1
|
Karnwal A, Sharma V, Kumar G, Jassim AY, Dohroo A, Sivanesan I. Transforming Medicine with Nanobiotechnology: Nanocarriers and Their Biomedical Applications. Pharmaceutics 2024; 16:1114. [PMID: 39339152 PMCID: PMC11435024 DOI: 10.3390/pharmaceutics16091114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/11/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Nanobiotechnology, at the intersection of nanotechnology and biology, represents a burgeoning field poised to revolutionize medicine through the use of advanced nanocarriers. These nanocarriers, endowed with distinctive physiobiological attributes, are instrumental in diverse therapeutic domains including drug delivery for microbial infections, cancer treatment, tissue engineering, immunotherapy, and gene therapy. Despite the transformative potential, several challenges hinder their efficacy, such as limited drug capacity, suboptimal targeting, and poor solubility. This review delves into the latest advancements in nanocarrier technologies, examining their properties, associated limitations, and the innovative solutions developed to address these issues. It highlights promising nanocarrier systems like nanocomposites, micelles, hydrogels, microneedles, and artificial cells that employ advanced conjugation techniques, sustained and stimulus-responsive release mechanisms, and enhanced solubility. By exploring these novel structures and their contributions to overcoming existing barriers, the article emphasizes the vital role of interdisciplinary research in advancing nanobiotechnology. This field offers unparalleled opportunities for precise and effective therapeutic delivery, underscoring its potential to reshape healthcare through personalized, targeted treatments and improved drug performance.
Collapse
Affiliation(s)
- Arun Karnwal
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India; (A.K.); (G.K.)
| | - Vikas Sharma
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Gaurav Kumar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India; (A.K.); (G.K.)
| | - Amar Yasser Jassim
- Department of Marine Vertebrate, Marine Science Center, University of Basrah, Basrah 61004, Iraq;
| | - Aradhana Dohroo
- School of Agricultural Sciences, Baddi University of Emerging Sciences and Technologies, Baddi 173405, India;
| | - Iyyakkannu Sivanesan
- Department of Environmental Health Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
Liu X, Wang W, Li Q, Niu H, Zhang W. Therapeutic potentials of peptide-derived nanoformulations in atherosclerosis: present status and future directions. INTERNATIONAL JOURNAL OF SMART AND NANO MATERIALS 2024; 15:610-651. [DOI: 10.1080/19475411.2024.2395270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/18/2024] [Indexed: 01/06/2025]
Affiliation(s)
- Xue Liu
- Department of Cardiovascular Medicine, Yantaishan Hospital, Yantai, China
| | - Weijiao Wang
- Department of Otolaryngology, Yantaishan Hospital, Yantai, China
| | - Qiang Li
- Department of Cardiovascular Medicine, Yantaishan Hospital, Yantai, China
| | - Hongtao Niu
- Department of Cardiovascular Medicine, Yantaishan Hospital, Yantai, China
| | - Weili Zhang
- Department of Geriatric Medicine, Yantaishan Hospital, Yantai, China
| |
Collapse
|
3
|
Hu C, Zang N, Tam YT, Dizon D, Lee K, Pang J, Torres E, Cui Y, Yen CW, Leung DH. A New Approach for Preparing Stable High-Concentration Peptide Nanoparticle Formulations. Pharmaceuticals (Basel) 2023; 17:15. [PMID: 38276000 PMCID: PMC10821397 DOI: 10.3390/ph17010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
The subcutaneous administration of therapeutic peptides would provide significant benefits to patients. However, subcutaneous injections are limited in dosing volume, potentially resulting in high peptide concentrations that can incur significant challenges with solubility limitations, high viscosity, and stability liabilities. Herein, we report on the discovery that low-shear resonant acoustic mixing can be used as a general method to prepare stable nanoparticles of a number of peptides of diverse molecular weights and structures in water without the need for extensive amounts of organic solvents or lipid excipients. This approach avoids the stability issues observed with typical high-shear, high-intensity milling methods. The resultant peptide nanosuspensions exhibit low viscosity even at high concentrations of >100 mg/mL while remaining chemically and physically stable. An example nanosuspension of cyclosporine nanoparticles was dosed in rats via a subcutaneous injection and exhibited sustained release behavior. This suggests that peptide nanosuspension formulations can be one approach to overcome the challenges with high-concentration peptide formulations.
Collapse
Affiliation(s)
- Chloe Hu
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA; (C.H.); (N.Z.); (C.-W.Y.)
| | - Nanzhi Zang
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA; (C.H.); (N.Z.); (C.-W.Y.)
| | - Yu Tong Tam
- Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 940802, USA;
| | - Desmond Dizon
- Device Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA;
| | - Kaylee Lee
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA; (K.L.); (J.P.); (Y.C.)
| | - Jodie Pang
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA; (K.L.); (J.P.); (Y.C.)
| | - Elizabeth Torres
- Development Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA;
| | - Yusi Cui
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA; (K.L.); (J.P.); (Y.C.)
| | - Chun-Wan Yen
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA; (C.H.); (N.Z.); (C.-W.Y.)
| | - Dennis H. Leung
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA; (C.H.); (N.Z.); (C.-W.Y.)
| |
Collapse
|