1
|
Zhang Y, Watson S, Ramaswamy Y, Singh G. Intravitreal therapeutic nanoparticles for age-related macular degeneration: Design principles, progress and opportunities. Adv Colloid Interface Sci 2024; 329:103200. [PMID: 38788306 DOI: 10.1016/j.cis.2024.103200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/11/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss in the elderly. The current standard treatment for AMD involves frequent intravitreal administrations of therapeutic agents. While effective, this approach presents challenges, including patient discomfort, inconvenience, and the risk of adverse complications. Nanoparticle-based intravitreal drug delivery platforms offer a promising solution to overcome these limitations. These platforms are engineered to target the retina specifically and control drug release, which enhances drug retention, improves drug concentration and bioavailability at the retinal site, and reduces the frequency of injections. This review aims to uncover the design principles guiding the development of highly effective nanoparticle-based intravitreal drug delivery platforms for AMD treatment. By gaining a deeper understanding of the physiology of ocular barriers and the physicochemical properties of nanoparticles, we establish a basis for designing intravitreal nanoparticles to optimize drug delivery and drug retention in the retina. Furthermore, we review recent nanoparticle-based intravitreal therapeutic strategies to highlight their potential in improving AMD treatment efficiency. Lastly, we address the challenges and opportunities in this field, providing insights into the future of nanoparticle-based drug delivery to improve therapeutic outcomes for AMD patients.
Collapse
Affiliation(s)
- Yuhang Zhang
- The School of Biomedical Engineering, Faculty of IT and Engineering, Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2008, Australia
| | - Stephanie Watson
- Faculty of Medicine and Health, Clinical Ophthalmology and Eye Health, Save Sight Institute, The University of Sydney, Camperdown, NSW 2008, Australia
| | - Yogambha Ramaswamy
- The School of Biomedical Engineering, Faculty of IT and Engineering, Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2008, Australia
| | - Gurvinder Singh
- The School of Biomedical Engineering, Faculty of IT and Engineering, Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2008, Australia.
| |
Collapse
|
2
|
Klojdová I, Kumherová M, Veselá K, Horáčková Š, Štětina J. Functional w1/o/w2 model food product with encapsulated colostrum and high protein content. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Sawant A, Kamath S, KG H, Kulyadi GP. Solid-in-Oil-in-Water Emulsion: An Innovative Paradigm to Improve Drug Stability and Biological Activity. AAPS PharmSciTech 2021; 22:199. [PMID: 34212274 PMCID: PMC8249250 DOI: 10.1208/s12249-021-02074-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Abstract An emulsion is a biphasic dosage form comprising of dispersed phase containing droplets that are uniformly distributed into a surrounding liquid which forms the continuous phase. An emulsifier is added at the interface of two immiscible liquids to stabilize the thermodynamically unstable emulsion. Various types of emulsions such as water-in-oil (w-o), oil-in-water (o-w), microemulsions, and multiple emulsions are used for delivering certain drugs in the body. Water (aqueous) phase is commonly used for encapsulating proteins and several other drugs in water-in-oil-in-water (w-o-w) emulsion technique. But this method has posed certain problems such as decreased stability, burst release, and low entrapment efficiency. Thus, a novel “solid-in-oil-in-water” (s-o-w) emulsion system was developed for formulating certain drugs, probiotics, proteins, antibodies, and tannins to overcome these issues. In this method, the active ingredient is encapsulated as a solid and added to an oil phase, which formed a solid-oil dispersion. This dispersion was then mixed with water to form a continuous phase for enhancing the drug absorption. This article focuses on the various studies done to investigate the effectiveness of formulations prepared as solid-oil-water emulsions in comparison to conventional water-oil-water emulsions. A summary of the results obtained in each study is presented in this article. The s-o-w emulsion technique may become beneficial in near future as it has shown to improve the stability and efficacy of the entrapped active ingredient. Graphical abstract ![]()
Collapse
|
4
|
Polley P, Gupta S, Singh R, Pradhan A, Basu SM, V. R, Yadava SK, Giri J. Protein–Sugar-Glass Nanoparticle Platform for the Development of Sustained-Release Protein Depots by Overcoming Protein Delivery Challenges. Mol Pharm 2019; 17:284-300. [DOI: 10.1021/acs.molpharmaceut.9b01022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Poulomi Polley
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Shivam Gupta
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan
| | - Ruby Singh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Arpan Pradhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Remya V.
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Sunil Kumar Yadava
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| |
Collapse
|
5
|
Luaces-Rodríguez A, Mondelo-García C, Zarra-Ferro I, González-Barcia M, Aguiar P, Fernández-Ferreiro A, Otero-Espinar FJ. Intravitreal anti-VEGF drug delivery systems for age-related macular degeneration. Int J Pharm 2019; 573:118767. [PMID: 31669558 DOI: 10.1016/j.ijpharm.2019.118767] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/07/2023]
Abstract
Age-related macular degeneration is the most common cause of vision loss in elderly people in developed countries. Nowadays, in clinical practice, three anti-VEGF drugs are commonly used (bevacizumab, aflibercept and ranibizumab), requiring repeated intravitreal injections. In order to minimise the number of injections, research on intravitreal drug delivery systems (DDSs) is needed. In this review, the DDSs developed up to date regarding intravitreal anti-VEGF drugs have been summarised, which include systems as hydrogels, liposomes, microparticles, nanoparticles or implants. Most of the studies have focused on the extended in vitro release behaviour of the developed DDSs, but data as antibody bioactivity, biocompatibility or in vivo stability is sometimes scarce. Moreover, as DDS development relies on in vivo pharmacokinetic analyses to evaluate the extended drug release, all the information regarding anti-VEGF intravitreal pharmacokinetics in different animal species have been compiled.
Collapse
Affiliation(s)
- Andrea Luaces-Rodríguez
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain
| | - Cristina Mondelo-García
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Irene Zarra-Ferro
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Miguel González-Barcia
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Pablo Aguiar
- Nuclear Medicine Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain; Molecular Imaging Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain
| | - Anxo Fernández-Ferreiro
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain.
| | - Francisco J Otero-Espinar
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain.
| |
Collapse
|