABA) content by 67.68% under salt stress. However, application of inhibitors of aminoguanidine hydrochloride (AG), 1, 8-diaminooctane (1, 8-DO), diphenyleneiodonium chloride (DPI) and salicylhydroxamic acid (SHAM) upregulated the 9-cis-cyclocarotenoid dioxygenase (NCED) gene and downregulated the reduced glutathione synthetase (GSHS) gene. These inhibitors also decreased the stomatal aperture, levels of H2O2 and reduced glutathione (GSH), but increased the ABA content under salt stress and Put treatment conditions. The order of influence is AG > 1, 8-DO > DPI > SHAM. However, Put-induced downregulation of ABA content and upregulation of GSH content under salt stress were effectively blocked by N, N'-dimethylthiourea (DMTU, H2O2 scavenger) and 1-chloro-2,4-dinitrobenzene (CDNB, GSH scavenger) treatments. Taken together, these results suggest that Put induced the formation of H2O2 signaling mediates the degradation of PAs by diamine oxidase (DAO), increasing GSH content and inhibiting the accumulation of ABA in leaves, thereby promoting stomatal opening in salt-stressed cucumber leaves.
Collapse
Affiliation(s)
- Siguang Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinpeng Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mohammad Shah Jahan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shirong Guo
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian, 223800, China
| | - Mimi Tian
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ranran Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongyun Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bingjie Feng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sheng Shu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian, 223800, China.
| |
Collapse
|