1
|
de Paula AC, Uliana F, da Silva Filho EA, Luz PP. Nail Polishes: A Review on Composition, Presence of Toxic Components, and Inadequate Labeling. Dermatol Res Pract 2025; 2025:6330337. [PMID: 40224916 PMCID: PMC11991789 DOI: 10.1155/drp/6330337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/20/2025] [Indexed: 04/15/2025] Open
Abstract
Nail polishes were developed in 1920, and since 1940, it has been known that these cosmetics contain toxic and sensitizing components. Over the years, nail polishes have undergone several changes in their formulation to avoid this problem, but new components have also been considered toxic and allergenic. The growing demand for gel nails has also been highlighted in cases of allergy to (meth)acrylates, and the biggest concern that was previously related to the presence of toluene sulfonamide-formaldehyde resin (TSFR) in traditional nail polish formulations is now also part of (meth)acrylate-based cosmetics. The beautification caused by nail polish is the main factor behind its constant use throughout the world, but studies have demonstrated its use for other purposes, such as treating fungal diseases, sun protection factor in cancer patients, and as a possible ally in forensic area. This review brings the beginning of the discovery of nail polish and its trajectory to the present day, including its effects on health and its inadequate labeling. Therefore, it is extremely important that legislation monitors the composition of nail cosmetics and that new formulations are studied to make them safe for health and the environment.
Collapse
Affiliation(s)
- Aislana Cole de Paula
- Department of Chemistry, Federal University of Espírito Santo, Vitoria, Espírito Santo, Brazil
| | - Fabrício Uliana
- Department of Chemistry, Federal University of Espírito Santo, Vitoria, Espírito Santo, Brazil
| | | | - Priscilla Paiva Luz
- Department of Chemistry, Federal University of Espírito Santo, Vitoria, Espírito Santo, Brazil
| |
Collapse
|
2
|
Wu S, Guo W, Li B, Zhou H, Meng H, Sun J, Li R, Guo D, Zhang X, Li R, Qu W. Progress of polymer-based strategies in fungal disease management: Designed for different roles. Front Cell Infect Microbiol 2023; 13:1142029. [PMID: 37033476 PMCID: PMC10073610 DOI: 10.3389/fcimb.2023.1142029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
Fungal diseases have posed a great challenge to global health, but have fewer solutions compared to bacterial and viral infections. Development and application of new treatment modalities for fungi are limited by their inherent essential properties as eukaryotes. The microorganism identification and drug sensitivity analyze are limited by their proliferation rates. Moreover, there are currently no vaccines for prevention. Polymer science and related interdisciplinary technologies have revolutionized the field of fungal disease management. To date, numerous advanced polymer-based systems have been developed for management of fungal diseases, including prevention, diagnosis, treatment and monitoring. In this review, we provide an overview of current needs and advances in polymer-based strategies against fungal diseases. We high light various treatment modalities. Delivery systems of antifungal drugs, systems based on polymers' innate antifungal activities, and photodynamic therapies each follow their own mechanisms and unique design clues. We also discuss various prevention strategies including immunization and antifungal medical devices, and further describe point-of-care testing platforms as futuristic diagnostic and monitoring tools. The broad application of polymer-based strategies for both public and personal health management is prospected and integrated systems have become a promising direction. However, there is a gap between experimental studies and clinical translation. In future, well-designed in vivo trials should be conducted to reveal the underlying mechanisms and explore the efficacy as well as biosafety of polymer-based products.
Collapse
Affiliation(s)
- Siyu Wu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Bo Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Huidong Zhou
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hongqi Meng
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Junyi Sun
- Changchun American International School, Changchun, China
| | - Ruiyan Li
- Orthpoeadic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, China
| | - Deming Guo
- Orthpoeadic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, China
| | - Xi Zhang
- Department of Burn Surgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Xi Zhang, ; Rui Li, ; Wenrui Qu,
| | - Rui Li
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Xi Zhang, ; Rui Li, ; Wenrui Qu,
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Xi Zhang, ; Rui Li, ; Wenrui Qu,
| |
Collapse
|
3
|
Agrawal V, Patel R, Patel M. Design, characterization, and evaluation of efinaconazole loaded poly(D, L-lactide-co-glycolide) nanocapsules for targeted treatment of onychomycosis. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
4
|
Dehari D, Mehata AK, Priya V, Parbat D, Kumar D, Srivastava AK, Singh S, Agrawal AK. Luliconazole Nail Lacquer for the Treatment of Onychomycosis: Formulation, Characterization and In Vitro and Ex Vivo Evaluation. AAPS PharmSciTech 2022; 23:175. [PMID: 35750993 DOI: 10.1208/s12249-022-02324-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Onychomycosis is the most common fungal infection of the nail affecting the skin under the fingertips and the toes. Currently, available therapy for onychomycosis includes oral and topical therapies, either alone or in combination. Oral antifungal medication has been associated with poor drug bioavailability and potential gastrointestinal and systemic side effects. The objective of this study was to prepare and evaluate the luliconazole nail lacquer (LCZ-NL) for the effective treatment of onychomycosis. In the current work, LCZ-NL was formulated in combination with penetration enhancers to overcome poor penetration. A 32 full factorial formulation design of experiment (DOE) was applied for optimization of batches with consideration of dependent (drying time, viscosity, and rate of drug diffusion) and independent (solvent ratio and film former ratio) variables. The optimized formulation was selected based on drying time, viscosity, and rate of drug diffusion. The optimized formulation was further evaluated for % non-volatile content assay, smoothness of flow, water resistance, drug content, scanning electron microscope (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), in vitro drug release, ex vivo transungual permeation, antifungal efficacy, and stability study. The optimized LCZ-NL contained 70:30 solvent ratio and 1:1 film former ratio and was found to have ~ 1.79-fold higher rate of drug diffusion in comparison with LULY™. DSC and XRD studies confirmed that luliconazole retains its crystalline property in the prepared formulation. Antifungal study against Trichophyton spp. showed that LCZ-NL has comparatively higher growth inhibition than LULY™. Hence, developed LCZ-NL can be a promising topical drug delivery system for treating onychomycosis.
Collapse
Affiliation(s)
- Deepa Dehari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Dharmnath Parbat
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Deepak Kumar
- Department of Microbiology, Institute of Medical Sciences (BHU), Varanasi, 221005, India
| | - Anand Kumar Srivastava
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| | - Sanjay Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.,Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
5
|
Yang F, Yu X, Shao W, Guo P, Cao S, Wang M, Wang Y, Wu C, Xu Y. Co-delivery of terbinafine hydrochloride and urea with an in situ film-forming system for nail targeting treatment. Int J Pharm 2020; 585:119497. [PMID: 32504773 DOI: 10.1016/j.ijpharm.2020.119497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/20/2020] [Accepted: 05/31/2020] [Indexed: 10/24/2022]
Abstract
Onychomycosis is a chronic nail disorder consisting of a fungal infection that causes physical and psychosocial discomfort to patients. However, its treatment remains challenging owing to the barrier of the highly keratinized nail plate and the short time that conventional formulations reside on nails. In this work, we developed an in situ film-forming system(IFFS) based on Eudragit® RLPO to co-deliver terbinafine hydrochloride (TBH) and urea, i.e., TBH-urea-RLPO IFFS, with the aim of overcoming the nail barrier, prolonging the residence time, and efficiently treating onychomycosis. The IFFS formulation formed a thin film with good appearance and adhesion upon application in situ. The physical states of TBH and urea in the film were evaluated with polarization microscopy and powder X-ray diffraction. TBH and urea were both amorphousmiscible components within the RLPO film. TBH release from TBH-urea-RLPO IFFS fitted to the Korsmeyer-Pappas model, and the cumulative release at 72 h was significantly higher than that from commercial preparations (Lamisil Pedisan® once). In vitro permeation of TBH from TBH-urea-RLPO IFFS through bovine hoof membranes was evaluated in comparison with the film containing TBH alone (TBH-RLPO) and commercial preparations. The retention and cumulative permeated amount of TBH were significantly enhanced for the TBH-urea-RLPO IFFS (170.80 ± 44.63 μg/cm2vs 75.49 ± 21.50 μg/cm2vs 60.25 ± 27.38 μg/cm2; 61.81 ± 16.09 μg/cm2vs 21.80 ± 11.56 μg/cm2vs 7.91 ± 1.03 μg/cm2, respectively), and the membranes treated with different formulations were observed with SEM and FTIR to identify the denaturing effect of urea on bovine hoof keratin. In vitro antifungal tests against Trichophyton rubrum,Microsporum canis, Fusarium, and Aspergillus fumigatus were cultured on Muller-Hinton agar; the findings indicated that TBH-urea-RLPO IFFS enhanced TBH antifungal activity. Overall, the results support that TBH-urea-RLPO IFFS is an efficient and promising approach for onychomycosis targeting treatment.
Collapse
Affiliation(s)
- Fengdie Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiuming Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Weiyan Shao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Penghao Guo
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Sisi Cao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Meng Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yixuan Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuehong Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Erdogan FG, Yıldırım D, Çakır Akay GA. Onychomycosis Unresponsive to Antifungals: Etiology and Treatment with a New Direct Technique. Indian J Dermatol 2020; 64:476-481. [PMID: 31896847 PMCID: PMC6862374 DOI: 10.4103/ijd.ijd_453_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aims and Objectives: The aim of this study was to identify the fungal agents causing onychomycosis that were unresponsive to antifungal treatment and to treat these cases by placing under-nail cushions with a mild keratolytic to clear the fungus-invaded tissue. Materials and Methods: Fungal agents were identified by the matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) technique. Results: Nine patients had Aspergillus spp. (7 Aspergillus niger, 2 Aspergillus flavus); four had Candida species and one had Trichophyton rubrum. All patients were free of infection at the end of treatment. Conclusion: As per the results, we may state that onychomycosis that is unresponsive to treatment in immunocompetent patients seems to be mostly associated with molds. Direct application of a mild keratolytic to the fungus-invaded part, e.g., the nail plate and/or nail bed and removal of fungal elements may provide a successful treatment outcome.
Collapse
|
7
|
Dhamoon RK, Goyal RK, Popli H, Gupta M. Luliconazole-Loaded Thermosensitive Hydrogel as Aqueous based Nail Lacquer for the Treatment of Onychomycosis. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/2210303109666190520081552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Onychomycosis is a nail fungal infection which accounts for 50% of the nail
diseases and is characterized by disfigurement and discoloration of nails. The current therapy includes
oral and topical formulations both of which come with their own drawbacks. This has left a room for
developing patient- compliant novel strategies which can facilitate drug delivery deeper into the nails
effectively.
Objective:
The main objective of the present work was to develop and evaluate in situ gelling thermosensitive
hydrogel as an aqueous nail lacquer for the treatment of onychomycosis. The idea was to
enhance permeation of Luliconazole into the nail while simultaneously solubilizing it in a hydrophilic
formulation.
Methods:
The sample of Luliconazole was authenticated using modern analytical techniques. The hydrogel-
nail lacquer was prepared using poloxamer Pluronic F127. The formulation was evaluated in
terms of drying time, viscosity, non- volatile content, pH, transition temperature, etc. In vitro study was
done to check the drug release while determining release kinetics. In vitro transungual permeation study
was done to check drug permeation through porcine hoof membrane. Stability studies were conducted
to ensure formulation stability.
Results:
The results confirmed a stable formulation with enhanced permeation through porcine hoof
membrane.
Conclusion:
The results support the potential use of in situ gelling thermo-sensitive hydrogels as a
novel transungual formulation in the treatment of onychomycosis with a slight improvement in water
resistance.
Collapse
Affiliation(s)
- Rupinder K. Dhamoon
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp vihar, Sector-3, M.B Road, New Delhi -110017, India
| | - Ramesh K. Goyal
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp vihar, Sector-3, M.B Road, New Delhi -110017, India
| | - Harvinder Popli
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp vihar, Sector-3, M.B Road, New Delhi -110017, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp vihar, Sector-3, M.B Road, New Delhi -110017, India
| |
Collapse
|
8
|
Yu Y, Cui H, Zhang D, Liang B, Chai Y, Wen G. Human nail bed‐derived decellularized scaffold regulates mesenchymal stem cells for nail plate regeneration. J Tissue Eng Regen Med 2019; 13:1770-1778. [PMID: 31278843 DOI: 10.1002/term.2927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/01/2019] [Accepted: 06/19/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Yaling Yu
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Haomin Cui
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Demin Zhang
- Zhejiang Province's Key Laboratory of 3D Printing and EquipmentZhejiang University Hangzhou China
| | - Bo Liang
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Yimin Chai
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Gen Wen
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| |
Collapse
|