1
|
Chaudhary R, Rehman M, Agarwal V, Kumar A, Kaushik AS, Srivastava S, Srivastava S, Verma R, Rajinikanth PS, Mishra V. Terra incognita of glial cell dynamics in the etiology of leukodystrophies: Broadening disease and therapeutic perspectives. Life Sci 2024; 354:122953. [PMID: 39122110 DOI: 10.1016/j.lfs.2024.122953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Neuroglial cells, also known as glia, are primarily characterized as auxiliary cells within the central nervous system (CNS). The recent findings have shed light on their significance in numerous physiological processes and their involvement in various neurological disorders. Leukodystrophies encompass an array of rare and hereditary neurodegenerative conditions that were initially characterized by the deficiency, aberration, or degradation of myelin sheath within CNS. The primary cellular populations that experience significant alterations are astrocytes, oligodendrocytes and microglia. These glial cells are either structurally or metabolically impaired due to inherent cellular dysfunction. Alternatively, they may fall victim to the accumulation of harmful by-products resulting from metabolic disturbances. In either situation, the possible replacement of glial cells through the utilization of implanted tissue or stem cell-derived human neural or glial progenitor cells hold great promise as a therapeutic strategy for both the restoration of structural integrity through remyelination and the amelioration of metabolic deficiencies. Various emerging treatment strategies like stem cell therapy, ex-vivo gene therapy, infusion of adeno-associated virus vectors, emerging RNA-based therapies as well as long-term therapies have demonstrated success in pre-clinical studies and show promise for rapid clinical translation. Here, we addressed various leukodystrophies in a comprehensive and detailed manner as well as provide prospective therapeutic interventions that are being considered for clinical trials. Further, we aim to emphasize the crucial role of different glial cells in the pathogenesis of leukodystrophies. By doing so, we hope to advance our understanding of the disease, elucidate underlying mechanisms, and facilitate the development of potential treatment interventions.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rajkumar Verma
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
2
|
Hegeman CV, de Jong OG, Lorenowicz MJ. A kaleidoscopic view of extracellular vesicles in lysosomal storage disorders. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:393-421. [PMID: 39697359 PMCID: PMC11651879 DOI: 10.20517/evcna.2022.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of stable lipid membrane particles that play a critical role in the regulation of numerous physiological and pathological processes. EV cargo, which includes lipids, proteins, and RNAs including miRNAs, is affected by the metabolic status of the parental cell. Concordantly, abnormalities in the autophagic-endolysosomal pathway, as seen in lysosomal storage disorders (LSDs), can affect EV release as well as EV cargo. LSDs are a group of over 70 inheritable diseases, characterized by lysosomal dysfunction and gradual accumulation of undigested molecules. LSDs are caused by single gene mutations that lead to a deficiency of a lysosomal protein or lipid. Lysosomal dysfunction sets off a cascade of alterations in the endolysosomal pathway that can affect autophagy and alter calcium homeostasis, leading to energy imbalance, oxidative stress, and apoptosis. The pathophysiology of these diseases is very heterogenous, complex, and currently incompletely understood. LSDs lead to progressive multisystemic symptoms that often include neurological deficits. In this review, a kaleidoscopic overview will be given on the roles of EVs in LSDs, from their contribution to pathology and diagnostics to their role as drug delivery vehicles. Furthermore, EV cargo and surface engineering strategies will be discussed to show the potential of EVs in future LSD treatment, both in the context of enzyme replacement therapy, as well as future gene editing strategies like CRISPR/Cas. The use of engineered EVs as drug delivery vehicles may mask therapeutic cargo from the immune system and protect it from degradation, improving circulation time and targeted delivery.
Collapse
Affiliation(s)
- Charlotte V. Hegeman
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Olivier G. de Jong
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
- Authors contributed equally
| | - Magdalena J. Lorenowicz
- Regenerative Medicine Center, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
- Biomedical Primate Research Centre, Lange Kleinweg 161, Rijswijk 2288 GJ, The Netherlands
- Authors contributed equally
| |
Collapse
|
3
|
Fachel FNS, Frâncio L, Poletto É, Schuh RS, Teixeira HF, Giugliani R, Baldo G, Matte U. Gene editing strategies to treat lysosomal disorders: The example of mucopolysaccharidoses. Adv Drug Deliv Rev 2022; 191:114616. [PMID: 36356930 DOI: 10.1016/j.addr.2022.114616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 09/20/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Lysosomal storage disorders are a group of progressive multisystemic hereditary diseases with a combined incidence of 1:4,800. Here we review the clinical and molecular characteristics of these diseases, with a special focus on Mucopolysaccharidoses, caused primarily by the lysosomal storage of glycosaminoglycans. Different gene editing techniques can be used to ameliorate their symptoms, using both viral and nonviral delivery methods. Whereas these are still being tested in animal models, early results of phase I/II clinical trials of gene therapy show how this technology may impact the future treatment of these diseases. Hurdles related to specific hard-to-reach organs, such as the central nervous system, heart, joints, and the eye must be tackled. Finally, the regulatory framework necessary to advance into clinical practice is also discussed.
Collapse
Affiliation(s)
- Flávia Nathiely Silveira Fachel
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Lariane Frâncio
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil
| | - Édina Poletto
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Roselena Silvestri Schuh
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Helder Ferreira Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Roberto Giugliani
- Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Departamento de Genética, UFRGS, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil; Departamento de Fisiologia, UFRGS, Porto Alegre, RS, Brazil
| | - Ursula Matte
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil; Departamento de Genética, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Tomsen-Melero J, Merlo-Mas J, Carreño A, Sala S, Córdoba A, Veciana J, González-Mira E, Ventosa N. Liposomal formulations for treating lysosomal storage disorders. Adv Drug Deliv Rev 2022; 190:114531. [PMID: 36089182 DOI: 10.1016/j.addr.2022.114531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/13/2022] [Accepted: 09/04/2022] [Indexed: 01/24/2023]
Abstract
Lysosomal storage disorders (LSD) are a group of rare life-threatening diseases caused by a lysosomal dysfunction, usually due to the lack of a single enzyme required for the metabolism of macromolecules, which leads to a lysosomal accumulation of specific substrates, resulting in severe disease manifestations and early death. There is currently no definitive cure for LSD, and despite the approval of certain therapies, their effectiveness is limited. Therefore, an appropriate nanocarrier could help improve the efficacy of some of these therapies. Liposomes show excellent properties as drug carriers, because they can entrap active therapeutic compounds offering protection, biocompatibility, and selectivity. Here, we discuss the potential of liposomes for LSD treatment and conduct a detailed analysis of promising liposomal formulations still in the preclinical development stage from various perspectives, including treatment strategy, manufacturing, characterization, and future directions for implementing liposomal formulations for LSD.
Collapse
Affiliation(s)
- Judit Tomsen-Melero
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain; Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | | | - Aida Carreño
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain; Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Santi Sala
- Nanomol Technologies SL, 08193 Cerdanyola del Vallès, Spain
| | - Alba Córdoba
- Nanomol Technologies SL, 08193 Cerdanyola del Vallès, Spain
| | - Jaume Veciana
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain; Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Elisabet González-Mira
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain; Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Nora Ventosa
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain; Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| |
Collapse
|
5
|
Hurdles in treating Hurler disease: potential routes to achieve a "real" cure. Blood Adv 2021; 4:2837-2849. [PMID: 32574368 DOI: 10.1182/bloodadvances.2020001708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Mucopolysaccharidoses (MPSs) are multiorgan devastating diseases for which hematopoietic cell transplantation (HCT) and, to a lesser extent, enzyme replacement therapy have substantially altered the course of the disease. Furthermore, they have resulted in increased overall survival, especially for Hurler disease (MPS-1). However, despite the identification of clinical predictors and harmonized transplantation protocols, disease progression still poses a significant burden to patients, although at a slower pace. To design better therapies, we need to understand why and where current therapies fail. In this review, we discuss important aspects of the underlying disease and the disease progression. We note that the majority of progressive symptoms that occur in "hard-to-treat" tissues are actually tissues that are difficult to reach, such as avascular connective tissue or tissues isolated from the circulation by a specific barrier (eg, blood-brain barrier, blood-retina barrier). Although easily reached tissues are effectively cured by HCT, disease progression is observed in these "hard-to-reach" tissues. We used these insights to critically appraise ongoing experimental endeavors with regard to their potential to overcome the encountered hurdles and improve long-term clinical outcomes in MPS patients treated with HCT.
Collapse
|
6
|
Safary A, Moghaddas-Sani H, Akbarzadeh-Khiavi M, Khabbazzi A, Rafi MA, Omidi Y. Enzyme replacement combinational therapy: effective treatments for mucopolysaccharidoses. Expert Opin Biol Ther 2021; 21:1181-1197. [PMID: 33653197 DOI: 10.1080/14712598.2021.1895746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Mucopolysaccharidoses (MPS), as a group of inherited lysosomal storage disorders (LSDs), are clinically heterogeneous and characterized by multi-systemic manifestations, such as skeletal abnormalities and neurological dysfunctions. The currently used enzyme replacement therapy (ERT) might be associated with several limitations including the low biodistribution of the enzymes into the main targets, immunological responses against foreign enzymes, and the high cost of the treatment procedure. Therefore, a suitable combination approach can be considered for the successful treatment of each type of MPS. AREAS COVERED In this review, we provide comprehensive insights into the ERT-based combination therapies of MPS by reviewing the published literature on PubMed and Scopus. We also discuss the recent advancements in the treatment of MPS and bring up the hopes and hurdles in the futuristic treatment strategies. EXPERT OPINION Given the complex pathophysiology of MPS and its involvement in different tissues, the ERT of MPS in combination with stem cell therapy or gene therapy is deemed to provide a personalized precision treatment modality with the highest therapeutic responses and minimal side effects. By the same token, new combinational approaches need to be evaluated by using drugs that target alternative and secondary pathological pathways.
Collapse
Affiliation(s)
- Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mostafa Akbarzadeh-Khiavi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Khabbazzi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad A Rafi
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvanian USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida USA
| |
Collapse
|
7
|
Santos HS, Poletto E, Schuh R, Matte U, Baldo G. Genome editing in mucopolysaccharidoses and mucolipidoses. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:327-351. [PMID: 34175047 DOI: 10.1016/bs.pmbts.2021.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mucopolysaccharidoses (MPS) and mucolipidoses (ML) are disorders that alter lysosome function. While MPS are caused by mutation in enzymes that degrade glycosaminoglycans, the ML are disorders characterized by reduced function in the phosphotransferase enzyme. Multiple clinical features are associated with these diseases and the exact mechanisms that could explain such different clinical manifestations in patients are still unknown. Furthermore, there are no curative treatment for any of MPS and ML conditions so far. Gene editing holds promise as a tool for the creation of cell and animal models to help explain disease pathogenesis, as well as a platform for gene therapy. In this chapter, we discuss the main studies involving genome editing for MPS and the prospect applications for ML.
Collapse
Affiliation(s)
- Hallana Souza Santos
- Laboratório Células, Tecidos e Genes do Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Edina Poletto
- Laboratório Células, Tecidos e Genes do Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Roselena Schuh
- Laboratório Células, Tecidos e Genes do Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Ursula Matte
- Laboratório Células, Tecidos e Genes do Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Laboratório Células, Tecidos e Genes do Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Faouzi A, Roullin VG. Think Big, Start Small: How Nanomedicine Could Alleviate the Burden of Rare CNS Diseases. Pharmaceuticals (Basel) 2021; 14:109. [PMID: 33573213 PMCID: PMC7912386 DOI: 10.3390/ph14020109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
The complexity and organization of the central nervous system (CNS) is widely modulated by the presence of the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB), which both act as biochemical, dynamic obstacles impeding any type of undesirable exogenous exchanges. The disruption of these barriers is usually associated with the development of neuropathologies which can be the consequence of genetic disorders, local antigenic invasions, or autoimmune diseases. These disorders can take the shape of rare CNS-related diseases (other than Alzheimer's and Parkinson's) which a exhibit relatively low or moderate prevalence and could be part of a potential line of treatments from current nanotargeted therapies. Indeed, one of the most promising therapeutical alternatives in that field comes from the development of nanotechnologies which can be divided between drug delivery systems and diagnostic tools. Unfortunately, the number of studies dedicated to treating these rare diseases using nanotherapeutics is limited, which is mostly due to a lack of interest from industrial pharmaceutical companies. In the present review, we will provide an overview of some of these rare CNS diseases, discuss the physiopathology of these disorders, shed light on how nanotherapies could be of interest as a credible line of treatment, and finally address the major issues which can hinder the development of efficient therapies in that area.
Collapse
Affiliation(s)
- Abdelfattah Faouzi
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO 63131, USA;
| | - Valérie Gaëlle Roullin
- Laboratoire de Nanotechnologies Pharmaceutiques, Faculté de Pharmacie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
9
|
Kiem Hao T, Diem Chi NT, Hong Duc NT, Kim Hoa NT. A case study of three patients with mucopolysaccharidoses in Hue Central Hospital. SAGE Open Med Case Rep 2020; 8:2050313X20938245. [PMID: 32647582 PMCID: PMC7325546 DOI: 10.1177/2050313x20938245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/03/2020] [Indexed: 11/16/2022] Open
Abstract
Mucopolysaccharidosis is a group of rare metabolic disorders characterized by a deficiency of enzymes in the degradation of glycosaminoglycans. The incomplete degradation process leads to the accumulation of glycosaminoglycans in lysosomes of various tissues, which interferes with cell function. We report three cases that were classified as Hurler-Mucopolysaccharidosis I, Morquio-Mucopolysaccharidosis IV A, and Maroteaux-Lamy-Mucopolysaccharidosis VI. Clinical presentations of these cases vary, depending on each type of enzyme defect. All the patients appeared healthy at birth, and symptoms appear at around 1 or 2 years. Clinical features, radiological findings, and especially enzyme assays have allowed us to establish a definitive diagnosis in these cases. These cases highlight that abnormal clinical symptoms, such as growth failure, coarse facial features, and joint problems, are key points for further investigation relating to mucopolysaccharidosis disease. However, in low- and middle-income countries, it is difficult to have a definitive diagnosis of one of the mucopolysaccharidoses due to lacking enzyme assays.
Collapse
Affiliation(s)
- Tran Kiem Hao
- Pediatric Center, Hue Central Hospital, Hue City, Vietnam
| | | | | | | |
Collapse
|
10
|
Leal AF, Espejo-Mojica AJ, Sánchez OF, Ramírez CM, Reyes LH, Cruz JC, Alméciga-Díaz CJ. Lysosomal storage diseases: current therapies and future alternatives. J Mol Med (Berl) 2020; 98:931-946. [PMID: 32529345 DOI: 10.1007/s00109-020-01935-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023]
Abstract
Lysosomal storage disorders (LSDs) are a group of monogenic diseases characterized by progressive accumulation of undegraded substrates into the lysosome, due to mutations in genes that encode for proteins involved in normal lysosomal function. In recent years, several approaches have been explored to find effective and successful therapies, including enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, hematopoietic stem cell transplantation, and gene therapy. In the case of gene therapy, genome editing technologies have opened new horizons to accelerate the development of novel treatment alternatives for LSD patients. In this review, we discuss the current therapies for this group of disorders and present a detailed description of major genome editing technologies, as well as the most recent advances in the treatment of LSDs. We will further highlight the challenges and current bioethical debates of genome editing.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Building 54, Room 305A, Bogotá D.C, 110231, Colombia
| | - Angela Johana Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Building 54, Room 305A, Bogotá D.C, 110231, Colombia
| | - Oscar F Sánchez
- Neurobiochemistry and Systems Physiology, Biochemistry and Nutrition Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Carlos Manuel Ramírez
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá D.C., Colombia
| | - Luis Humberto Reyes
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá D.C., Colombia
| | - Juan C Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá D.C., Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Building 54, Room 305A, Bogotá D.C, 110231, Colombia.
| |
Collapse
|
11
|
Neonatal nonviral gene editing with the CRISPR/Cas9 system improves some cardiovascular, respiratory, and bone disease features of the mucopolysaccharidosis I phenotype in mice. Gene Ther 2019; 27:74-84. [PMID: 31827259 DOI: 10.1038/s41434-019-0113-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 10/09/2019] [Accepted: 11/19/2019] [Indexed: 01/02/2023]
Abstract
Mucopolysaccharidosis type I (MPS I) is caused by deficiency of alpha-L-iduronidase (IDUA), leading to multisystemic accumulation of glycosaminoglycans (GAG). Untreated MPS I patients may die in the first decades of life, mostly due to cardiovascular and respiratory complications. We previously reported that the treatment of newborn MPS I mice with intravenous administration of lipossomal CRISPR/Cas9 complexes carrying the murine Idua gene aiming at the ROSA26 locus resulted in long-lasting IDUA activity and GAG reduction in various tissues. Following this, the present study reports the effects of gene editing in cardiovascular, respiratory, bone, and neurologic functions in MPS I mice. Bone morphology, specifically the width of zygomatic and femoral bones, showed partial improvement. Although heart valves were still thickened, cardiac mass and aortic elastin breaks were reduced, with normalization of aortic diameter. Pulmonary resistance was normalized, suggesting improvement in respiratory function. In contrast, behavioral abnormalities and neuroinflammation still persisted, suggesting deterioration of the neurological functions. The set of results shows that gene editing performed in newborn animals improved some manifestations of the MPS I disorder in bone, respiratory, and cardiovascular systems. However, further studies will be imperative to find better delivery strategies to reach "hard-to-treat" tissues to ensure better systemic and neurological effects.
Collapse
|
12
|
Safary A, Akbarzadeh Khiavi M, Omidi Y, Rafi MA. Targeted enzyme delivery systems in lysosomal disorders: an innovative form of therapy for mucopolysaccharidosis. Cell Mol Life Sci 2019; 76:3363-3381. [PMID: 31101939 PMCID: PMC11105648 DOI: 10.1007/s00018-019-03135-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 12/27/2022]
Abstract
Mucopolysaccharidoses (MPSs), which are inherited lysosomal storage disorders caused by the accumulation of undegraded glycosaminoglycans, can affect the central nervous system (CNS) and elicit cognitive and behavioral issues. Currently used enzyme replacement therapy methodologies often fail to adequately treat the manifestations of the disease in the CNS and other organs such as bone, cartilage, cornea, and heart. Targeted enzyme delivery systems (EDSs) can efficiently cross biological barriers such as blood-brain barrier and provide maximal therapeutic effects with minimal side effects, and hence, offer great clinical benefits over the currently used conventional enzyme replacement therapies. In this review, we provide comprehensive insights into MPSs and explore the clinical impacts of multimodal targeted EDSs.
Collapse
Affiliation(s)
- Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Mostafa Akbarzadeh Khiavi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran.
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad A Rafi
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
13
|
Poletto E, Pasqualim G, Giugliani R, Matte U, Baldo G. Effects of gene therapy on cardiovascular symptoms of lysosomal storage diseases. Genet Mol Biol 2019; 42:261-285. [PMID: 31132295 PMCID: PMC6687348 DOI: 10.1590/1678-4685-gmb-2018-0100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are inherited conditions caused by impaired lysosomal function and consequent substrate storage, leading to a range of clinical manifestations, including cardiovascular disease. This may lead to significant symptoms and even cardiac failure, which is an important cause of death among patients. Currently available treatments do not completely correct cardiac involvement in the LSDs. Gene therapy has been tested as a therapeutic alternative with promising results for the heart disease. In this review, we present the results of different approaches of gene therapy for LSDs, mainly in animal models, and its effects in the heart, focusing on protocols with cardiac functional analysis.
Collapse
Affiliation(s)
- Edina Poletto
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Pasqualim
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberto Giugliani
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ursula Matte
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
14
|
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal multisystemic, chronic, and progressive diseases characterized by the storage of glycosaminoglycans (GAGs) that may affect the central nervous system. Neuronopathic MPS such as MPS IH, MPS II, MPS IIIA–D, and MPS VII are characterized by neurocognitive regression. In severe MPS I (MPS IH, or Hurler syndrome) initial developmental trajectory is usually unremarkable but cognitive development shows a plateau by 2 to 4 years of age and then progressively regresses with aging. Patients with neuronopathic MPS II have a plateau of cognitive and adaptive development on average by 4 to 4.5 years of age, although there is significant variability, followed by progressive neurocognitive decline. In patients with classic MPS III, developmental trajectory reaches a plateau around 3 years of age, followed by regression. Sleep disturbances and behavioral problems occur early in MPS II and III with features of externalizing disorders. Acquired autism-like behavior is often observed in children with MPS III after 4–6 years of age. Impaired social and communication abilities do occur, but MPS III children do not have restricted and repetitive interests such as in autism spectrum disorder. MPS type VII is an ultra-rare neuronopathic MPS with a wide clinical spectrum from very severe with early mortality to milder phenotypes with longer survival into adolescence and adulthood. Most patients with MPS VII have intellectual disability and severely delayed speech development, usually associated with hearing impairment. Cognitive regression in neuronopathic MPS runs parallel to a significant decrease in brain tissue volume. Assessment of the developmental profile is challenging because of low cognitive abilities, physical impairment, and behavioral disturbances. Early diagnosis is crucial as different promising treatment approaches have been extensively studied in animal MPS models and are currently being applied in clinical trials.
Collapse
Affiliation(s)
- Rita Barone
- Neuropsichiatria Infantile, Dipartimento di Medicina Clinica e Sperimentale, Università di Catania, Catania, Italy. .,Neuropsichiatria Infantile, Policlinico, Università di Catania, Via S. Sofia 78, 95123, Catania, Italy.
| | - Alessandra Pellico
- Neuropsichiatria Infantile, Dipartimento di Medicina Clinica e Sperimentale, Università di Catania, Catania, Italy
| | - Annarita Pittalà
- Centro di Riferimento Regionale per le malattie metaboliche congenite, Policlinico, Università di Catania, Catania, Italy
| | - Serena Gasperini
- UOS Malattie Metaboliche Rare, Clinica Pediatrica, Fondazione MBBM, ATS Monza, Monza, Italy
| |
Collapse
|
15
|
Schuh RS, Poletto É, Pasqualim G, Tavares AMV, Meyer FS, Gonzalez EA, Giugliani R, Matte U, Teixeira HF, Baldo G. In vivo genome editing of mucopolysaccharidosis I mice using the CRISPR/Cas9 system. J Control Release 2018; 288:23-33. [PMID: 30170069 DOI: 10.1016/j.jconrel.2018.08.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/03/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022]
|
16
|
Schuh RS, Bidone J, Poletto E, Pinheiro CV, Pasqualim G, de Carvalho TG, Farinon M, da Silva Diel D, Xavier RM, Baldo G, Matte U, Teixeira HF. Nasal Administration of Cationic Nanoemulsions as Nucleic Acids Delivery Systems Aiming at Mucopolysaccharidosis Type I Gene Therapy. Pharm Res 2018; 35:221. [PMID: 30259180 DOI: 10.1007/s11095-018-2503-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE This study demonstrates the nasal administration (NA) of nanoemulsions complexed with the plasmid encoding for IDUA protein (pIDUA) as an attempt to reach the brain aiming at MPS I gene therapy. METHODS Formulations composed of DOPE, DOTAP, MCT (NE), and DSPE-PEG (NE-PEG) were prepared by high-pressure homogenization, and assessed in vitro on human fibroblasts from MPS I patients and in vivo on MPS I mice for IDUA production and gene expression. RESULTS The physicochemical results showed that the presence of DSPE-PEG in the formulations led to smaller and more stable droplets even when submitted to dilution in simulated nasal medium (SNM). In vitro assays showed that pIDUA/NE-PEG complexes were internalized by cells, and led to a 5% significant increase in IDUA activity, besides promoting a two-fold increase in IDUA expression. The NA of pIDUA/NE-PEG complexes to MPS I mice demonstrated the ability to reach the brain, promoting increased IDUA activity and expression in this tissue, as well as in kidney and spleen tissues after treatment. An increase in serum IL-6 was observed after treatment, although with no signs of tissue inflammatory infiltrate according to histopathology and CD68 assessments. CONCLUSIONS These findings demonstrated that pIDUA/NE-PEG complexes could efficiently increase IDUA activity in vitro and in vivo after NA, and represent a potential treatment for the neurological impairment present in MPS I patients.
Collapse
Affiliation(s)
- Roselena Silvestri Schuh
- Pharmaceutical Sciences Graduate Program, UFRGS, Avenida Ipiranga, 2752, Porto Alegre, RS, 90610-000, Brazil.,Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Juliana Bidone
- Pharmaceutical Sciences Graduate Program, UFRGS, Avenida Ipiranga, 2752, Porto Alegre, RS, 90610-000, Brazil
| | - Edina Poletto
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Genetics and Molecular Biology Graduate Program, UFRGS, Porto Alegre, RS, Brazil
| | | | - Gabriela Pasqualim
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Genetics and Molecular Biology Graduate Program, UFRGS, Porto Alegre, RS, Brazil
| | - Talita Giacomet de Carvalho
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Genetics and Molecular Biology Graduate Program, UFRGS, Porto Alegre, RS, Brazil
| | - Mirian Farinon
- Reumathology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Dirnete da Silva Diel
- Pharmaceutical Sciences Graduate Program, UFRGS, Avenida Ipiranga, 2752, Porto Alegre, RS, 90610-000, Brazil.,Genetics and Molecular Biology Graduate Program, UFRGS, Porto Alegre, RS, Brazil
| | | | - Guilherme Baldo
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Genetics and Molecular Biology Graduate Program, UFRGS, Porto Alegre, RS, Brazil
| | - Ursula Matte
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Genetics and Molecular Biology Graduate Program, UFRGS, Porto Alegre, RS, Brazil
| | - Helder Ferreira Teixeira
- Pharmaceutical Sciences Graduate Program, UFRGS, Avenida Ipiranga, 2752, Porto Alegre, RS, 90610-000, Brazil.
| |
Collapse
|
17
|
Intra-articular nonviral gene therapy in mucopolysaccharidosis I mice. Int J Pharm 2018; 548:151-158. [DOI: 10.1016/j.ijpharm.2018.06.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 11/23/2022]
|
18
|
Safary A, Akbarzadeh Khiavi M, Mousavi R, Barar J, Rafi MA. Enzyme replacement therapies: what is the best option? ACTA ACUST UNITED AC 2018; 8:153-157. [PMID: 30211074 PMCID: PMC6128977 DOI: 10.15171/bi.2018.17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/02/2018] [Indexed: 01/01/2023]
Abstract
Despite many beneficial outcomes of the conventional enzyme replacement therapy (ERT), several limitations such as the high-cost of the treatment and various inadvertent side effects including the occurrence of an immunological response against the infused enzyme and development of resistance to enzymes persist. These issues may limit the desired therapeutic outcomes of a majority of the lysosomal storage diseases (LSDs). Furthermore, the biodistribution of the recombinant enzymes into the target cells within the central nervous system (CNS), bone, cartilage, cornea, and heart still remain unresolved. All these shortcomings necessitate the development of more effective diagnosis and treatment modalities against LSDs. Taken all, maximizing the therapeutic response with minimal undesired side effects might be attainable by the development of targeted enzyme delivery systems (EDSs) as a promising alternative to the LSDs treatments, including different types of mucopolysaccharidoses ( MPSs ) as well as Fabry, Krabbe, Gaucher and Pompe diseases.
Collapse
Affiliation(s)
- Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Akbarzadeh Khiavi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rahimeh Mousavi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad A Rafi
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvanian 19107, USA
| |
Collapse
|
19
|
Schuh RS, Poletto É, Fachel FNS, Matte U, Baldo G, Teixeira HF. Physicochemical properties of cationic nanoemulsions and liposomes obtained by microfluidization complexed with a single plasmid or along with an oligonucleotide: Implications for CRISPR/Cas technology. J Colloid Interface Sci 2018; 530:243-255. [PMID: 29982016 DOI: 10.1016/j.jcis.2018.06.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 02/06/2023]
Abstract
In this study, we investigated the effects of the association of a single plasmid or its co-complexation along with an oligonucleotide on the physicochemical properties of cationic nanoemulsions and liposomes intended for gene editing. Formulations composed of DOPE, DOTAP, DSPE-PEG (liposomes), MCT (nanoemulsions), and water were obtained by microfluidization. DSPE-PEG was found to play a crucial role on the size and polydispersity index of nanocarriers. Nucleic acids were complexated by adsorption at different charge ratios. No significant differences were noticed in the physicochemical properties of nanocarriers (i.e. droplet size, polydispersity index, or zeta potential) when a single plasmid or both plasmid and oligonucleotide were adsorbed to the formulations. Transmission electron microscopy photomicrographs suggested round nanostructures with the nucleic acids and DSPE-PEG enfolding the surface. Complexes at +4/-1 charge ratio protected nucleic acids against DNase I degradation. The oligonucleotide seemed to be released from the liposomal complexes, while nanoemulsions only released the plasmid after 24 and 48 h of incubation in DMEM supplemented or not. In vitro experiments demonstrated that complexes were highly tolerable to human fibroblasts, Hep-G2, and HEK-293 cells, demonstrating also an uptake ability of about 30%, 30%, and 90%, respectively, no matter what the formulation or the combination of nucleic acids used. Transfection efficiency of the formulations was around 25% in human fibroblasts, 32% in HEK-293, and 15% in Hep-G2 cells. The overall results demonstrated the behavior of liposomes and nanoemulsions complexed with a plasmid or a mixture of a plasmid and an oligonucleotide, and demonstrated that the association with one or two nucleic acids sequences of different length does not seem to interfere in the physicochemical characteristics of complexes or in the uptake capacity by three different types of cells.
Collapse
Affiliation(s)
- Roselena S Schuh
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil; Centro de Terapia Gênica - Hospital de Clinicas de Porto Alegre, R. Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Édina Poletto
- Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Campus do Vale, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil; Centro de Terapia Gênica - Hospital de Clinicas de Porto Alegre, R. Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Flávia N S Fachel
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Ursula Matte
- Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Campus do Vale, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil; Centro de Terapia Gênica - Hospital de Clinicas de Porto Alegre, R. Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Campus do Vale, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil; Centro de Terapia Gênica - Hospital de Clinicas de Porto Alegre, R. Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Helder F Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil.
| |
Collapse
|
20
|
Teixeira HF, Bruxel F, Fraga M, Schuh RS, Zorzi GK, Matte U, Fattal E. Cationic nanoemulsions as nucleic acids delivery systems. Int J Pharm 2017; 534:356-367. [DOI: 10.1016/j.ijpharm.2017.10.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
|
21
|
Schuh RS, de Carvalho TG, Giugliani R, Matte U, Baldo G, Teixeira HF. Gene editing of MPS I human fibroblasts by co-delivery of a CRISPR/Cas9 plasmid and a donor oligonucleotide using nanoemulsions as nonviral carriers. Eur J Pharm Biopharm 2017; 122:158-166. [PMID: 29122734 DOI: 10.1016/j.ejpb.2017.10.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/16/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022]
Abstract
Mucopolysaccharidosis type I (MPS I) is an inherited disease caused by the deficiency of alpha-L-iduronidase (IDUA). This study shows the use of nanoemulsions co-complexed with the plasmid of CRISPR/Cas9 system and a donor oligonucleotide aiming at MPS I gene editing in vitro. Nanoemulsions composed of MCT, DOPE, DOTAP, DSPE-PEG, and water were prepared by high-pressure homogenization. The DNA was complexed by adsorption (NA) or encapsulation (NE) of preformed DNA/DOTAP complexes with nanoemulsions at +4/-1 charge ratio. The incubation in pure DMEM or supplemented with serum showed that the complexation with DNA was stable after 1 h of incubation, but the complexes tended to release the adsorbed DNA after 24 h of incubation, while the encapsulated DNA remained complexed in the oil core of the nanoemulsions even 48 h after incubation with DMEM. The treatment of MPS I patient's fibroblasts homozygous for the p.Trp402∗ mutation led to a significant increase in IDUA activity at 2, 15, and 30 days when compared to MPS I untreated fibroblasts. Flow cytometry and confocal microscopy demonstrated that there was a reduction in the area of lysosomes to values similar to normal, an indicator of correction of the cellular phenotype. These results show that the nanoemulsions co-complexed with the CRISPR/Cas9 system and a donor oligonucleotide could effectively transfect MPS I p.Trp402∗ patient's fibroblasts, as well as enable the production of IDUA, and represent a potential new treatment option for MPS I.
Collapse
Affiliation(s)
- Roselena Silvestri Schuh
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil; Centro de Terapia Gênica - Hospital de Clinicas de Porto Alegre, R. Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Talita Giacomet de Carvalho
- Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Campus do Vale, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil; Centro de Terapia Gênica - Hospital de Clinicas de Porto Alegre, R. Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Roberto Giugliani
- Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Campus do Vale, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil; Centro de Terapia Gênica - Hospital de Clinicas de Porto Alegre, R. Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Ursula Matte
- Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Campus do Vale, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil; Centro de Terapia Gênica - Hospital de Clinicas de Porto Alegre, R. Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Campus do Vale, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil; Centro de Terapia Gênica - Hospital de Clinicas de Porto Alegre, R. Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Helder Ferreira Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil.
| |
Collapse
|