1
|
Townsend L, Pillinger T, Selvaggi P, Veronese M, Turkheimer F, Howes O. Brain glucose metabolism in schizophrenia: a systematic review and meta-analysis of 18FDG-PET studies in schizophrenia. Psychol Med 2023; 53:4880-4897. [PMID: 35730361 PMCID: PMC10476075 DOI: 10.1017/s003329172200174x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/16/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Impaired brain metabolism may be central to schizophrenia pathophysiology, but the magnitude and consistency of metabolic dysfunction is unknown. METHODS We searched MEDLINE, PsychINFO and EMBASE between 01/01/1980 and 13/05/2021 for studies comparing regional brain glucose metabolism using 18FDG-PET, in schizophrenia/first-episode psychosis v. controls. Effect sizes (Hedges g) were pooled using a random-effects model. Primary measures were regional absolute and relative CMRGlu in frontal, temporal, parietal and occipital lobes, basal ganglia and thalamus. RESULTS Thirty-six studies (1335 subjects) were included. Frontal absolute glucose metabolism (Hedge's g = -0.74 ± 0.54, p = 0.01; I2 = 67%) and metabolism relative to whole brain (g = -0.44 ± 0.34, p = 0.01; I2 = 55%) were lower in schizophrenia v. controls with moderate heterogeneity. Absolute frontal metabolism was lower in chronic (g = -1.18 ± 0.73) v. first-episode patients (g = -0.09 ± 0.88) and controls. Medicated patients showed frontal hypometabolism relative to controls (-1.04 ± 0.26) while metabolism in drug-free patients did not differ significantly from controls. There were no differences in parietal, temporal or occipital lobe or thalamic metabolism in schizophrenia v. controls. Excluding outliers, absolute basal ganglia metabolism was lower in schizophrenia v. controls (-0.25 ± 0.24, p = 0.049; I2 = 5%). Studies identified reporting voxel-based morphometry measures of absolute 18FDG uptake (eight studies) were also analysed using signed differential mapping analysis, finding lower 18FDG uptake in the left anterior cingulate gyrus (Z = -4.143; p = 0.007) and the left inferior orbital frontal gyrus (Z = -4.239; p = 0.02) in schizophrenia. CONCLUSIONS We report evidence for hypometabolism with large effect sizes in the frontal cortex in schizophrenia without consistent evidence for alterations in other brain regions. Our findings support the hypothesis of hypofrontality in schizophrenia.
Collapse
Affiliation(s)
- Leigh Townsend
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
| | - Toby Pillinger
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Pierluigi Selvaggi
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Oliver Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
2
|
Milczarek MM, Gilani SIA, Lequin MH, Vann SD. Reduced mammillary body volume in individuals with a schizophrenia diagnosis: an analysis of the COBRE data set. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:48. [PMID: 37528127 PMCID: PMC10394056 DOI: 10.1038/s41537-023-00376-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
While the frontal cortices and medial temporal lobe are well associated with schizophrenia, the involvement of wider limbic areas is less clear. The mammillary bodies are important for both complex memory formation and anxiety and are implicated in several neurological disorders that present with memory impairments. However, little is known about their role in schizophrenia. Post-mortem studies have reported a loss of neurons in the mammillary bodies but there are also reports of increased mammillary body volume. The findings from in vivo MRI studies have also been mixed, but studies have typically only involved small sample sizes. To address this, we acquired mammillary body volumes from the open-source COBRE dataset, where we were able to manually measure the mammillary bodies in 72 individuals with a schizophrenia diagnosis and 74 controls. Participant age ranged from 18 to 65. We found the mammillary bodies to be smaller in the patient group, across both hemispheres, after accounting for the effects of total brain volume and gender. Hippocampal volumes, but not subiculum or total grey matter volumes, were also significantly lower in patients. Given the importance of the mammillary bodies for both memory and anxiety, this atrophy could contribute to the symptomology in schizophrenia.
Collapse
Affiliation(s)
- Michal M Milczarek
- School of Psychology, Cardiff University, Tower Building, Cardiff, CF10 3AT, UK
- Neuroscience and Mental Health Innovation Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - Syed Irtiza A Gilani
- School of Psychology, Cardiff University, Tower Building, Cardiff, CF10 3AT, UK
- CUBRIC, School of Psychology, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Maarten H Lequin
- Division Imaging & Oncology, Department of Radiology & Nuclear Medicine, University Medical Center Utrecht & Princess Máxima Center for Pediatric Oncology, 3508 GA, Utrecht, The Netherlands
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Tower Building, Cardiff, CF10 3AT, UK.
- Neuroscience and Mental Health Innovation Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
3
|
Zhou R, He M, Fan J, Li R, Zuo Y, Li B, Gao G, Sun T. The role of hypothalamic endoplasmic reticulum stress in schizophrenia and antipsychotic-induced weight gain: A narrative review. Front Neurosci 2022; 16:947295. [PMID: 36188456 PMCID: PMC9523121 DOI: 10.3389/fnins.2022.947295] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
Schizophrenia (SCZ) is a serious mental illness that affects 1% of people worldwide. SCZ is associated with a higher risk of developing metabolic disorders such as obesity. Antipsychotics are the main treatment for SCZ, but their side effects include significant weight gain/obesity. Despite extensive research, the underlying mechanisms by which SCZ and antipsychotic treatment induce weight gain/obesity remain unclear. Hypothalamic endoplasmic reticulum (ER) stress is one of the most important pathways that modulates inflammation, neuronal function, and energy balance. This review aimed to investigate the role of hypothalamic ER stress in SCZ and antipsychotic-induced weight gain/obesity. Preliminary evidence indicates that SCZ is associated with reduced dopamine D2 receptor (DRD2) signaling, which significantly regulates the ER stress pathway, suggesting the importance of ER stress in SCZ and its related metabolic disorders. Antipsychotics such as olanzapine activate ER stress in hypothalamic neurons. These effects may induce decreased proopiomelanocortin (POMC) processing, increased neuropeptide Y (NPY) and agouti-related protein (AgRP) expression, autophagy, and leptin and insulin resistance, resulting in hyperphagia, decreased energy expenditure, and central inflammation, thereby causing weight gain. By activating ER stress, antipsychotics such as olanzapine activate hypothalamic astrocytes and Toll-like receptor 4 signaling, thereby causing inflammation and weight gain/obesity. Moreover, evidence suggests that antipsychotic-induced ER stress may be related to their antagonistic effects on neurotransmitter receptors such as DRD2 and the histamine H1 receptor. Taken together, ER stress inhibitors could be a potential effective intervention against SCZ and antipsychotic-induced weight gain and inflammation.
Collapse
Affiliation(s)
- Ruqin Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
- *Correspondence: Meng He,
| | - Jun Fan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Ruoxi Li
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Zuo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Benben Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- Guanbin Gao,
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
- Taolei Sun,
| |
Collapse
|
4
|
Wang B, Fiaz M, Hayat Mughal Y, Kiran A, Ullah I, Wisetsri W. Gazing the dusty mirror: Joint effect of narcissism and sadism on workplace incivility via indirect effect of paranoia, antagonism, and emotional intelligence. Front Psychol 2022; 13:944174. [PMID: 35983196 PMCID: PMC9378989 DOI: 10.3389/fpsyg.2022.944174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Workplace productivity is badly affected by many negative factors such as narcissism, and sadism. In addition, paranoia and antagonism play an important role in increasing workplace incivility. Through emotional intelligence, such negative behaviors could be addressed by managers and their junior colleagues. The current study aims to investigate the parallel mediating role of paranoia, antagonism, and emotional intelligence on the relationship between narcissism, sadism, and workplace incivility. A survey approach was used. Primary data was collected in PLS-SEM. The population of the study was all faculty members in higher education institutions in the Khyber Pakhtunkhwa (Pakistan) region. A measurement model and structural model were developed. The measurement model demonstrated that convergent and discriminant validities were established. The structural model's findings revealed that narcissism, antagonism, and emotional intelligence were not mediated between narcissism and workplace incivility. Similarly, emotional intelligence did not play any mediating role between sadism and workplace incivility. This implied that emotional intelligence has no role in decreasing or reducing workplace uncivil behavior.
Collapse
Affiliation(s)
- Bo Wang
- School of Management and Economics, Beijing Institute of Technology, Beijing, China
- Research Centre for Sustainable Development & Intelligent Decision, Beijing Institute of Technology, Beijing, China
| | - Muhammad Fiaz
- Department of Management Science, Qurtuba University of Science and Information Technology, Dera Ismail Khan, Pakistan
| | - Yasir Hayat Mughal
- Department of Health Administration, College of Public Health and Health Informatics, Qassim University, Buraydah, Saudi Arabia
| | - Alina Kiran
- Department of Technology and Management, Universiti Teknikal Malaysia Melaka, Malacca, Malaysia
| | - Irfan Ullah
- School of Management and Economics, Beijing Institute of Technology, Beijing, China
- *Correspondence: Irfan Ullah
| | - Worakamol Wisetsri
- Department of Social Science, Faculty of Applied Arts, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
- Worakamol Wisetsri
| |
Collapse
|
5
|
Caffeine-Induced Acute and Delayed Responses in Cerebral Metabolism of Control and Schizophrenia-Like Wisket Rats. Int J Mol Sci 2022; 23:ijms23158186. [PMID: 35897774 PMCID: PMC9331118 DOI: 10.3390/ijms23158186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 12/04/2022] Open
Abstract
Recently, morphological impairments have been detected in the brain of a triple-hit rat schizophrenia model (Wisket), and delayed depressive effects of caffeine treatment in both control and Wisket animals have also been shown. The aims of this study were to determine the basal and caffeine-induced acute (30 min) and delayed (24 h) changes in the cerebral 18fluorodeoxyglucose (18F-FDG) uptake by positron emission tomography (PET) in control and Wisket rats. No significant differences were identified in the basal whole-brain metabolism between the two groups, and the metabolism was not modified acutely by a single intraperitoneal caffeine (20 mg/kg) injection in either group. However, one day after caffeine administration, significantly enhanced 18F-FDG uptake was detected in the whole brain and the investigated areas (hippocampus, striatum, thalamus, and hypothalamus) in the control group. Although the Wisket animals showed only moderate enhancements in the 18F-FDG uptake, significantly lower brain metabolism was observed in this group than in the caffeine-treated control group. This study highlights that the basal brain metabolism of Wisket animals was similar to control rats, and that was not influenced acutely by single caffeine treatment at the whole-brain level. Nevertheless, the distinct delayed responsiveness to this psychostimulant in Wisket model rats suggests impaired control of the cerebral metabolism.
Collapse
|
6
|
Bralet MC, Mitelman SA, Goodman CR, Lincoln S, Hazlett EA, Buchsbaum MS. Fluorodeoxyglucose positron emission tomography scans in patients with alcohol use disorder. Alcohol Clin Exp Res 2022; 46:994-1010. [PMID: 35451074 DOI: 10.1111/acer.14845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/17/2022] [Accepted: 04/16/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Diminished uptake of fluorodeoxyglucose (FDG) has been observed in patients with alcohol use disorder (AUD) but little statistical contrast of the regional brain deficits has been undertaken. This study examined prefrontal cortex inter-regional Brodmann area differences to delineate patterns associated with behavioral, neurotransmitter, and general toxicity hypotheses of cerebral involvement in AUD. METHODS We obtained data from FDG positron emission tomography (PET) and anatomical magnetic resonance imaging (MRI) for 87 patients with AUD and 41 age- and sex-matched healthy volunteers. Patients were alcohol dependent and had negative breathalyzer tests at the time of imaging. They were assessed with the Beck Depression Inventory, Alcohol Urge Questionnaire, Obsessive Compulsive Drinking Scale, Spielberger State/Trait Anxiety Scale, Buss-Durkee Hostility Inventory, and the Drinker Inventory of Consequences (DrInC). PET images were co-registered to MRI and both voxel × voxel statistical mapping and stereotaxic regions of interest were obtained. RESULTS Compared with healthy volunteers, patients with AUD had lower relative metabolic rates in the frontal, temporal, and parietal lobes, localizable most prominently to the dorsolateral and nearly all orbital prefrontal cortex, superior temporal gyrus, and inferior parietal lobule. In contrast, metabolic rates in the medial orbitofrontal and anterior cingulate cortex, and the subcortical structures (thalamus, cerebellum, ventral striatum, and the dorsal raphe nucleus) in patients were significantly greater. The severity of alcohol-related consequences as assessed by the DrInC scale was most highly associated with lower metabolism in the caudate, dorsolateral prefrontal, frontopolar, and anteroposterior cingulate cortex. CONCLUSIONS Despite widespread metabolic abnormalities, decreases in AUD were most marked in frontal executive areas, consistent with diminished impulse control, and increases were most prominent in the striatum and cingulate areas, consistent with a suppressed reward system.
Collapse
Affiliation(s)
- Marie-Cécile Bralet
- Crisalid Unit (FJ5), CHI Clermont de l'Oise, Clermont, France.,Inserm Unit U669, Maison de Solenn, Universities Paris, Paris, France.,GDR 3557 Recherche Psychiatrie, Paris, France
| | - Serge A Mitelman
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, Elmhurst, New York, USA
| | - Chelain R Goodman
- Department of Radiation Oncology, Division of Radiation Oncology, University of Texas, Austin, Texas, USA
| | - Samantha Lincoln
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Erin A Hazlett
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VAMC, Bronx, New York, USA
| | - Monte S Buchsbaum
- Departments of Psychiatry and Radiology, University of California, San Diego, San Diego, California, USA.,Departments of Psychiatry and Radiology, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
7
|
Buchsbaum MS, Mitelman SA, Christian BT, Merrill BM, Buchsbaum BR, Mitelman D, Mukherjee J, Lehrer DS. Four-modality imaging of unmedicated subjects with schizophrenia: 18F-fluorodeoxyglucose and 18F-fallypride PET, diffusion tensor imaging, and MRI. Psychiatry Res Neuroimaging 2022; 320:111428. [PMID: 34954446 DOI: 10.1016/j.pscychresns.2021.111428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022]
Abstract
Diminished prefrontal function, dopaminergic abnormalities in the striatum and thalamus, reductions in white matter integrity and frontotemporal gray matter deficits are the most replicated findings in schizophrenia. We used four imaging modalities (18F-fluorodeoxyglucose and 18F-fallypride PET, diffusion tensor imaging, structural MRI) in 19 healthy and 25 schizophrenia subjects to assess the relationship between functional (dopamine D2/D3 receptor binding potential, glucose metabolic rate) and structural (fractional anisotropy, MRI) correlates of schizophrenia and their additive diagnostic prediction potential. Multivariate ANOVA was used to compare structural and functional image sets for identification of schizophrenia. Integration of data from all four modalities yielded better predictive power than less inclusive combinations, specifically in the thalamus, left dorsolateral prefrontal and temporal regions. Among the modalities, fractional anisotropy showed highest discrimination in white matter whereas 18F-fallypride binding showed highest discrimination in gray matter. Structural and functional modalities displayed comparable discriminative power but different topography, with higher sensitivity of structural modalities in the left prefrontal region. Combination of functional and structural imaging modalities with inclusion of both gray and white matter appears most effective in diagnostic discrimination. The highest sensitivity of 18F-fallypride PET to gray matter changes in schizophrenia supports the primacy of dopaminergic abnormalities in its pathophysiology.
Collapse
Affiliation(s)
- Monte S Buchsbaum
- Departments of Psychiatry and Radiology, University of California, Irvine and San Diego, 11388 Sorrento Valley Road, San Diego, CA 92121, United States
| | - Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY 11373, United States.
| | - Bradley T Christian
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, 1500 Highland Avenue, Room T231, Madison, WI 53705, United States
| | - Brian M Merrill
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH 45408, United States
| | - Bradley R Buchsbaum
- The Rotman Research Institute, Baycrest Centre for Geriatric Care and Department of Psychiatry, University of Toronto, 3560 Bathurst St., Toronto, Ontario, Canada, M6A 2E1
| | - Danielle Mitelman
- The Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, 75 Dekalb Avenue, Brooklyn, NY 11201, United States
| | - Jogeshwar Mukherjee
- Department of Radiological Sciences, Preclinical Imaging, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Douglas S Lehrer
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH 45408, United States
| |
Collapse
|
8
|
Mitelman SA, Buchsbaum MS, Vyas NS, Christian BT, Merrill BM, Buchsbaum BR, Mitelman AM, Mukherjee J, Lehrer DS. Reading abilities and dopamine D 2/D 3 receptor availability: An inverted U-shaped association in subjects with schizophrenia. BRAIN AND LANGUAGE 2021; 223:105046. [PMID: 34763166 DOI: 10.1016/j.bandl.2021.105046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Reading impairments are prominent trait-like features of cognitive deficits in schizophrenia, predictive of overall cognitive functioning and presumably linked to dopaminergic abnormalities. To evaluate this, we used 18F-fallypride PET in 19 healthy and 21 antipsychotic-naïve schizophrenia subjects and correlated dopamine receptor binding potentials in relevant AFNI-derived regions and voxelwise with group performance on WRAT4 single-word reading subtest. Healthy subjects' scores were positively and linearly associated with D2/D3 receptor availability in the rectus, orbital and superior frontal gyri, fusiform and middle temporal gyri, as well as middle occipital gyrus and precuneus, all predominantly in the left hemisphere and previously implicated in reading, hence suggesting that higher dopamine receptor density is cognitively advantageous. This relationship was weakened in schizophrenia subjects and in contrast to healthy participants followed an inverted U-shaped curve both in the cortex and dorsal striatum, indicating restricted optimal range of dopamine D2/D3 receptor availability for cognitive performance in schizophrenia.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, Elmhurst, NY, USA.
| | - Monte S Buchsbaum
- Departments of Psychiatry and Radiology, University of California San Diego, San Diego, USA; Department of Psychiatry and Human Behavior, University of California Irvine School of Medicine, Orange, CA, USA
| | - Nora S Vyas
- Kingston University London, Department of Psychology, Kingston upon Thames, Surrey, UK; Imperial College Healthcare NHS Trust, Charing Cross Hospital, Department of Nuclear Medicine, London, UK
| | - Bradley T Christian
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian M Merrill
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Bradley R Buchsbaum
- The Rotman Research Institute, Baycrest Centre for Geriatric Care and Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | | | - Jogeshwar Mukherjee
- Department of Radiological Sciences, Preclinical Imaging, University of California, Irvine School of Medicine, USA
| | - Douglas S Lehrer
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
9
|
Evidence That Methylphenidate Treatment Evokes Anxiety-Like Behavior Through Glucose Hypometabolism and Disruption of the Orbitofrontal Cortex Metabolic Networks. Neurotox Res 2021; 39:1830-1845. [PMID: 34797528 DOI: 10.1007/s12640-021-00444-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Methylphenidate (MPH) has been widely misused by children and adolescents who do not meet all diagnostic criteria for attention-deficit/hyperactivity disorder without a consensus about the consequences. Here, we evaluate the effect of MPH treatment on glucose metabolism and metabolic network in the rat brain, as well as on performance in behavioral tests. Wistar male rats received intraperitoneal injections of MPH (2.0 mg/kg) or an equivalent volume of 0.9% saline solution (controls), once a day, from the 15th to the 44th postnatal day. Fluorodeoxyglucose-18 was used to investigate cerebral metabolism, and a cross-correlation matrix was used to examine the brain metabolic network in MPH-treated rats using micro-positron emission tomography imaging. Performance in the light-dark transition box, eating-related depression, and sucrose preference tests was also evaluated. While MPH provoked glucose hypermetabolism in the auditory, parietal, retrosplenial, somatosensory, and visual cortices, hypometabolism was identified in the left orbitofrontal cortex. MPH-treated rats show a brain metabolic network more efficient and connected, but careful analyses reveal that the MPH interrupts the communication of the orbitofrontal cortex with other brain areas. Anxiety-like behavior was also observed in MPH-treated rats. This study shows that glucose metabolism evaluated by micro-positron emission tomography in the brain can be affected by MPH in different ways according to the region of the brain studied. It may be related, at least in part, to a rewiring in the brain the metabolic network and behavioral changes observed, representing an important step in exploring the mechanisms and consequences of MPH treatment.
Collapse
|
10
|
Cui LB, Zhang YJ, Lu HL, Liu L, Zhang HJ, Fu YF, Wu XS, Xu YQ, Li XS, Qiao YT, Qin W, Yin H, Cao F. Thalamus Radiomics-Based Disease Identification and Prediction of Early Treatment Response for Schizophrenia. Front Neurosci 2021; 15:682777. [PMID: 34290581 PMCID: PMC8289251 DOI: 10.3389/fnins.2021.682777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Background Emerging evidence suggests structural and functional disruptions of the thalamus in schizophrenia, but whether thalamus abnormalities are able to be used for disease identification and prediction of early treatment response in schizophrenia remains to be determined. This study aims at developing and validating a method of disease identification and prediction of treatment response by multi-dimensional thalamic features derived from magnetic resonance imaging in schizophrenia patients using radiomics approaches. Methods A total of 390 subjects, including patients with schizophrenia and healthy controls, participated in this study, among which 109 out of 191 patients had clinical characteristics of early outcome (61 responders and 48 non-responders). Thalamus-based radiomics features were extracted and selected. The diagnostic and predictive capacity of multi-dimensional thalamic features was evaluated using radiomics approach. Results Using radiomics features, the classifier accurately discriminated patients from healthy controls, with an accuracy of 68%. The features were further confirmed in prediction and random forest of treatment response, with an accuracy of 75%. Conclusion Our study demonstrates a radiomics approach by multiple thalamic features to identify schizophrenia and predict early treatment response. Thalamus-based classification could be promising to apply in schizophrenia definition and treatment selection.
Collapse
Affiliation(s)
- Long-Biao Cui
- The Second Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
| | - Ya-Juan Zhang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Hong-Liang Lu
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Lin Liu
- School of Life Sciences and Technology, Xidian University, Xi'an, China.,Peking University Sixth Hospital/Institute of Mental Health and Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Hai-Jun Zhang
- Department of Clinical Aerospace Medicine, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Yu-Fei Fu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xu-Sha Wu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yong-Qiang Xu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiao-Sa Li
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Ting Qiao
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Qin
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Feng Cao
- The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Kaushik R, Lipachev N, Matuszko G, Kochneva A, Dvoeglazova A, Becker A, Paveliev M, Dityatev A. Fine structure analysis of perineuronal nets in the ketamine model of schizophrenia. Eur J Neurosci 2020; 53:3988-4004. [PMID: 32510674 DOI: 10.1111/ejn.14853] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/12/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022]
Abstract
Perineuronal nets (PNNs) represent a highly condensed specialized form of brain extracellular matrix (ECM) enwrapping mostly parvalbumin-positive interneurons in the brain in a mesh-like fashion. PNNs not only regulate the onset and completion of the critical period during postnatal brain development, control cell excitability, and synaptic transmission but are also implicated in several brain disorders including schizophrenia. Holes in the perineuronal nets, harboring the synaptic contacts, along with hole-surrounding ECM barrier can be viewed as PNN compartmentalization units that might determine the properties of synapses and heterosynaptic communication. In this study, we developed a novel open-source script for Fiji (ImageJ) to semi-automatically quantify structural alterations of PNNs such as the number of PNN units, area, mean intensity of PNN marker expression in 2D and 3D, shape parameters of PNN units in the ketamine-treated Sprague-Dawley rat model of schizophrenia using high-resolution confocal microscopic images. We discovered that the mean intensity of ECM within PNN units is inversely correlated with the area and the perimeter of the PNN holes. The intensity, size, and shape of PNN units proved to be three major principal factors to describe their variability. Ketamine-treated rats had more numerous but smaller and less circular PNN units than control rats. These parameters allowed to correctly classify individual PNNs as derived from control or ketamine-treated groups with ≈85% reliability. Thus, the proposed multidimensional analysis of PNN units provided a robust and comprehensive morphometric fingerprinting of fine ECM structure abnormalities in the experimental model of schizophrenia.
Collapse
Affiliation(s)
- Rahul Kaushik
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Nikita Lipachev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Physics, Kazan Federal University, Kazan, Russia
| | - Gabriela Matuszko
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Anastasia Kochneva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Anastasia Dvoeglazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Axel Becker
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Mikhail Paveliev
- Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Alexander Dityatev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
12
|
Mitelman SA, Buchsbaum MS, Christian BT, Merrill BM, Adineh M, DeCastro A, Buchsbaum BR, Lehrer DS. Relationship between white matter glucose metabolism and fractional anisotropy in healthy and schizophrenia subjects. Psychiatry Res Neuroimaging 2020; 299:111060. [PMID: 32135405 DOI: 10.1016/j.pscychresns.2020.111060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/15/2020] [Accepted: 02/21/2020] [Indexed: 01/05/2023]
Abstract
Decreased fractional anisotropy and increased glucose utilization in the white matter have been reported in schizophrenia. These findings may be indicative of an inverse relationship between these measures of white matter integrity and metabolism. We used 18F-fluorodeoxyglucose positron emission tomography and diffusion-tensor imaging in 19 healthy and 25 schizophrenia subjects to assess and compare coterritorial correlation patterns between glucose utilization and fractional anisotropy on a voxel-by-voxel basis and across a range of automatically placed representative white matter regions of interest. We found a pattern of predominantly negative correlations between white matter metabolism and fractional anisotropy in both healthy and schizophrenia subjects. The overall strength of the relationship was attenuated in subjects with schizophrenia, who displayed significantly fewer and weaker correlations in all regions assessed with the exception of the corpus callosum. This attenuation was most prominent in the left prefrontal white matter and this region also best predicted the diagnosis of schizophrenia. There exists an inverse relationship between the measures of white matter integrity and metabolism, which may therefore be physiologically linked. In subjects with schizophrenia, hypermetabolism in the white matter may be a function of lower white matter integrity, with lower efficiency and increased energetic cost of task-related computations.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY 11373, United States.
| | - Monte S Buchsbaum
- NeuroPET Center, Departments of Psychiatry and Radiology, University of California, San Diego, 11388 Sorrento Valley Road, San Diego, CA 92121, United States
| | - Bradley T Christian
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, 1500 Highland Avenue, Room T231, Madison, WI 53705, United States
| | - Brian M Merrill
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH 45408, United States
| | - Mehdi Adineh
- Wallace-Kettering Neuroscience Institute, Kettering Medical Center, Kettering, OH 45429
| | - Alex DeCastro
- NeuroPET Center, Departments of Psychiatry and Radiology, University of California, San Diego, 11388 Sorrento Valley Road, San Diego, CA 92121, United States
| | - Bradley R Buchsbaum
- The Rotman Research Institute, Baycrest Centre for Geriatric Care and Department of Psychiatry, University of Toronto, 3560 Bathurst St., Toronto, Ontario, Canada, M6A 2E1
| | - Douglas S Lehrer
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH 45408, United States
| |
Collapse
|
13
|
Tomasella E, Falasco G, Urrutia L, Bechelli L, Padilla L, Gelman DM. Impaired brain glucose metabolism and presynaptic dopaminergic functioning in a mouse model of schizophrenia. EJNMMI Res 2020; 10:39. [PMID: 32303857 PMCID: PMC7165233 DOI: 10.1186/s13550-020-00629-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background Schizophrenia is a disease diagnosed by visible signs and symptoms from late adolescence to early adulthood. The etiology of this disease remains unknown. An objective diagnostic approach is required. Here, we used a mouse model that shows schizophrenia-like phenotypes to study brain glucose metabolism and presynaptic dopaminergic functioning by positron emission tomography (PET) and immunohistochemistry. PET scannings were performed on mice after the administration of [18F]-FDG or [18F]-F-DOPA. Glucose metabolism was evaluated in basal conditions and after the induction of a hyperdopaminergic state. Results Mutant animals show reduced glucose metabolism in prefrontal cortex, amygdala, and nucleus reuniens under the hyperdopaminergic state. They also show reduced [18F]-F-DOPA uptake in prefrontal cortex, substantia nigra reticulata, raphe nucleus, and ventral striatum but increased [18F]-F-DOPA uptake in dorsal striatum. Mutant animals also show reduced tyrosine hydroxylase expression on midbrain neurons. Conclusions Dopamine D2 mutant animals show reduced glucose metabolism and impaired presynaptic dopaminergic functioning, in line with reports from human studies. This mouse line may be a valuable model of schizophrenia, useful to test novel tracers for PET scanning diagnostic.
Collapse
Affiliation(s)
- Eugenia Tomasella
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, C1428ADN, Ciudad de Buenos Aires, Argentina
| | - German Falasco
- Fleni, Centro de Imágenes Moleculares (CIM), Laboratorio de Imágenes Preclínicas, Buenos Aires, Argentina
| | - Leandro Urrutia
- Fleni, Centro de Imágenes Moleculares (CIM), Laboratorio de Imágenes Preclínicas, Buenos Aires, Argentina
| | - Lucila Bechelli
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, C1428ADN, Ciudad de Buenos Aires, Argentina
| | - Lucia Padilla
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, C1428ADN, Ciudad de Buenos Aires, Argentina
| | - Diego M Gelman
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, C1428ADN, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|