1
|
Li F, Ye X, Li M, Nie Q, Wang H, Zhang G, Dong L, Wang C, Wu L, Liu H, Wang L, Peng C, Zhang J. Enhanced ophthalmic bioavailability and stability of atropine sulfate via sustained release particles using polystyrene sulfonate resin. Int J Pharm 2024; 660:124294. [PMID: 38823467 DOI: 10.1016/j.ijpharm.2024.124294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Atropine sulfate (ATS) eye drops at low concentrations constitute a limited selection for myopia treatment, with challenges such as low ophthalmic bioavailability and inadequate stability. This study proposes a novel strategy by synthesizing ophthalmic sodium polystyrene sulfonate resin (SPSR) characterized by a spherical shape and uniform size for cationic exchange with ATS. The formulation of ATS@SPSR suspension eye drops incorporates xanthan gum and hydroxypropyl methylcellulose (HPMC) as suspending agents. In vitro studies demonstrated that ATS@SPSR suspension eye drops exhibited sustained release characteristics, and tropic acid, its degradation product, remained undetected for 30 days at 40 °C. The ATS levels in the tear fluids and aqueous humor of New Zealand rabbits indicated a significant increase in mean residence time (MRT) and area under the drug concentration-time curve (AUC0-12h) for ATS@SPSR suspension eye drops compared to conventional ATS eye drops. Moreover, safety assessment confirmed the non-irritating nature of ATS@SPSR suspension eye drops in rabbit eyes. In conclusion, the cation-responsive sustained-release ATS@SPSR suspension eye drops enhanced the bioavailability and stability of ATS, offering a promising avenue for myopia treatment.
Collapse
Affiliation(s)
- Falan Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co. Ltd., Nantong 226133, China
| | - Xinyue Ye
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co. Ltd., Nantong 226133, China
| | - Mingwei Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co. Ltd., Nantong 226133, China
| | - Qin Nie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Huihui Wang
- Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co. Ltd., Nantong 226133, China
| | - Guoqing Zhang
- Jiangsu Yunshi Pharmaceutical Technology Co. Ltd., Nantong 226133, China
| | - Liyun Dong
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co. Ltd., Nantong 226133, China
| | - Caifen Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Li Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hongfei Liu
- Jiangsu University, Zhenjiang 212000, China; Jiangsu Yunshi Pharmaceutical Technology Co. Ltd., Nantong 226133, China.
| | - Lifeng Wang
- Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China.
| | - Can Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Jiwen Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co. Ltd., Nantong 226133, China.
| |
Collapse
|
2
|
Chou YL, Hsu YA, Lin CF, Chen CS, Tien PT, Wang YC, Chang CY, Lin ES, Chen JJY, Wu MY, Chuang CY, Lin HJ, Wan L. Complement decay-accelerating factor inhibits inflammation-induced myopia development. Mol Immunol 2024; 171:47-55. [PMID: 38795684 DOI: 10.1016/j.molimm.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Myopia is regarded as a worldwide epidemic ocular disease, has been proved related to inflammation. CD55, also known as decay-accelerating factor (DAF) can modulate the activation of complement through inhibiting the formation of complement 3 convertase and its dysregulation is involved in various inflammatory diseases. To investigate the association between CD55 and myopia, and to test whether CD55 can inhibit myopia development by suppressing inflammation in the eye, we use three different animal models including monocular form-deprivation myopia, myopia induced by TNF-α administration and allergic conjunctivitis animal model to reveal the CD55 in myopia development. The tears of thirty-eight participants with different spherical equivalents were collected and CD55 in the tears were also analyzed. Complement 3 and complement 5 levels increased while CD55 levels decreased in allergic conjunctivitis and myopic eyes. After anti-inflammatory drugs administration, CD55 expression was increased in monocular form-deprivation myopia model. We also found inflammatory cytokines TGF-β, IL-6, TNF-α, and IL-1β may enhance complement 3 and complement 5 activation while CD55 level was suppressed contrary. Moreover, lower CD55 levels were found in the tears of patients with myopia with decreased diopter values. Finally, CD55-Fc administration on the eyelids can inhibit the elongation of axial length and change of refractive error. CD55-Fc application also suppress myopia development subsequent to complement 3 and complement 5 reduction and can lower myopia-specific (MMP-2 and TGF-β) cytokine expression in TNF-α induced myopia animal model. This suggests that CD55 can inhibit myopia development by suppression of complement activation and eventual down-regulation of inflammation.
Collapse
Affiliation(s)
- Yung-Lan Chou
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yu-An Hsu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Chemistry, National Central University, Taoyuan, Taiwan
| | - Chi-Fong Lin
- Ph.D. Program for Health Science and industry, China Medical University, Taichung, Taiwan
| | - Chih-Sheng Chen
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan; Division of Chinese Medicine, Asia University Hospital, Taichung, Taiwan
| | - Peng-Tai Tien
- School of Medicine, China Medical University, Taichung, Taiwan; Eye center, China Medical University Hospital, Taichung, Taiwan
| | - Yao-Chien Wang
- Department of Emergency Medicine, Taichung Tzu Chi Hospital, Taichung, Taiwan
| | - Ching-Yao Chang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung, Taiwan
| | | | - Ming-Yen Wu
- Eye center, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| | - Hui-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Eye center, China Medical University Hospital, Taichung, Taiwan.
| | - Lei Wan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan; Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
3
|
Guo Y, Liu Y, Hu Z, Li Y, Zhang H, Zhao S. Efficacy and safety of 0.01% atropine combined with orthokeratology lens in delaying juvenile myopia: An observational study. Medicine (Baltimore) 2024; 103:e38384. [PMID: 38875374 PMCID: PMC11175863 DOI: 10.1097/md.0000000000038384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/05/2024] [Accepted: 05/07/2024] [Indexed: 06/16/2024] Open
Abstract
It aims to study the efficacy and safety of low-concentration Atropine combined with orthokeratology (OK) lens in delaying juvenile myopia. This is a prospective study, 172 adolescents aged 8 to 12 years who were admitted to the diopter department of Hengshui People Hospital from April 2021 to May 2022 were selected. According to the equivalent spherical diopter measured at the time of initial diagnosis, myopic patients were randomly divided into low myopia group (group A) and moderate myopia group (group B). At the same time, according to the different treatment methods, the patients were divided into the group wearing frame glasses alone (group c), the group wearing frame glasses with low-concentration Atropine (group d), the group wearing corneal shaping glasses alone at night (group e), and the group wearing corneal shaping glasses at night with low-concentration Atropine (group f). The control effect of myopia development and axial elongation in group f was better than that in groups d and e (P < .05). The effect of controlling myopia development and axial elongation in group f is with P > .05. The probability of postoperative adverse reactions in group f was lower and lower than that in the other groups. Low-concentration atropine combined with OK lens could effectively delay the development of juvenile myopia, and had a high safety. Low-concentration of Atropine would not have a significant impact on the basic tear secretion and tear film stability. Nightwear of OK lens also had no significant impact, but it would significantly reduce the tear film rupture time in the first 3 months, and at the same time, the tear film rupture time would be the same after 6 months as before treatment.
Collapse
Affiliation(s)
- YanFang Guo
- Department of Ophthalmology, Hengshui People’s Hospital, Hengshui, China
| | - Ying Liu
- Department of Ophthalmology, Hengshui People’s Hospital, Hengshui, China
| | - ZhiWei Hu
- Department of Stomatology, Hengshui People’s Hospital, Hengshui, China
| | - YueFeng Li
- Department of Ophthalmology, Hengshui People’s Hospital, Hengshui, China
| | - HePeng Zhang
- Department of Ophthalmology, Hengshui People’s Hospital, Hengshui, China
| | - SuYan Zhao
- Department of Ophthalmology, Hengshui People’s Hospital, Hengshui, China
| |
Collapse
|
4
|
Luo Y, Yin Z, Zhang J, Wang W, Huang Y, Li X, Chen H, Lu F, Bao J. Differential Impact of 0.01% and 0.05% Atropine Eyedrops on Ocular Surface in Young Adults. Transl Vis Sci Technol 2024; 13:22. [PMID: 38625083 PMCID: PMC11033597 DOI: 10.1167/tvst.13.4.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/11/2024] [Indexed: 04/17/2024] Open
Abstract
Purpose To evaluate the effect of low-concentration (0.01% and 0.05%) atropine eyedrops on ocular surface characteristics in young adults. Methods Twenty-six myopic students aged 18 to 30 years were randomly assigned to receive either 0.01% or 0.05% atropine once nightly for 14 days, followed by cessation, with a ≥14-day interval between each administration. Assessments were conducted one, two, seven, and 14 days after using atropine with corresponding timepoints after atropine cessation. Tear meniscus height and first and average noninvasive keratograph tear film breakup time (NIKBUT-first, NIKBUT-average) were measured using Keratograph 5M, whereas the objective scatter index (OSI) was measured by OQAS II devices; the ocular surface disease index (OSDI) score was also obtained. Results The mean OSI peaked after two days of administration of 0.05% atropine (β = 0.51, P = 0.001), accompanied by significant decreases in NIKBUT-first (β = -7.73, P < 0.001) and NIKBUT-average (β = -8.10, P < 0.001); the OSDI peaked after 14 days (β = 15.41, P < 0.001). The above parameters returned to baseline one week after atropine discontinuation (all P > 0.05). NIKBUT-first and NIKBUT-average reached their lowest points after 14 days of 0.01% atropine administration (NIKBUT-first: β = -4.46, P = 0.005; NIKBUT-average: β = -4.42, P = 0.001), but those significant changes were diminished once atropine treatment stopped. Conclusions Young adult myopes experienced a significant but temporary impact on the ocular surface with 0.05% atropine administration, whereas 0.01% atropine had a minimal effect. Translational Relevance The investigation of the ocular surface effects of different concentrations of atropine may inform evidence-based clinical decisions regarding myopia control in young adults.
Collapse
Affiliation(s)
- Yifan Luo
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ziang Yin
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiali Zhang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Weijia Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yingying Huang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xue Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hao Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fan Lu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jinhua Bao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Salehi T, Raeisi Estabragh MA, Salarpour S, Ohadi M, Dehghannoudeh G. Absorption enhancer approach for protein delivery by various routes of administration: a rapid review. J Drug Target 2023; 31:950-961. [PMID: 37842966 DOI: 10.1080/1061186x.2023.2271680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
As bioactive molecules, peptides and proteins are essential in living organisms, including animals and humans. Defects in their function lead to various diseases in humans. Therefore, the use of proteins in treating multiple diseases, such as cancers and hepatitis, is increasing. There are different routes to administer proteins, which have limitations due to their large and hydrophilic structure. Another limitation is the presence of biological and lipophilic membranes that do not allow proteins to pass quickly. There are different strategies to increase the absorption of proteins from these biological membranes. One of these strategies is to use compounds as absorption enhancers. Absorption enhancers are compounds such as surfactants, phospholipids and cyclodextrins that increase protein passage through the biological membrane and their absorption by different mechanisms. This review focuses on using other absorption enhancers and their mechanism in protein administration routes.
Collapse
Affiliation(s)
- Toktam Salehi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Raeisi Estabragh
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Soodeh Salarpour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghannoudeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
6
|
Lukova P, Katsarov P. Contemporary Aspects of Designing Marine Polysaccharide Microparticles as Drug Carriers for Biomedical Application. Pharmaceutics 2023; 15:2126. [PMID: 37631340 PMCID: PMC10458623 DOI: 10.3390/pharmaceutics15082126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The main goal of modern pharmaceutical technology is to create new drug formulations that are safer and more effective. These formulations should allow targeted drug delivery, improved drug stability and bioavailability, fewer side effects, and reduced drug toxicity. One successful approach for achieving these objectives is using polymer microcarriers for drug delivery. They are effective for treating various diseases through different administration routes. When creating pharmaceutical systems, choosing the right drug carrier is crucial. Biomaterials have become increasingly popular over the past few decades due to their lack of toxicity, renewable sources, and affordability. Marine polysaccharides, in particular, have been widely used as substitutes for synthetic polymers in drug carrier applications. Their inherent properties, such as biodegradability and biocompatibility, make marine polysaccharide-based microcarriers a prospective platform for developing drug delivery systems. This review paper explores the principles of microparticle design using marine polysaccharides as drug carriers. By reviewing the current literature, the paper highlights the challenges of formulating polymer microparticles, and proposes various technological solutions. It also outlines future perspectives for developing marine polysaccharides as drug microcarriers.
Collapse
Affiliation(s)
- Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Plamen Katsarov
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
7
|
Fu Y, Luo Y, Chen X, Tong Y, Zhu Y, Yang L. Atropine-eluting silicone contact lenses for myopia control. J Biomater Appl 2023; 37:1724-1735. [PMID: 37083186 DOI: 10.1177/08853282231166858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Myopia, also known as nearsightedness, is one of the prime reasons for vision impairment worldwide. Atropine in topical ophthalmic solutions (e.g., 0.01% atropine sulfate eye drops) is the primary medical treatment for controlling myopia, especially for pseudomyopia or true myopia in rapid progress. However, aqueous atropine solution is unstable and easily breaks down to tropic acid, which will result in vision blur. Drug-eluting contact lenses (CLs) have been explored as a potentially superior alternative to effectively control the drug release and improve the drug efficacy. In this work, an atropine-eluting contact lens was developed by encapsulating an atropine implant in a silicon-based contact lens, towards functioning in vision correction and controlling myopia. The safety and effectiveness of this atropine-eluting contact lens were verified with rabbit and guinea pig models. The results showed that the lenses reduced the side effects like mydriasis and no other adverse events were observed in rabbit eyes. More importantly, atropine-loaded lenses could effectively delay the progress of form-deprivation myopia with guinea pig eyes as the model. Thus, we concluded that atropine-eluting CLs prepared by implantation technology may be an option for the treatment of myopia.
Collapse
Affiliation(s)
- Yan Fu
- Affiliated Hospital of Medical School Ningbo University, Ningbo, China
- School of medicine, Ningbo University, Ningbo, China
| | - Yang Luo
- Affiliated Hospital of Medical School Ningbo University, Ningbo, China
- School of medicine, Ningbo University, Ningbo, China
| | - Xi Chen
- Affiliated Hospital of Medical School Ningbo University, Ningbo, China
| | - Yao Tong
- Affiliated Hospital of Medical School Ningbo University, Ningbo, China
- School of medicine, Ningbo University, Ningbo, China
| | - Yabin Zhu
- School of medicine, Ningbo University, Ningbo, China
| | - Lu Yang
- Affiliated Hospital of Medical School Ningbo University, Ningbo, China
- School of medicine, Ningbo University, Ningbo, China
| |
Collapse
|
8
|
Wang W, Zhang F, Yu S, Ma N, Huang C, Wang M, Wei L, Zhang J, Fu A. Prevention of myopia shift and myopia onset using 0.01% atropine in premyopic children - a prospective, randomized, double-masked, and crossover trial. Eur J Pediatr 2023:10.1007/s00431-023-04921-5. [PMID: 36944782 DOI: 10.1007/s00431-023-04921-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/23/2023]
Abstract
This study aims to evaluate the efficacy of 0.01% atropine eye drops in preventing myopia shift and myopia onset in premyopic children. A prospective, randomized, double-masked, placebo-controlled, and crossover trial was conducted over 13 months. Sixty premyopic children aged 6-12 years with cycloplegic spherical equivalent refraction (SER) > - 0.75 D and ≤ + 0.50 D in both eyes were assigned in a 1:1 ratio to receive one drop of 0.01% atropine or placebo once nightly for 6 months (period 1), followed by a 1-month recovery period. Then, the 0.01% atropine group was crossed over to the placebo group, and the latter was crossed over to the 0.01% atropine group for another 6 months (period 2). The primary outcomes were changes in SER and axial length (AL), and the secondary outcomes were the proportion of myopia onset (SER ≤ - 0.75D) and fast myopic shift (change in SER ≤ - 0.25D) in the two periods. Generalized estimating equation (GEE) model performed a statistically significant treatment effect of 0.01% atropine compared with placebo (pSER = 0.02, pAL < 0.001), with a mean SER and AL difference of 0.20D (- 0.15 ± 0.26D vs. - 0.34 ± 0.34D) and 0.11 mm (0.17 ± 0.11 mm vs. 0.28 ± 0.14 mm) in period 1, and 0.17D (- 0.18 ± 0.24D vs. - 0.34 ± 0.31D) and 0.10 mm (0.15 ± 0.15 mm vs. 0.24 ± 0.11 mm) in period 2. The GEE model showed that the proportion of myopia onset (p = 0.004) and fast myopic shift (p = 0.009) was significantly lower in the 0.01% atropine group than that in the placebo group. The period effect was not statistically significant (all p > 0.05). A total of 0.01% atropine significantly prevented myopic shift, axial elongation, and myopia onset in premyopic schoolchildren in central Mainland China. CONCLUSION Within the limits of only two consecutive 6-month observation period, 0.01% atropine eye drops effectively prevented myopic shift, axial elongation, and myopia onset in premyopic children. TRIAL REGISTRATION This trial was registered in the Chinese Clinical Trial Registry (Registration number: ChiCTR2000034760). Registered 18 July 2020. WHAT IS KNOWN • Minimal studies on interventions for pre-myopia, despite the International Myopia Institute stating that preventing myopia is an "even more valuable target" for science and practice than reducing progression after onset. WHAT IS NEW • A total of 0.01% atropine eye drops may safely and effectively reduce the proportion of myopia onset and fast myopic shift in premyopic schoolchildren.
Collapse
Affiliation(s)
- Weiqun Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Fengyan Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Shiao Yu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Nana Ma
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Congcong Huang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Ming Wang
- Beijing Aier Intech Eye Hospital, Beijing, 100021, China
| | - Li Wei
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Junjie Zhang
- Henan Eye Institute, Henan Provincial People's Hospital, Zhengzhou, 450000, China
| | - Aicun Fu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
9
|
Wei RY, Jiang YY, Tang K, Wang Z, Tan NH. Simultaneous determination of Panax notoginseng total saponins in rabbit tears by UPLC-QqQ-MS/MS and its application to pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1218:123490. [PMID: 36854204 DOI: 10.1016/j.jchromb.2022.123490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/15/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Panax notoginseng total saponins (PNS), the main bioactive components of the radix and rhizome of Panax notoginseng (Burk.) F.H. Chen, could treat eye disorders. For the treatment of ocular diseases, eye drops are the first choice with the most common, economic and good compliance. So we proposed that PNS might be able to treat inflammatory ocular surface diseases by eye drops based on its anti-inflammatory and antioxidant activities. The short elimination half-life (t1/2) and rapid elimination of PNS after oral or intravenous administration may limit its application for eye disorders. Meanwhile, there is a lack of pharmacokinetic study on trace amount of tear samples with PNS eye drops. Therefore, a simple and sensitive ultra-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UPLC-QqQ-MS/MS) method by multiple reaction monitoring (MRM) in positive ion mode was firstly developed and applied in the pharmacokinetic study of PNS in rabbit tears. Tears samples were prepared by protein precipitation using methanol. The linearity, limit of detection, limit of quantification, specificity, precision, repeatability, stability, recovery, and matrix effect have been investigated and passed their validation criteria. Compared with prior methods, this method has the advantages of rapid analysis, high sensitivity, simple sample preparation and less sample demands. The pharmacokinetic results indicated that PNS eye drops had a slower elimination and a longer t1/2 by topical ocular administration, which is expected to improve the success rate of eye drops in the treatment of anterior segment diseases. The ocular pharmacokinetics of PNS provides an experimental guidance and feasibility basis for in vivo effect verification of PNS eye drops in the future investigation.
Collapse
Affiliation(s)
- Rong-Yun Wei
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ye-Ying Jiang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Kai Tang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhen Wang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Ning-Hua Tan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
10
|
Abstract
INTRODUCTION Retinal diseases are one of the main reasons for vision loss where all available drug treatments are based on invasive drug administration such as intravitreal injections. Despite huge efforts and some promising results in animal models, almost all delivery technologies tested have failed in human trials. There are however examples of clinically effective topical delivery systems such as fast dissolving aqueous eye drop suspensions. AREAS COVERED Six obstacles to topical drug delivery to the eye have been identified and discussed in some details. These obstacles consist of static membrane barriers to drug permeation into the eye, dynamic barriers such as the lacrimal drainage and physiochemical barriers such as low thermodynamic activity. It is explained how and why these obstacles hamper drug permeation and how different technologies, both those that are applied in marketed drug products and those that are under investigation, have addressed these obstacles. EXPERT OPINION The reason that most topical drug delivery systems have failed to deliver therapeutic drug concentrations to the retina is that they do not address physiochemical barriers such as the thermodynamic activity of the permeating drug molecules. Topical drug delivery to the retina has only been successful when the static, dynamic, and physiochemical barriers are addressed simultaneously.
Collapse
Affiliation(s)
- Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
11
|
Stable Atropine Loaded Film As a Potential Ocular Delivery System For Treatment Of Myopia. Pharm Res 2021; 38:1931-1946. [PMID: 34773183 DOI: 10.1007/s11095-021-03135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE The objective of the present study was to prepare stable and high bioavailability ocular atropine loaded films (ATR-films) as potential ocular drug delivery systems for the treatment of myopia. METHODS ATR-films were prepared by the solvent casting method and the physical properties of films were evaluated including thickness, water content, light transparency, disintegration time, and mechanical properties. FT-IR, DSC, XRD, TGA, AFM, and Raman spectroscopy were performed to characterize the film. The stability test was conducted under different conditions, such as high humidity, high temperature, and strong light. The pharmacokinetic study and irritation assessment were conducted in rabbits. The efficacy of ATR-films was evaluated by refraction and ocular biometry in myopia guinea pigs. RESULT After optimizing the formulation, the resulting ATR-film was flexible and transparent with lower water content (8.43% ± 1.25). As expected, the ATR-film was stable and hydrolysate was not detected, while the content of hydrolysate in ATR eye drops can reach up to 8.1867% (limit: < 0.2%) in the stability study. The safety assessment both in vitro and in vivo confirmed that the ATR-film was biocompatible. Moreover, the bioavailability (conjunctiva 3.21-fold, cornea 2.87-fold, retina 1.35-fold, sclera 2.05-fold) was greatly improved compared with the ATR eye drops in vivo pharmacokinetic study. The pharmacodynamic study results showed that the ATR-film can slow the progress of form-deprivation myopia (~ 100 ± 0.81D), indicating that it has a certain therapeutic effect on form-deprivation myopia. CONCLUSION The ATR-film with good stability and high bioavailability will have great potential for the treatment of myopia.
Collapse
|