1
|
Gao KC, Mou T, Zhao Y, Liang D, Kuang YQ, Jia J. Single-cell sequencing reveals the heterogeneity of immune landscape in drug users with HIV infection. Int Immunopharmacol 2024; 143:113338. [PMID: 39405936 DOI: 10.1016/j.intimp.2024.113338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Injection drug use (IDU) leads to immune system dysfunction, thereby increasing the risk of opportunistic infection. There is a critical need to reveal the role of IDU in the immunopathogenesis of HIV infection. METHODS We performed single-cell RNA sequencing (scRNA-seq) on peripheral blood mononuclear cells (PBMCs) derived from healthy control (HC) individuals, HIV-infected patients with IDU (HIV-IDU) and without IDU (HIV-nIDU). In addition, the Gene Set Enrichment Analysis (GSEA) was used to analyze the immunomodulatory effects of differential immune cells. RESULTS Seven types of cells were identified with specific expressions of maker genes. Specific subsets such as CD14+ monocytes, plasmacytoid dendritic cells (pDCs), plasma cells, and CD8+ T cells displayed a high degree of heterogeneity among HC, HIV-nIDU, and HIV-IDU. We identified signature genes for each subset in distinct groups, including CFP+ CD14+ monocytes, PTPRCAP+ pDCs, IGHD+ plasma cells, and IFITM1+ CD8+T cells from HIV-IDU, whereas these genes were not expressed in such cells from HIV-nIDU. Moreover, considerable heterogeneity in the function of these immune cells was observed across different groups, especially the elevated IFN-α/β signaling for CD14+ monocytes, histone H2A/2B and H3/4 pathway for pDCs, the creation of C4 and C2 activators for plasma cells, and drug metabolism cytochrome p450 for CD8+ T cells in HIV-IDU individuals. CONCLUSION Our comprehensive analyses clarify the heterogeneous characteristics of the immune landscape between HIV-IDU and HIV-nIDU. These insights provide a deeper understanding of the IDU-mediated immunopathogenesis in HIV infection.
Collapse
Affiliation(s)
- Kai-Cheng Gao
- Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming 650500, China
| | - Tangwei Mou
- Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming 650500, China
| | - Yu Zhao
- Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming 650500, China
| | - Dan Liang
- Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming 650500, China
| | - Yi-Qun Kuang
- Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming 650500, China.
| | - Jie Jia
- Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
2
|
Wijeweera G, Wijekoon N, Gonawala L, Imran Y, Mohan C, De Silva KRD. Therapeutic Implications of Some Natural Products for Neuroimmune Diseases: A Narrative of Clinical Studies Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:5583996. [PMID: 37089709 PMCID: PMC10118888 DOI: 10.1155/2023/5583996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 01/24/2023] [Accepted: 02/11/2023] [Indexed: 04/25/2023]
Abstract
Neuroimmune diseases are a group of disorders that occur due to the dysregulation of both the nervous and immune systems, and these illnesses impact tens of millions of people worldwide. However, patients who suffer from these debilitating conditions have very few FDA-approved treatment options. Neuroimmune crosstalk is important for controlling the immune system both centrally and peripherally to maintain tissue homeostasis. This review aims to provide readers with information on how natural products modulate neuroimmune crosstalk and the therapeutic implications of natural products, including curcumin, epigallocatechin-3-gallate (EGCG), ginkgo special extract, ashwagandha, Centella asiatica, Bacopa monnieri, ginseng, and cannabis to mitigate the progression of neuroimmune diseases, such as Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease, depression, and anxiety disorders. The majority of the natural products based clinical studies mentioned in this study have yielded positive results. To achieve the expected results from natural products based clinical studies, researchers should focus on enhancing bioavailability and determining the synergistic mechanisms of herbal compounds and extracts, which will lead to the discovery of more effective phytomedicines while averting the probable negative effects of natural product extracts. Therefore, future studies developing nutraceuticals to mitigate neuroimmune diseases that incorporate phytochemicals to produce synergistic effects must analyse efficacy, bioavailability, gut-brain axis function safety, chemical modifications, and encapsulation with nanoparticles.
Collapse
Affiliation(s)
- Gayathri Wijeweera
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defense University, Sri Lanka
- Interdisciplinary Centre for Innovation in Biotechnology and Neurosciences, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Nalaka Wijekoon
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defense University, Sri Lanka
- Interdisciplinary Centre for Innovation in Biotechnology and Neurosciences, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
- Department of Cellular Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Lakmal Gonawala
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defense University, Sri Lanka
- Interdisciplinary Centre for Innovation in Biotechnology and Neurosciences, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
- Department of Cellular Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Yoonus Imran
- Interdisciplinary Centre for Innovation in Biotechnology and Neurosciences, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - K. Ranil D. De Silva
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defense University, Sri Lanka
- Interdisciplinary Centre for Innovation in Biotechnology and Neurosciences, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| |
Collapse
|
3
|
The Promise of Nanotechnology in Personalized Medicine. J Pers Med 2022; 12:jpm12050673. [PMID: 35629095 PMCID: PMC9142986 DOI: 10.3390/jpm12050673] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Both personalized medicine and nanomedicine are new to medical practice. Nanomedicine is an application of the advances of nanotechnology in medicine and is being integrated into diagnostic and therapeutic tools to manage an array of medical conditions. On the other hand, personalized medicine, which is also referred to as precision medicine, is a novel concept that aims to individualize/customize therapeutic management based on the personal attributes of the patient to overcome blanket treatment that is only efficient in a subset of patients, leaving others with either ineffective treatment or treatment that results in significant toxicity. Novel nanomedicines have been employed in the treatment of several diseases, which can be adapted to each patient-specific case according to their genetic profiles. In this review, we discuss both areas and the intersection between the two emerging scientific domains. The review focuses on the current situation in personalized medicine, the advantages that can be offered by nanomedicine to personalized medicine, and the application of nanoconstructs in the diagnosis of genetic variability that can identify the right drug for the right patient. Finally, we touch upon the challenges in both fields towards the translation of nano-personalized medicine.
Collapse
|
4
|
Zhou L, Kodidela S, Godse S, Thomas-Gooch S, Kumar A, Raji B, Zhi K, Kochat H, Kumar S. Targeted Drug Delivery to the Central Nervous System Using Extracellular Vesicles. Pharmaceuticals (Basel) 2022; 15:358. [PMID: 35337155 PMCID: PMC8950604 DOI: 10.3390/ph15030358] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
The blood brain barrier (BBB) maintains the homeostasis of the central nervous system (CNS) and protects the brain from toxic substances present in the circulating blood. However, the impermeability of the BBB to drugs is a hurdle for CNS drug development, which hinders the distribution of the most therapeutic molecules into the brain. Therefore, scientists have been striving to develop safe and effective technologies to advance drug penetration into the CNS with higher targeting properties and lower off-targeting side effects. This review will discuss the limitation of artificial nanomedicine in CNS drug delivery and the use of natural extracellular vesicles (EVs), as therapeutic vehicles to achieve targeted delivery to the CNS. Information on clinical trials regarding CNS targeted drug delivery using EVs is very limited. Thus, this review will also briefly highlight the recent clinical studies on targeted drug delivery in the peripheral nervous system to shed light on potential strategies for CNS drug delivery. Different technologies engaged in pre- and post-isolation have been implemented to further utilize and optimize the natural property of EVs. EVs from various sources have also been applied in the engineering of EVs for CNS targeted drug delivery in vitro and in vivo. Here, the future feasibility of those studies in clinic will be discussed.
Collapse
Affiliation(s)
- Lina Zhou
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| | - Sandip Godse
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| | - Stacey Thomas-Gooch
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| | - Asit Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| | - Babatunde Raji
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, 208 South Dudley Street, Memphis, TN 38163, USA; (B.R.); (K.Z.); (H.K.)
| | - Kaining Zhi
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, 208 South Dudley Street, Memphis, TN 38163, USA; (B.R.); (K.Z.); (H.K.)
| | - Harry Kochat
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, 208 South Dudley Street, Memphis, TN 38163, USA; (B.R.); (K.Z.); (H.K.)
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| |
Collapse
|
5
|
Nutraceuticals in HIV and COVID-19-Related Neurological Complications: Opportunity to Use Extracellular Vesicles as Drug Delivery Modality. BIOLOGY 2022; 11:biology11020177. [PMID: 35205044 PMCID: PMC8869385 DOI: 10.3390/biology11020177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary In this review, we discuss the potential use of extracellular vesicles (EVs) to deliver dietary supplements to the brain to reduce brain complications associated with HIV, COVID-19, and other brain disorders. Brain-related complications affect people with HIV and COVID-19 alike. Moreover, since HIV patients are at a higher risk of contracting COVID-19, their neurological problems can be exacerbated by COVID-19. The use of dietary supplements together with available treatment options has been shown to reduce the severity of infections. However, these treatments are not chemically compatible with the body’s blood–brain barrier defense mechanism. Therefore, a viable delivery method is needed to deliver drugs and nutraceuticals to the brain in HIV and COVID-19 comorbid patients. Abstract People living with HIV/AIDS (PLWHA) are at an increased risk of severe and critical COVID-19 infection. There is a steady increase in neurological complications associated with COVID-19 infection, exacerbating HIV-associated neurocognitive disorders (HAND) in PLWHA. Nutraceuticals, such as phytochemicals from medicinal plants and dietary supplements, have been used as adjunct therapies for many disease conditions, including viral infections. Appropriate use of these adjunct therapies with antiviral proprieties may be beneficial in treating and/or prophylaxis of neurological complications associated with these co-infections. However, most of these nutraceuticals have poor bioavailability and cannot cross the blood–brain barrier (BBB). To overcome this challenge, extracellular vesicles (EVs), biological nanovesicles, can be used. Due to their intrinsic features of biocompatibility, stability, and their ability to cross BBB, as well as inherent homing capabilities, EVs hold immense promise for therapeutic drug delivery to the brain. Therefore, in this review, we summarize the potential role of different nutraceuticals in reducing HIV- and COVID-19-associated neurological complications and the use of EVs as nutraceutical/drug delivery vehicles to treat HIV, COVID-19, and other brain disorders.
Collapse
|
6
|
Aggarwal N, Sachin, Nabi B, Aggarwal S, Baboota S, Ali J. Nano-based drug delivery system: a smart alternative towards eradication of viral sanctuaries in management of NeuroAIDS. Drug Deliv Transl Res 2022; 12:27-48. [PMID: 33486689 DOI: 10.1007/s13346-021-00907-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 02/03/2023]
Abstract
Even though the dawn of highly active antiretroviral therapy (HAART) proved out to be a boon for acquired immunodeficiency syndrome (AIDS) patients, management of HIV infections persists to be a major global health curse. A reduced efficacy with existing conventional therapy for brain targeting has been largely credited to the inability of antiretroviral (ARV) drugs to transmigrate across the blood-brain barrier (BBB) in productive concentrations. The review consists of nano-based drug delivery strategies rendering superior outcomes to delivery of ARV drugs to the viral sanctuaries in the brain. Nano-ART for ARV drugs promotes the development of an optimized dosage regimen, thereby improving the penetration of drugs across the BBB in an attempt to target the central reservoirs hosting viral population. Numerous efforts have been undertaken for making the drug more bioavailable and therapeutically effective by moulding them into various nanostructures. Polymeric nanocarriers, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, nanodiamonds, vesicle-based drug carriers, metal-based nanoparticles, and nano vaccines have been reported for their advancing role as a smart alternative for drug delivery to central nervous system. The high drug loading capacity of nanocarriers and their small size effectuating increased surface to volume ratio is accountable for improved efficacy of ARV drugs when formulated as nanotherapeutics. This review highlights the advancing role of nanotherapeutics in mediating a successful delivery of ARV drugs to eradicate viral loads in treating NeuroAIDS.
Collapse
Affiliation(s)
- Nidhi Aggarwal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sachin
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Bushra Nabi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sumit Aggarwal
- Division of ECD, Indian Council of Medical Research, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
7
|
Kalada W, Cory TJ. The Importance of Tissue Sanctuaries and Cellular Reservoirs of HIV-1. Curr HIV Res 2021; 20:102-110. [PMID: 34961449 DOI: 10.2174/1570162x20666211227161237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022]
Abstract
Purpose of Review - There have been significant developments in the treatment of people living with HIV-1/AIDS with current antiretroviral therapies; however, these developments have not been able to achieve a functional or sterilizing cure for HIV-1. While there are multiple barriers, one such barrier is the existence of pharmacological sanctuaries and viral reservoirs where the concentration of antiretrovirals is suboptimal, which includes the gut-associated lymphoid tissue, central nervous system, lymph nodes, and myeloid cells. This review will focus on illustrating the significance of these sanctuaries, specific barriers to optimal antiretroviral concentrations in each of these sites, and potential strategies to overcome these barriers. Recent Findings - Research and studies have shown that a uniform antiretroviral distribution is not achieved with current therapies. This may allow for low-level replication associated with low antiretroviral concentrations in these sanctuaries/reservoirs. Many methods are being investigated to increase antiretroviral concentrations in these sites, such as blocking transporting enzymes functions, modulating transporter expression and nanoformulations of current antiretrovirals. While these methods have been shown to increase antiretroviral concentrations in the sanctuaries/reservoirs, no functional or sterilizing cure has been achieved due to these approaches. Summary - New methods of increasing antiretroviral concentrations at the specific sites of HIV-1 replication has the potential to target cellular reservoirs. In order to optimize antiretroviral distribution into viral sanctuaries/reservoirs, additional research is needed.
Collapse
Affiliation(s)
- William Kalada
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy. 881 Madison Avenue, Memphis, TN, USA
| | - Theodore James Cory
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy. 881 Madison Avenue, Memphis, TN, USA
| |
Collapse
|
8
|
Cattaneo D, Cossu MV, Rizzardini G. Pharmacokinetic drug evaluation of ritonavir (versus cobicistat) as adjunctive therapy in the treatment of HIV. Expert Opin Drug Metab Toxicol 2019; 15:927-935. [PMID: 31668105 DOI: 10.1080/17425255.2019.1685495] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Ritonavir and cobicistat are pharmacoenhancers used to improve the disposition of other HIV antiretrovirals. These drugs are, however, characterized by important pharmacokinetic differences.Areas covered: Here, the authors firstly update the available information on the pharmacokinetics of ritonavir and cobicistat. Subsequently, the review focuses on the description of drug-drug interactions (DDIs) involving cobicistat and comedications that might beneficiate from a shift-back to ritonavir. A MEDLINE Pubmed search for articles published from January 1995 to April 2019 was completed matching the term ritonavir or cobicistat with pharmacokinetics, DDIs, and pharmacology. Moreover, additional studies were identified from the reference list of retrieved articles.Expert opinion: Despite more than 20 years after its introduction on the market, ritonavir still represents a valid option for the treatment of selected HIV-infected patients. The large-scale switch to cobicistat may result in some unexpected DDIs not previously reported for ritonavir. Besides the issue of DDIs, additional advantage of ritonavir over cobicistat is its use in pregnancy, and its availability as single component of pharmaceutical formulations allowing the fine-tuning of antiretroviral regimens in patients with heavy polypharmacy when other unboosted-based therapeutic options cannot be used.
Collapse
Affiliation(s)
- Dario Cattaneo
- Unit of Clinical Pharmacology, Department of Laboratory Medicine, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy
| | - Maria Vittoria Cossu
- Department of Infectious Diseases, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy
| | - Giuliano Rizzardini
- Department of Infectious Diseases, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy.,School of Clinical Medicine, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|