1
|
Chen G, Zhang L, Zhao ST, Huang H, Fu Z. Differences in ocular adverse events associated with phosphodiesterase-5 inhibitors: a real-world pharmacovigilance study. Expert Opin Drug Saf 2024; 23:877-884. [PMID: 38739482 DOI: 10.1080/14740338.2024.2355335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/28/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVE Our study aims to characterize the ocular safety profiles of phosphodiesterase type 5 (PDE5) inhibitors and explore the differences among different PDE5 inhibitors. METHODS We analyzed reports on ocular adverse events associated with sildenafil, vardenafil and tadalafil submitted to the FDA Adverse Event Reporting System (FAERS) database from the first quarter of 2004 to the first quarter of 2023. Disproportionality analysis was conducted to evaluate reporting risk profiles. RESULTS Among 61,211 reports qualifying for analysis, 5,127 involved sildenafil, 832 vardenafil, and 3,733 tadalafil. All PDE5 inhibitors showed increased reporting odds ratios (ROR) for ocular adverse events, with vardenafil highest (ROR 4.47) followed by sildenafil and tadalafil. Key ocular adverse events included cyanopsia, optic ischemic neuropathy, visual field defects, unilateral blindness and blindness. Sildenafil showed the highest disproportionality for cyanopsia (ROR 1148.11) while vardenafil and tadalafil showed the highest disproportionality for optic ischemic neuropathy. Time-to-onset analysis also revealed significant differences, with sildenafil having a later median time-to-onset compared to vardenafil and tadalafil. CONCLUSIONS This comprehensive pharmacovigilance study reveals distinct patterns of ocular adverse events associated with PDE5 inhibitors. These findings contribute to a better understanding of the safety profiles of PDE5 inhibitors and may guide healthcare professionals in clinical decision-making.
Collapse
Affiliation(s)
- Guixiang Chen
- Department of Pharmacy, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong, China
| | - Li Zhang
- Department of Pharmacy, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong, China
| | - Si-Ting Zhao
- Department of Pharmacy, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong, China
| | - Hao Huang
- Department of Pharmacy, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong, China
| | - Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Varghese R, Digholkar G, Karsiya J, Salvi S, Shah J, Kumar D, Sharma R. PDE5 inhibitors: breaking new grounds in the treatment of COVID-19. Drug Metab Pers Ther 2023; 38:295-307. [PMID: 38167268 DOI: 10.1515/dmpt-2023-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/30/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION Despite the ever-increasing occurrences of the coronavirus disease (COVID-19) cases around the world, very few medications have been validated in the clinical trials to combat COVID-19. Although several vaccines have been developed in the past quarter, the time elapsed between deployment and administration remains a major impediment. CONTENT Repurposing of pre-approved drugs, such as phosphodiesterase 5 (PDE5) inhibitors, could be a game-changer while lessening the burden on the current healthcare system. Repurposing and developing phosphodiesterase 5 (PDE5) inhibitors could extrapolate their utility to combat the SARS-CoV-2 infection, and potentially aid in the management of the symptoms associated with its newer variants such as BF.7, BQ.1, BQ.1.1, XBB.1.5, and XBB.1.16. SUMMARY Administration of PDE5 inhibitors via the oral and intravenous route demonstrates other potential off-label benefits, including anti-apoptotic, anti-inflammatory, antioxidant, and immunomodulatory effects, by intercepting several pathways. These effects can not only be of clinical importance in mild-to-moderate, but also moderate-to-severe SARS-CoV-2 infections. This article explores the various mechanisms by which PDE5 inhibitors alleviates the symptoms associated with COVID-19 as well as well as highlights recent studies and findings. OUTLOOK These benefits of PDE5 inhibitors make it a potential drug in the physicians' armamentarium in alleviating symptoms associated with SARS-CoV-2 infection. However, adequate clinical studies must be instituted to eliminate any untoward adverse events.
Collapse
Affiliation(s)
- Ryan Varghese
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Gargi Digholkar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Jainam Karsiya
- River Route Creative Group LLP, Mumbai, Maharashtra, India
| | - Sahil Salvi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Jeenam Shah
- Department of Pulmonology, Saifee Hospital, Girgaon, Mumbai, Maharashtra, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
- Department of Entomology, University of California, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
3
|
Varghese R, Digholkar G, Karsiya J, Salvi S, Shah J, Kumar D, Sharma R. PDE5 inhibitors: breaking new grounds in the treatment of COVID-19. Drug Metab Pers Ther 2023; 0:dmdi-2023-0011. [PMID: 37608528 DOI: 10.1515/dmdi-2023-0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/30/2023] [Indexed: 08/24/2023]
Abstract
INTRODUCTION Despite the ever-increasing occurrences of the coronavirus disease (COVID-19) cases around the world, very few medications have been validated in the clinical trials to combat COVID-19. Although several vaccines have been developed in the past quarter, the time elapsed between deployment and administration remains a major impediment. CONTENT Repurposing of pre-approved drugs, such as phosphodiesterase 5 (PDE5) inhibitors, could be a game-changer while lessening the burden on the current healthcare system. Repurposing and developing phosphodiesterase 5 (PDE5) inhibitors could extrapolate their utility to combat the SARS-CoV-2 infection, and potentially aid in the management of the symptoms associated with its newer variants such as BF.7, BQ.1, BQ.1.1, XBB.1.5, and XBB.1.16. SUMMARY Administration of PDE5 inhibitors via the oral and intravenous route demonstrates other potential off-label benefits, including anti-apoptotic, anti-inflammatory, antioxidant, and immunomodulatory effects, by intercepting several pathways. These effects can not only be of clinical importance in mild-to-moderate, but also moderate-to-severe SARS-CoV-2 infections. This article explores the various mechanisms by which PDE5 inhibitors alleviates the symptoms associated with COVID-19 as well as well as highlights recent studies and findings. OUTLOOK These benefits of PDE5 inhibitors make it a potential drug in the physicians' armamentarium in alleviating symptoms associated with SARS-CoV-2 infection. However, adequate clinical studies must be instituted to eliminate any untoward adverse events.
Collapse
Affiliation(s)
- Ryan Varghese
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Gargi Digholkar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Jainam Karsiya
- River Route Creative Group LLP, Mumbai, Maharashtra, India
| | - Sahil Salvi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Jeenam Shah
- Department of Pulmonology, Saifee Hospital, Girgaon, Mumbai, Maharashtra, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
- Department of Entomology, University of California, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
4
|
Zuccarello E, Zhang H, Acquarone E, Pham D, Staniszewski A, Deng SX, Landry DW, Arancio O, Fiorito J. Optimizing metabolic stability of phosphodiesterase 5 inhibitors: Discovery of a potent N-(pyridin-3-ylmethyl)quinoline derivative targeting synaptic plasticity. Bioorg Med Chem Lett 2023; 92:129409. [PMID: 37453616 PMCID: PMC10528936 DOI: 10.1016/j.bmcl.2023.129409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Phosphodiesterase 5 (PDE5) is a cyclic guanosine monophosphate-degrading enzyme involved in numerous biological pathways. Inhibitors of PDE5 are important therapeutics for the treatment of neurodegenerative diseases, including Alzheimer's disease (AD). We previously reported the first generation of quinoline-based PDE5 inhibitors for the treatment of AD. However, the short in vitro microsomal stability rendered them unsuitable drug candidates. Here we report a series of new quinoline-based PDE5 inhibitors. Among them, compound 4b, 8-cyclopropyl-3-(hydroxymethyl)-4-(((6-methoxypyridin-3-yl)methyl)amino)quinoline-6-carbonitrile, shows a PDE5 IC50 of 20 nM and improved in vitro microsomal stability (t1/2 = 44.6 min) as well as excellent efficacy in restoring long-term potentiation, a type of synaptic plasticity to underlie memory formation, in electrophysiology experiments with a mouse model of AD. These results provide an insight into the development of a new class of PDE5 inhibitors for the treatment of AD.
Collapse
Affiliation(s)
- Elisa Zuccarello
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Department of Medicine, Columbia University, New York, NY, United States
| | - Hong Zhang
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Erica Acquarone
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Dang Pham
- New York Institute of Technology, Department of Biological and Chemical Sciences, Northern Boulevard, Old Westbury, NY 11568, United States
| | - Anna Staniszewski
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Shi-Xian Deng
- Department of Medicine, Columbia University, New York, NY, United States
| | - Donald W Landry
- Department of Medicine, Columbia University, New York, NY, United States
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Department of Medicine, Columbia University, New York, NY, United States; Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Jole Fiorito
- New York Institute of Technology, Department of Biological and Chemical Sciences, Northern Boulevard, Old Westbury, NY 11568, United States; Department of Medicine, Columbia University, New York, NY, United States.
| |
Collapse
|
5
|
Hainsworth AH, Arancio O, Elahi FM, Isaacs JD, Cheng F. PDE5 inhibitor drugs for use in dementia. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12412. [PMID: 37766832 PMCID: PMC10520293 DOI: 10.1002/trc2.12412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 09/29/2023]
Abstract
Alzheimer's disease and related dementias (ADRD) remain a major health-care challenge with few licensed medications. Repurposing existing drugs may afford prevention and treatment. Phosphodiesterase-5 (PDE5) is widely expressed in vascular myocytes, neurons, and glia. Potent, selective, Food and Drug Administration-approved PDE5 inhibitors are already in clinical use (sildenafil, vardenafil, tadalafil) as vasodilators in erectile dysfunction and pulmonary arterial hypertension. Animal data indicate cognitive benefits of PDE5 inhibitors. In humans, real-world patient data suggest that sildenafil and vardenafil are associated with reduced dementia risk. While a recent clinical trial of acute tadalafil on cerebral blood flow was neutral, there may be chronic actions of PDE5 inhibition on cerebrovascular or synaptic function. We provide a perspective on the potential utility of PDE5 inhibitors for ADRD. We conclude that further prospective clinical trials with PDE5 inhibitors are warranted. The choice of drug will depend on brain penetration, tolerability in older people, half-life, and off-target effects. HIGHLIGHTS Potent phosphodiesterase-5 (PDE5) inhibitors are in clinical use as vasodilators.In animals PDE5 inhibitors enhance synaptic function and cognitive ability.In humans the PDE5 inhibitor sildenafil is associated with reduced risk of Alzheimer's disease.Licensed PDE5 inhibitors have potential for repurposing in dementia.Prospective clinical trials of PDE5 inhibitors are warranted.
Collapse
Affiliation(s)
- Atticus H. Hainsworth
- Molecular & Clinical Sciences Research InstituteSt George's University of LondonLondonUK
- Department of NeurologySt George's University Hospitals NHS Foundation TrustLondonUK
| | - Ottavio Arancio
- Department of Pathology and Cell BiologyTaub Institute for Research on Alzheimer's Disease and the Aging BrainDepartment of MedicineColumbia UniversityNew YorkNew YorkUSA
| | - Fanny M. Elahi
- Departments of Neurology and NeuroscienceRonald M. Loeb Center for Alzheimer's DiseaseFriedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jeremy D. Isaacs
- Molecular & Clinical Sciences Research InstituteSt George's University of LondonLondonUK
- Department of NeurologySt George's University Hospitals NHS Foundation TrustLondonUK
| | - Feixiong Cheng
- Genomic Medicine InstituteLerner Research InstituteCleveland ClinicClevelandOhioUSA
- Department of Molecular MedicineCleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
6
|
Lee A, Lebedyeva I, Zhi W, Senthil V, Cheema H, Brands MW, Bush W, Lambert NA, Snipes M, Browning DD. A Non-Systemic Phosphodiesterase-5 Inhibitor Suppresses Colon Proliferation in Mice. Int J Mol Sci 2023; 24:9397. [PMID: 37298349 PMCID: PMC10253591 DOI: 10.3390/ijms24119397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Phosphodiesterase-5 inhibitors (PDE5i) are under investigation for repurposing for colon cancer prevention. A drawback to conventional PDE5i are their side-effects and drug-drug interactions. We designed an analog of the prototypical PDE5i sildenafil by replacing the methyl group on the piperazine ring with malonic acid to reduce lipophilicity, and measured its entry into the circulation and effects on colon epithelium. This modification did not affect pharmacology as malonyl-sildenafil had a similar IC50 to sildenafil but exhibited an almost 20-fold reduced EC50 for increasing cellular cGMP. Using an LC-MS/MS approach, malonyl-sildenafil was negligible in mouse plasma after oral administration but was detected at high levels in the feces. No bioactive metabolites of malonyl-sildenafil were detected in the circulation by measuring interactions with isosorbide mononitrate. The treatment of mice with malonyl-sildenafil in the drinking water resulted in a suppression of proliferation in the colon epithelium that is consistent with results previously published for mice treated with PDE5i. A carboxylic-acid-containing analog of sildenafil prohibits the systemic delivery of the compound but maintains sufficient penetration into the colon epithelium to suppress proliferation. This highlights a novel approach to generating a first-in-class drug for colon cancer chemoprevention.
Collapse
Affiliation(s)
- Avelina Lee
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Iryna Lebedyeva
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA
| | - Vani Senthil
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Herjot Cheema
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Michael W. Brands
- Department of Physiology, Augusta University, Augusta, GA 30912, USA
| | - Weston Bush
- Department of Physiology, Augusta University, Augusta, GA 30912, USA
| | - Nevin A. Lambert
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, USA
| | - Madeline Snipes
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Darren D. Browning
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
7
|
Chen Z, Huang Y, Cao D, Qiu S, Chen B, Li J, Bao Y, Wei Q, Han P, Liu L. Function of sildenafil on diseases other than urogenital system: An umbrella review. Front Pharmacol 2023; 14:1033492. [PMID: 36814496 PMCID: PMC9939646 DOI: 10.3389/fphar.2023.1033492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Background: To investigate the function of sildenafil on diseases other than urogenital system, an umbrella review was conducted. Methods: Meta-analysis and systematic reviews on this topic were comprehensively evaluated in this umbrella review. Quality of evidence was evaluated through AMSTAR and the Grading of Recommendations, Assessment, Development and Evaluation system to generate a reliable and valid conclusion. Results: 77 out of 1164 meta-analysis were enrolled. 33 significant outcomes and 41 non-significant outcomes were extracted from all eligible articles. We found sildenafil did significant help in reducing arterial systolic pressure, mean pulmonary arterial pressure, pulmonary arterial pressure, systolic pulmonary arterial pressure in patients with pulmonary and cardiovascular diseases. Besides, sildenafil also improved exercise capacity or performance in patients with pulmonary and cardiovascular diseases. Other than these patients, this drug contributed great help in pregnant women with fetal growth restriction and preeclampsia by increasing the weight of newborns and lowering uterine and umbilical pulsatility indices. Additionally, it was reported that utilization of sildenafil has brought increased risk of melanoma. Conclusion: We can conclude from our study that sildenafil played an important role in many fields, especially in vascular protection. This finding provides a strong evidence for further expansion of sildenafil utilization in other diseases.
Collapse
Affiliation(s)
- Zeyu Chen
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,West China School of Clinical Medicine, Sichuan University, Chengdu, China
| | - Yin Huang
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,West China School of Clinical Medicine, Sichuan University, Chengdu, China
| | - Dehong Cao
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shi Qiu
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Chen
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,West China School of Clinical Medicine, Sichuan University, Chengdu, China
| | - Jin Li
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,West China School of Clinical Medicine, Sichuan University, Chengdu, China
| | - Yige Bao
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Han
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Ping Han, ; Liangren Liu,
| | - Liangren Liu
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Ping Han, ; Liangren Liu,
| |
Collapse
|
8
|
Sheweita SA, Alian DME, Haroun M, Nounou MI, Patel A, El-Khordagui L. Chitosan Nanoparticles Alleviated the Adverse Effects of Sildenafil on the Oxidative Stress Markers and Antioxidant Enzyme Activities in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9944985. [PMID: 36891377 PMCID: PMC9988388 DOI: 10.1155/2023/9944985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 11/25/2022] [Indexed: 02/01/2023]
Abstract
Sildenafil (SF) is widely used for erectile dysfunction and other conditions, though with limitations regarding oral absorption and adverse effects. Despite nanotechnological improvements, the effect of nanocarriers on SF hepatotoxicity has not been documented to date. This study aimed at assessing the impact of chitosan nanoparticles either uncoated (CS NPs) or Tween 80-coated (T-CS NPs) on the effects of SF on oxidative stress markers and antioxidant enzyme activities in rats. Test SF-CS NPs prepared by ionic gelation were uniform positively charged nanospheres (diameter 178-215 nm). SF was administered intraperitoneally to male rats (1.5 mg/kg body weight) in free or nanoencapsulated forms as SF-CS NPs and T-SF-CS NPs for 3 weeks. Free SF significantly suppressed the activity of the antioxidant enzymes glutathione S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT), and superoxide dismutase (SOD), as well as the levels of glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) as in an indirect measure of free radicals. Interestingly, SF-CS NPs and T-SF-CS-NPs treatments significantly attenuated the inhibitory effects of SF on the activity of these enzymes whereas, GST activity was inhibited. Moreover, the protein expression of GST was downregulated upon treatment of rats with free SF, SF-CS-NPs, and T-SF CS-NPs. In contrast, the activity and protein expression of GPx was induced by SF-CS NPs and T-SF-CS-NPs treatments. The histopathological study showed that SF induced multiple adverse effects on the rat liver architecture which were markedly suppressed particularly by T-SF-CS NPs. In conclusion, chitosan nanoencapsulation of SF counteracted the adverse effects of SF on the activity of antioxidant enzymes and liver architecture. Findings might have significant implications in improving the safety and efficacy of SF treatment of the widely expanding disease conditions.
Collapse
Affiliation(s)
- Salah A. Sheweita
- Department of Clinical Biochemistry, Faculty of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Egypt
| | - Dalia M. Elsayed Alian
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Egypt
| | - Medhat Haroun
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Egypt
| | | | - Ayyub Patel
- Department of Clinical Biochemistry, Faculty of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Labiba El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
9
|
Bakhaidar RB, Naveen NR, Basim P, Murshid SS, Kurakula M, Alamoudi AJ, Bukhary DM, Jali AM, Majrashi MA, Alshehri S, Alissa M, Ahmed RA. Response Surface Methodology (RSM) Powered Formulation Development, Optimization and Evaluation of Thiolated Based Mucoadhesive Nanocrystals for Local Delivery of Simvastatin. Polymers (Basel) 2022; 14:polym14235184. [PMID: 36501579 PMCID: PMC9737842 DOI: 10.3390/polym14235184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
In oral administration systems, mucoadhesive polymers are crucial for drug localization and target-specific activities. The current work focuses on the application of thiolated xanthan gum (TXG) to develop and characterize a novel mucoadhesive nanocrystal (NC) system of simvastatin (SIM). Preparation of SIM-NC was optimized using response surface methodology (RSM) coupled with statistical applications. The concentration of Pluronic F-127 and vacuum pressure were optimized by central composite design. Based on this desirable approach, the prerequisites of the optimum formulation can be achieved by a formulation having 92.568 mg of F-127 and 77.85 mbar vacuum pressure to result in EE of 88.8747% and PS of 0.137.835 nm. An optimized formulation was prepared with the above conditions along with xanthan gum (XG) and TXG and various parameters were evaluated. A formulation containing TXG showed 98.25% of SIM at the end of 96 h. Regarding the mucoadhesion potential evaluated by measuring zeta potential, TXG-SIM-NC shoed the maximum zeta potential of 16,455.8 ± 869 mV at the end of 6 h. The cell viability percentage of TXG-SIM-NC (52.54 ± 3.4% with concentration of 50 µg/mL) was less than the plain SIM, with XG-SIM-NC showing the highest cytotoxicity on HSC-3 cells. In vivo pharmacokinetic studies confirm the enhanced bioavailability of formulated mucoadhesive systems of SIM-NC, with TXG-SIM-NC exhibiting the maximum.
Collapse
Affiliation(s)
- Rana B. Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Pratap Basim
- Thermo Fisher Scientific, Cincinnati, OH 45237, USA
| | - Samar S. Murshid
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Abdulmohsin J. Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Deena M. Bukhary
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammed A. Majrashi
- Department of Pharmacology, College of Medicine, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Sameer Alshehri
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rayan A. Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
10
|
Degjoni A, Campolo F, Stefanini L, Venneri MA. The NO/cGMP/PKG pathway in platelets: The therapeutic potential of PDE5 inhibitors in platelet disorders. J Thromb Haemost 2022; 20:2465-2474. [PMID: 35950928 PMCID: PMC9805178 DOI: 10.1111/jth.15844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 01/09/2023]
Abstract
Platelets are the "guardians" of the blood circulatory system. At sites of vessel injury, they ensure hemostasis and promote immunity and vessel repair. However, their uncontrolled activation is one of the main drivers of thrombosis. To keep circulating platelets in a quiescent state, the endothelium releases platelet antagonists including nitric oxide (NO) that acts by stimulating the intracellular receptor guanylyl cyclase (GC). The latter produces the second messenger cyclic guanosine-3',5'-monophosphate (cGMP) that inhibits platelet activation by stimulating protein kinase G, which phosphorylates hundreds of intracellular targets. Intracellular cGMP pools are tightly regulated by a fine balance between GC and phosphodiesterases (PDEs) that are responsible for the hydrolysis of cyclic nucleotides. Phosphodiesterase type 5 (PDE5) is a cGMP-specific PDE, broadly expressed in most tissues in humans and rodents. In clinical practice, PDE5 inhibitors (PDE5i) are used as first-line therapy for erectile dysfunction, pulmonary artery hypertension, and lower urinary tract symptoms. However, several studies have shown that PDE5i may ameliorate the outcome of various other conditions, like heart failure and stroke. Interestingly, NO donors and cGMP analogs increase the capacity of anti-platelet drugs targeting the purinergic receptor type Y, subtype 12 (P2Y12) receptor to block platelet aggregation, and preclinical studies have shown that PDE5i inhibits platelet functions. This review summarizes the molecular mechanisms underlying the effect of PDE5i on platelet activation and aggregation focusing on the therapeutic potential of PDE5i in platelet disorders, and the outcomes of a combined therapy with PDE5i and NO donors to inhibit platelet activation.
Collapse
Affiliation(s)
- Anisa Degjoni
- Department of Experimental MedicineSapienza University of RomeRomeItaly
| | - Federica Campolo
- Department of Experimental MedicineSapienza University of RomeRomeItaly
| | - Lucia Stefanini
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Mary Anna Venneri
- Department of Experimental MedicineSapienza University of RomeRomeItaly
| |
Collapse
|
11
|
Mostafa T, Alghobary MF. Recreational Use of Oral PDE5 Inhibitors: The Other Side of Midnight. Sex Med Rev 2022; 10:392-402. [PMID: 34903486 DOI: 10.1016/j.sxmr.2021.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Nowadays, Oral phosphodiesterase type 5 inhibitors (PDE5Is) are widely used for the treatment of erectile dysfunction (ED). However, these drugs have become abused among some men for recreational use to enhance their sexual performance. OBJECTIVE To shed a light on the recreational use of oral PDE5Is. METHODS A literature review was performed in the PubMed, Medline Medical Subject Heading, Science Direct, Scopus, Cochrane Library, EMBASE, CINAHL, Academic Search Complete, Google scholar, Egyptian Knowledge Bank (EKB) databases, Medline, Embase, and Chem ID using the keywords; sexual health, erectile dysfunction, recreational use/abuse, phosphodiesterase type 5 inhibitors, sildenafil, tadalafil, vardenafil, avanafil, and adverse effects. RESULTS Overall, 52 studies were retained for review out of 166 papers. Twenty-two studies that assessed the prevalence of the problem were investigated including 25,279 men from different countries. Most of these studies were cross-sectional studies that depend on multiple questionnaires representing the extent as well as the attitude of the recreational use of PDE5Is. CONCLUSION Oral PDE5Is have become used among some men for recreational use to enhance their sexual performance. To counteract the possible side effects of such abuse, the media, as well as health authorities, should be aware of the potential adverse effects of such abuse and strengthen the regulatory activity to protect the customers from such risks. Mostafa T, Alghobary MF. Recreational Use of Oral PDE5 Inhibitors: The Other Side of Midnight. Sex Med Rev 2022;10:385-395.
Collapse
Affiliation(s)
- Taymour Mostafa
- Department of Andrology, Sexology & STIs, Cairo University, Cairo, Egypt.
| | | |
Collapse
|
12
|
Nguyen TO, Tran CS, Do TTH, Nguyen TMH, Bui QD, Bui CT, Nguyen HN, Dang TH, Dinh VC, Nguyen TAH, Le THH. Rapid Screening and Quantitative Determination of Illegal Phosphodiesterase Type 5 Inhibitors (PDE-5i) in Herbal Dietary Supplements. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:5579500. [PMID: 34035975 PMCID: PMC8116155 DOI: 10.1155/2021/5579500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Phosphodiesterase type 5 inhibitors (PDE-5i) are the first-line medication for oral erectile dysfunction, which are used according to the prescription of doctors. However, these substances have been found illegally in supplementary foods. The quality and safety of dietary supplements for enhancing male sexual performance have been questioned, raising the need for continual development of analytical methods. Liquid chromatography coupled with high-resolution mass spectrometry has become one of the most effective methods to identify and measure PDE-5i concentration. In this research, we focused on (i) developing and validating an effective screening and quantitation method for more than 53 PDE-5i in ingredients and supplementary products using LC-Q-Exactive after a simple sample extraction and (ii) assessing PDE-5i content in natural-based supplementary products available in Vietnam market. The extraction method used a small amount of organic solvent, which makes it more environmentally friendly (greener). The developed method has a limit of detection of 0.4 mg/kg, a limit of quantitation of 1.2 mg/kg, recoveries from 80 to 110%, and repeatability lower than 15%. Ninety-two herbal supplementary foods and ingredients used for enhancement of male sexual performance available in Vietnamese markets were collected. Fourteen PDE-5i including conventional and novel analogous were detected and measured in eighteen food supplements and two formulation ingredient samples.
Collapse
Affiliation(s)
- Thi Oanh Nguyen
- Vietnam Food Administration, 135 Nui Truc, Ba Dinh, Hanoi 10000, Vietnam
- University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam
| | - Cao-Son Tran
- National Institute for Food Control, 65 Pham Than Duat, Cau Giay, Hanoi 10000, Vietnam
| | - Thi Thu Hang Do
- National Institute for Food Control, 65 Pham Than Duat, Cau Giay, Hanoi 10000, Vietnam
| | - Thi Minh Hoa Nguyen
- National Institute for Food Control, 65 Pham Than Duat, Cau Giay, Hanoi 10000, Vietnam
| | - Quang-Dong Bui
- National Institute for Food Control, 65 Pham Than Duat, Cau Giay, Hanoi 10000, Vietnam
| | - Cao-Tien Bui
- National Institute for Food Control, 65 Pham Than Duat, Cau Giay, Hanoi 10000, Vietnam
| | - Hong-Ngoc Nguyen
- National Institute for Food Control, 65 Pham Than Duat, Cau Giay, Hanoi 10000, Vietnam
| | - Thu-Hien Dang
- National Institute for Food Control, 65 Pham Than Duat, Cau Giay, Hanoi 10000, Vietnam
| | - Viet-Chien Dinh
- National Institute for Food Control, 65 Pham Than Duat, Cau Giay, Hanoi 10000, Vietnam
| | - Thi Anh Huong Nguyen
- University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam
| | - Thi Hong Hao Le
- University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam
- National Institute for Food Control, 65 Pham Than Duat, Cau Giay, Hanoi 10000, Vietnam
| |
Collapse
|
13
|
Mostafa T. Could Oral Phosphodiesterase 5 Inhibitors Have a Potential Adjuvant Role in Combating COVID-19 Infection? Sex Med Rev 2021; 9:15-22. [PMID: 33077403 PMCID: PMC7833179 DOI: 10.1016/j.sxmr.2020.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The recent global outbreak of coronavirus disease 2019 (COVID-19) has become a pandemic with a lot of sufferers. Excessive inflammation, exaggerated immune response, with ultimate apoptosis contribute to COVID-19 pathology that progress to acute lung acute respiratory distress. OBJECTIVE To shed a light on the likely benefits of the oral phosphodiesterase 5 (PDE5) inhibitor adjuvant role in combating COVID-19 infection. METHODS A literature review was performed in the PubMed/Medline database, Scopus, Cochrane Library, EMBASE, Academic Search Complete, Google Scholar, and CINAHL databases using the keywords COVID-19; phosphodiesterase-5 inhibitors; cytokine storm; respiratory distress. RESULTS Despite the worsening trends of COVID-19, still no drugs are validated to have significant clinical efficacy in the treatment of patients with COVID-19 in large-scale studies. While the progress toward a curative agent and/or vaccine is certainly hopeful, the principal limiting factor in such public health emergencies is always the time. Therefore, a preexisting licensed therapeutic(s) might offer a reprieve to the healthcare systems operating at the edge of capacity. In this context, the innovation of oral PDE5 inhibitors with their valuable effects on erection have provided a breakthrough in the treatment of erectile dysfunction and opened new fields of clinical application for this class of drugs. Oral PDE5 inhibitors have been demonstrated to possess many beneficial useful additional implications with acknowledged anti-inflammatory, antioxidant, immune response regulation, and antiapoptotic properties. These properties have been elucidated through the nitric oxide/soluble guanylyl cyclase/cyclic guanylate monophosphate pathway in addition to the emerged hemeoxygenase-1 enzyme as well as hydrogen sulfide pathways. These properties could support repurposing oral PDE5 inhibitors' potential adjuvant use in targeting different aspects of COVID-19 infection. CONCLUSION Oral PDE5 inhibitors retain several acknowledged off-labeled useful implications with anti-inflammatory, antioxidant, immune response regulation, and antiapoptotic properties. These properties may support repurposing oral PDE5 inhibitors' potential adjuvant use in the protocols combating COVID-19 manifestations. Mostafa T. Could Oral Phosphodiesterase 5 Inhibitors Have a Potential Adjuvant Role in Combating Coronavirus Disease 2019 Infection? Sex Med Rev 2021;9:15-22.
Collapse
Affiliation(s)
- Taymour Mostafa
- Andrology, Sexology & STIs Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
14
|
Could Oral Phosphodiesterase 5 Inhibitors Have a Potential Adjuvant Role in Combating COVID-19 Infection? Sex Med Rev 2020. [PMID: 33077403 DOI: 10.1016/j.sxmr.2020.08.006.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The recent global outbreak of coronavirus disease 2019 (COVID-19) has become a pandemic with a lot of sufferers. Excessive inflammation, exaggerated immune response, with ultimate apoptosis contribute to COVID-19 pathology that progress to acute lung acute respiratory distress. OBJECTIVE To shed a light on the likely benefits of the oral phosphodiesterase 5 (PDE5) inhibitor adjuvant role in combating COVID-19 infection. METHODS A literature review was performed in the PubMed/Medline database, Scopus, Cochrane Library, EMBASE, Academic Search Complete, Google Scholar, and CINAHL databases using the keywords COVID-19; phosphodiesterase-5 inhibitors; cytokine storm; respiratory distress. RESULTS Despite the worsening trends of COVID-19, still no drugs are validated to have significant clinical efficacy in the treatment of patients with COVID-19 in large-scale studies. While the progress toward a curative agent and/or vaccine is certainly hopeful, the principal limiting factor in such public health emergencies is always the time. Therefore, a preexisting licensed therapeutic(s) might offer a reprieve to the healthcare systems operating at the edge of capacity. In this context, the innovation of oral PDE5 inhibitors with their valuable effects on erection have provided a breakthrough in the treatment of erectile dysfunction and opened new fields of clinical application for this class of drugs. Oral PDE5 inhibitors have been demonstrated to possess many beneficial useful additional implications with acknowledged anti-inflammatory, antioxidant, immune response regulation, and antiapoptotic properties. These properties have been elucidated through the nitric oxide/soluble guanylyl cyclase/cyclic guanylate monophosphate pathway in addition to the emerged hemeoxygenase-1 enzyme as well as hydrogen sulfide pathways. These properties could support repurposing oral PDE5 inhibitors' potential adjuvant use in targeting different aspects of COVID-19 infection. CONCLUSION Oral PDE5 inhibitors retain several acknowledged off-labeled useful implications with anti-inflammatory, antioxidant, immune response regulation, and antiapoptotic properties. These properties may support repurposing oral PDE5 inhibitors' potential adjuvant use in the protocols combating COVID-19 manifestations. Mostafa T. Could Oral Phosphodiesterase 5 Inhibitors Have a Potential Adjuvant Role in Combating Coronavirus Disease 2019 Infection? Sex Med Rev 2021;9:15-22.
Collapse
|
15
|
Ma C, Zhang J, Cai Z, Xiong J, Li H. Defining the Efficacy and Safety of Phosphodiesterase Type 5 Inhibitors with Tamsulosin for the Treatment of Lower Urinary Tract Symptoms Secondary to Benign Prostatic Hyperplasia with or without Erectile Dysfunction: A Network Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1419520. [PMID: 32309423 PMCID: PMC7140123 DOI: 10.1155/2020/1419520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/19/2020] [Indexed: 01/19/2023]
Abstract
PURPOSE The purpose of this study was to compare the relative safety and efficacy of different types of phosphodiesterase type 5 inhibitors (PDE5-Is) with tamsulosin for the treatment of lower urinary tract symptoms (LUTS) secondary to benign prostate hyperplasia (BPH) (BPH-LUTS) with or without erectile dysfunction (ED). METHODS We use the Stata version 13.0 to conduct the network meta-analysis (NMA) with a random effects model of the Bayesian framework. The International Prostate Symptom Score (IPSS), Maximum Urinary Flow Fate (Q max), International Index of Erectile Function (IIEF), and their credible intervals (CI) were used to compare the efficacy and safety of every medical intervention, including sildenafil plus tamsulosin, tadalafil plus tamsulosin, and vardenafil plus tamsulosin. RESULTS Seven RCTs including 531 participants with seven interventions were analyzed. The results of NMA SUCRA showed that compared with different doses or types of PDE5-Is combined with tamsulosin (0.4 mg qd), the sildenafil (25 mg qd) combined with tamsulosin (0.4 mg qd) group had the greatest probabilities of being the best in the achievement of improving IIEF. The sildenafil (25 mg 4 days per week) combined with tamsulosin (0.4 mg qd) group had the greatest probabilities of being the best in the achievement of improving Q max, whereas sildenafil (25 mg qd) combined with tamsulosin (0.4 mg qd) ranked the best for the safety outcomes. CONCLUSIONS This meta-analysis indicates that sildenafil combined with tamsulosin is the best effective and tolerated treatment option for BPH-LUTS with or without ED. Further RCTs are strongly required to provide more direct evidence.
Collapse
Affiliation(s)
- Chengquan Ma
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No 1. Shuaifuyuan Beijing, China
| | - Jianzhong Zhang
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No 1. Shuaifuyuan Beijing, China
| | - Zhonglin Cai
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No 1. Shuaifuyuan Beijing, China
| | - Jian Xiong
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No 1. Shuaifuyuan Beijing, China
| | - Hongjun Li
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No 1. Shuaifuyuan Beijing, China
| |
Collapse
|
16
|
Kim KS, Chung JH, Lee SW. Randomized controlled trials on erectile dysfunction: quality assessment and relevant clinical impact (2007–2018). Int J Impot Res 2020; 32:213-220. [DOI: 10.1038/s41443-019-0143-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 11/09/2022]
|
17
|
Zuccarello E, Acquarone E, Calcagno E, Argyrousi EK, Deng SX, Landry DW, Arancio O, Fiorito J. Development of novel phosphodiesterase 5 inhibitors for the therapy of Alzheimer's disease. Biochem Pharmacol 2020; 176:113818. [PMID: 31978378 DOI: 10.1016/j.bcp.2020.113818] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) is a gaseous molecule that plays a multifactorial role in several cellular processes. In the central nervous system, the NO dual nature in neuroprotection and neurotoxicity has been explored to unveil its involvement in Alzheimer's disease (AD). A growing body of research shows that the activation of the NO signaling pathway leading to the phosphorylation of the transcription factor cyclic adenine monophosphate responsive element binding protein (CREB) (so-called NO/cGMP/PKG/CREB signaling pathway) ameliorates altered neuroplasticity and memory deficits in AD animal models. In addition to NO donors, several other pharmacological agents, such as phosphodiesterase 5 (PDE5) inhibitors have been used to activate the pathway and rescue memory disorders. PDE5 inhibitors, including sildenafil, tadalafil and vardenafil, are marketed for the treatment of erectile dysfunction and arterial pulmonary hypertension due to their vasodilatory properties. The ability of PDE5 inhibitors to interfere with the NO/cGMP/PKG/CREB signaling pathway by increasing the levels of cGMP has prompted the hypothesis that PDE5 inhibition might be used as an effective therapeutic strategy for the treatment of AD. To this end, newly designed PDE5 inhibitors belonging to different chemical classes with improved pharmacologic profile (e.g. higher potency, improved selectivity, and blood-brain barrier penetration) have been synthesized and evaluated in several animal models of AD. In addition, recent medicinal chemistry effort has led to the development of agents concurrently acting on the PDE5 enzyme and a second target involved in AD. Both marketed and investigational PDE5 inhibitors have shown to reverse cognitive defects in young and aged wild type mice as well as transgenic mouse models of AD and tauopathy using a variety of behavioral tasks. These studies confirmed the therapeutic potential of PDE5 inhibitors as cognitive enhancers. However, clinical studies assessing cognitive functions using marketed PDE5 inhibitors have not been conclusive. Drug discovery efforts by our group and others are currently directed towards the development of novel PDE5 inhibitors tailored to AD with improved pharmacodynamic and pharmacokinetic properties. In summary, the present perspective reports an overview of the correlation between the NO signaling and AD, as well as an outline of the PDE5 inhibitors used as an alternative approach in altering the NO pathway leading to an improvement of learning and memory. The last two sections describe the preclinical and clinical evaluation of PDE5 inhibitors for the treatment of AD, providing a comprehensive analysis of the current status of the AD drug discovery efforts involving PDE5 as a new therapeutic target.
Collapse
Affiliation(s)
- Elisa Zuccarello
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Erica Acquarone
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Elisa Calcagno
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Elentina K Argyrousi
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Shi-Xian Deng
- Department of Medicine, Columbia University, New York, NY, United States
| | - Donald W Landry
- Department of Medicine, Columbia University, New York, NY, United States
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Department of Medicine, Columbia University, New York, NY, United States; Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.
| | - Jole Fiorito
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY, United States.
| |
Collapse
|
18
|
Onder A, Yilmaz-Oral D, Jerkovic I, Akdemir AO, Gur S. Evaluation of relaxant responses properties of cinnamon essential oil and its major component, cinnamaldehyde on human and rat corpus cavernosum. Int Braz J Urol 2019; 45:1033-1042. [PMID: 31408283 PMCID: PMC6844336 DOI: 10.1590/s1677-5538.ibju.2019.0016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/20/2019] [Indexed: 01/14/2023] Open
Abstract
Cinnamomum cassia (Cinnamon) is a well-known traditional medicine with therapeutic benefits for centuries. We evaluated the effects of cinnamon essential oil (CEO) and its main component cinnamaldehyde (CA) on human corpus cavernosum (HCC) and rat CC. The essential oil of cinnamon was analyzed for the confirmation of the oil profile. HCC specimens from patients undergoing penile prosthesis surgery (age 48-69 years) were utilized for functional studies. In addition, erectile responses in anesthetized control and diabetic rats were evaluated in vivo after intracavernosal injection of CEO and CA, and rat CC strips were placed in organ baths. After precontraction with phenylephrine (10μM), relaxant responses to CEO and CA were investigated. CA (96.9%) was found as the major component. The maximum relaxation responses to CEO and CA were 96.4±3.5% and 96.0±5.0% in HCC and 97.5±5.5% and 96.8±4.8% in rat CC, respectively. There was no difference between control and diabetic rats in relaxation responses to CEO and CA. The relaxant responses obtained with essential oil and CA were not attenuated in the presence of nitric oxide synthase (NOS) inhibitor, and soluble guanylate cyclase inhibitor (sGS) in CC. In vivo, erectile responses in diabetic rats were lower than in control rats, which was restored after intracavernosal injection of CEO and CA. CEO and CA improved erectile function and relaxation of isolated strips of rat CC and HCC by a NO/cGMP-independent mechanism. Further investigations are warranted to fully elucidate the restorative effects of CEO and CA on diabetic erectile dysfunction.
Collapse
Affiliation(s)
- Alev Onder
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Didem Yilmaz-Oral
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey.,Department of Pharmacology, Faculty of Pharmacy, Cukurova University, Adana, Turkey
| | - Igor Jerkovic
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Split, Croatia
| | - Alp Ozgur Akdemir
- Department of Urology, Ankara Numune Education and Research Hospital, Ankara, Turkey
| | - Serap Gur
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
19
|
Nabavi SM, Talarek S, Listos J, Nabavi SF, Devi KP, Roberto de Oliveira M, Tewari D, Argüelles S, Mehrzadi S, Hosseinzadeh A, D'onofrio G, Orhan IE, Sureda A, Xu S, Momtaz S, Farzaei MH. Phosphodiesterase inhibitors say NO to Alzheimer's disease. Food Chem Toxicol 2019; 134:110822. [PMID: 31536753 DOI: 10.1016/j.fct.2019.110822] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 12/18/2022]
Abstract
Phosphodiesterases (PDEs) consisted of 11 subtypes (PDE1 to PDE11) and over 40 isoforms that regulate levels of cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP), the second messengers in cell functions. PDE inhibitors (PDEIs) have been attractive therapeutic targets due to their involvement in diverse medical conditions, e.g. cardiovascular diseases, autoimmune diseases, Alzheimer's disease (AD), etc. Among them; AD with a complex pathology is a progressive neurodegenerative disorder which affect mostly senile people in the world and only symptomatic treatment particularly using cholinesterase inhibitors in clinic is available at the moment for AD. Consequently, novel treatment strategies towards AD are still searched extensively. Since PDEs are broadly expressed in the brain, PDEIs are considered to modulate neurodegenerative conditions through regulating cAMP and cGMP in the brain. In this sense, several synthetic or natural molecules inhibiting various PDE subtypes such as rolipram and roflumilast (PDE4 inhibitors), vinpocetine (PDE1 inhibitor), cilostazol and milrinone (PDE3 inhibitors), sildenafil and tadalafil (PDE5 inhibitors), etc have been reported showing encouraging results for the treatment of AD. In this review, PDE superfamily will be scrutinized from the view point of structural features, isoforms, functions and pharmacology particularly attributed to PDEs as target for AD therapy.
Collapse
Affiliation(s)
- Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Sylwia Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St, 20-093, Lublin, Poland.
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St, 20-093, Lublin, Poland.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
| | - Marcos Roberto de Oliveira
- Departamento de Química (DQ), Instituto de Ciências Exatas e da Terra (ICET), Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Sandro Argüelles
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Grazia D'onofrio
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", Viale Cappuccini 1, 71013, San Giovanni Rotondo, FG, Italy.
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain.
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY, 14623, USA.
| | - Saeedeh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
20
|
Zucchi A, Costantini E, Scroppo FI, Silvani M, Kopa Z, Illiano E, Petrillo MG, Cari L, Nocentini G. The first-generation phosphodiesterase 5 inhibitors and their pharmacokinetic issue. Andrology 2019; 7:804-817. [PMID: 31350821 PMCID: PMC6790582 DOI: 10.1111/andr.12683] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/26/2022]
Abstract
Background Erectile dysfunction (ED) is a relatively frequent disease that negatively impacts the overall quality of life, well‐being, and relationships. Although the use of phosphodiesterase 5 inhibitors (PDE5is) has revolutionized the treatment of ED, a high percentage of ED patients discontinue PDE5i treatment. Objectives (i) To analyze the reasons for patient dissatisfaction leading to PDE5i discontinuation; (ii) analyze the pharmacokinetics of new formulations focusing on the time needed to reach an effective plasma concentration of PDE5is (Tonset) following drug intake; and (iii) summarize the physicochemical properties of sildenafil to understand which excipients may increase the absorption rate. Material and methods An online PubMed literature search was conducted to identify English language publications from inception to January 2019. Results The main reasons for patient dissatisfaction when using PDE5is on demand are the relatively long Tonset after taking vardenafil and sildenafil, including formulations such as film‐coated tablets, fine granules, orally disintegrating tablets (ODTs), and oral thin films (ODFs). The relatively long Tonset, further worsened when accompanied by eating, highlights the following: (i) the need for planning intercourse, determining partner‐related issues; (ii) issues when having sex before the maximum effect of the drug; and (iii) lower drug‐related placebo effects. Some data suggest that sildenafil is a ‘difficult’ molecule, but Tonset can be improved following absorption by buccal mucosa using appropriate excipients. Conclusions We conclude that several ODT and ODF formulations can improve the ‘discretion’ issue because they are taken without water, but they have similar pharmacokinetics to corresponding film‐coated tablet formulations. One ODF formulation of sildenafil was characterized by a shorter Tonset and could potentially increase patient satisfaction following treatment. However, more clinical studies are needed to confirm the findings. Surfactants and ascorbic acid appear to be crucial excipients for achieving a high absorption rate, but more studies are needed.
Collapse
Affiliation(s)
- A Zucchi
- Department of Surgical and Biomedical Sciences, Urology and Andrology Clinic, University of Perugia, Perugia, Italy
| | - E Costantini
- Andrology and Urogynecological Clinic, Santa Maria Hospital, University of Perugia, Perugia, Italy
| | - F I Scroppo
- Urology Unit, Ospedale di Circolo di Varese, Varese, Italy
| | - M Silvani
- Urology Department, Santa Rita Clinic, Vercelli, Italy
| | - Z Kopa
- Andrology Centre, Department of Urology, Semmelweis University, Budapest, Hungary
| | - E Illiano
- Andrology and Urogynecological Clinic, Santa Maria Hospital, University of Perugia, Perugia, Italy
| | - M G Petrillo
- Signal Transduction Laboratory, Department of Health and Human Services, NIEHS, NIH, Durham, NC, USA
| | - L Cari
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - G Nocentini
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| |
Collapse
|
21
|
Wu Y, Zhou Q, Zhang T, Li Z, Chen YP, Zhang P, Yu YF, Geng H, Tian YJ, Zhang C, Wang Y, Chen JW, Chen Y, Luo HB. Discovery of Potent, Selective, and Orally Bioavailable Inhibitors against Phosphodiesterase-9, a Novel Target for the Treatment of Vascular Dementia. J Med Chem 2019; 62:4218-4224. [DOI: 10.1021/acs.jmedchem.8b01041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yinuo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Qian Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Tianhua Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Zhe Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yi-Ping Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Pei Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yan-Fa Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Haiju Geng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yi-Jing Tian
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Chen Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yu Wang
- Infinitus (China) Co. Ltd., Guangzhou 510663, P. R. China
| | - Jian-Wen Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yan Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
22
|
Mostafa T, Rashed LA, Sabry DA, Osman I, Nabil N, Kareem F, Mostafa IA. Serum L-carnitine and vitamin D levels may be low among oral sildenafil citrate non-responders. Int J Impot Res 2019; 31:85-91. [PMID: 30287894 DOI: 10.1038/s41443-018-0036-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/11/2018] [Accepted: 05/19/2018] [Indexed: 02/08/2023]
Abstract
This cross-sectional comparative study aimed to compare serum L-carnitine and 25(OH)D levels between men with ED non-responding for oral sildenafil citrate and healthy volunteers. Overall, 192 men, recruited from two University Hospitals, were allocated into two equal groups of matched age; healthy potent men and men with ED non-responders for oral sildenafil citrate. Oral sildenafil citrate non-responders self-reported inadequate erectile responses after four attempts using 100 mg with the manufacturer's guidelines relative to meals, associated medications, and sexual stimulation/arousal. Exclusion criteria were: diabetes, cardiovascular disorders, beta blockers treatment, morbid obesity, thyroid disorders, post-radical prostatectomy, and hepatic/renal failure. All participants were subjected to; history taking, clinical examination, validated IIEF-5 questionnaire, estimation of serum L-carnitine by calorimetric method and serum 25(OH)D by ELISA method. Compared with potent controls, ED men non-responders for oral sildenafil citrate showed significant decreases in the mean serum L-carnitine level (16.8 ± 3.6 uM/L versus 66.3 ± 11.9 uM/L, P = 0.001), the mean serum 25(OH)D level (21.2 ± 7.1 ng/ml versus 54.6 ± 7.9 ng/mL, P = 0.001) and IIEF-5 score (7.8 ± 2.6 versus 23.9 ± 1.3). Serum L-carnitine showed significant positive correlation with IIEF-5 scores (r = 0.873, P = 001), serum 25(OH)D (r = 0.796, P = 0.001) and significant negative correlation with the age (r = -0.515, P = 0.001). Serum 25(OH)D showed significant positive correlation with IIEF-5 scores (r = 0.855, P = 0.001) and significant negative correlation with the age (r = -0.223, P = 0.005). It is concluded that normal homeostasis of serum L-carnitine and 25(OH)D play a role in male sexual health being significantly decreased in ED non-responding for oral sildenafil citrate.
Collapse
Affiliation(s)
- Taymour Mostafa
- Department of Andrology, Sexology & STIs, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Laila A Rashed
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dina A Sabry
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ihab Osman
- Department of Andrology, Sexology & STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nashaat Nabil
- Department of Andrology, Sexology & STIs, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Firas Kareem
- Faculty of Medicine, The Qar University, Nasiriya, Iraq
| | - Ingi A Mostafa
- Department of Dermatology& Andrology, Egyptian Railway Hospital, Cairo, Egypt
| |
Collapse
|
23
|
Žuntar I, Krivohlavek A, Kosić-Vukšić J, Granato D, Bursać Kovačević D, Putnik P. Pharmacological and toxicological health risk of food (herbal) supplements adulterated with erectile dysfunction medications. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Li X, Jiang J, Xia J, Jiang R. Effect of low androgen levels on the sulphur dioxide signalling pathway in rat penile corpus cavernosum. Andrologia 2018; 51:e13167. [PMID: 30295340 DOI: 10.1111/and.13167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/16/2018] [Accepted: 09/07/2018] [Indexed: 02/05/2023] Open
Affiliation(s)
- Xu Li
- Department of Urology, Affiliated Hospital; Southwest medical University; Luzhou China
| | - Jun Jiang
- Department of thyroid Surgery; Affiliated Hospital; Southwest medical University; Luzhou China
| | - Jiyi Xia
- Medical Research Center; Affiliated Hospital; Southwest medical University; Luzhou China
| | - Rui Jiang
- Department of Urology, Affiliated Hospital; Southwest medical University; Luzhou China
| |
Collapse
|
25
|
Pantziarka P, Sukhatme V, Crispino S, Bouche G, Meheus L, Sukhatme VP. Repurposing drugs in oncology (ReDO)-selective PDE5 inhibitors as anti-cancer agents. Ecancermedicalscience 2018; 12:824. [PMID: 29743944 PMCID: PMC5931815 DOI: 10.3332/ecancer.2018.824] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Indexed: 12/26/2022] Open
Abstract
Selective phosphodiesterase 5 inhibitors, including sildenafil, tadalafil and vardenafil, are widely-used in the treatment of erectile dysfunction and pulmonary arterial hypertension. They are also well-known as examples of successful drug repurposing in that they were initially developed for angina and only later developed for erectile dysfunction. However, these drugs may also be effective cancer treatments. A range of evidentiary sources are assessed in this paper and the case made that there is pre-clinical and clinical evidence that these drugs may offer clinical benefit in a range of cancers. In particular, evidence is presented that these drugs have potent immunomodulatory activity that warrants clinical study in combination with check-point inhibition.
Collapse
Affiliation(s)
- Pan Pantziarka
- Anticancer Fund, Brussels, Strombeek-Bever 1853, Belgium.,The George Pantziarka TP53 Trust, London KT1 2JP, UK
| | | | | | | | - Lydie Meheus
- Anticancer Fund, Brussels, Strombeek-Bever 1853, Belgium
| | - Vikas P Sukhatme
- GlobalCures Inc., Newton, MA 02459, USA.,Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
26
|
Marampon F, Antinozzi C, Corinaldesi C, Vannelli GB, Sarchielli E, Migliaccio S, Di Luigi L, Lenzi A, Crescioli C. The phosphodiesterase 5 inhibitor tadalafil regulates lipidic homeostasis in human skeletal muscle cell metabolism. Endocrine 2018; 59:602-613. [PMID: 28786077 DOI: 10.1007/s12020-017-1378-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 07/20/2017] [Indexed: 01/01/2023]
Abstract
PURPOSE Tadalafil seems to ameliorate insulin resistance and glucose homeostasis in humans. We have previously reported that tadalafil targets human skeletal muscle cells with an insulin (I)-like effect. We aim to evaluate in human fetal skeletal muscle cells after tadalafil or I: (i) expression profile of I-regulated genes dedicated to cellular energy control, glycolitic activity or microtubule formation/vesicle transport, as GLUT4, PPARγ, HK2, IRS-1, KIF1C, and KIFAP3; (ii) GLUT4, Flotillin-1, and Caveolin-1 localization, all proteins involved in energy-dependent cell trafficking; (iii) activation of I-targeted paths, as IRS-1, PKB/AKT, mTOR, P70/S6K. Free fatty acids intracellular level was measured. Sildenafil or a cGMP synthetic analog were used for comparison; PDE5 and PDE11 gene expression was evaluated in human fetal skeletal muscle cells. METHODS RTq-PCR, PCR, western blot, free fatty acid assay commercial kit, and lipid stain non-fluorescent assay were used. RESULTS Tadalafil upregulated I-targeted investigated genes with the same temporal pattern as I (GLUT4, PPARγ, and IRS-1 at 3 h; HK2, KIF1C, KIFAP3 at 12 h), re-localized GLUT4 in cell sites positively immune-decorated for Caveolin-1 and Flotillin-1, suggesting the involvement of lipid rafts, induced specific residue phosphorylation of IRS-1/AKT/mTOR complex in association with free fatty acid de novo synthesis. Sildenafil or GMP analog did not affect GLUT4 trafficking or free fatty acid levels. CONCLUSION In human fetal skeletal muscle cells tadalafil likely favors energy storage by modulating lipid homeostasis via IRS-1-mediated mechanisms, involving activation of I-targeted genes and intracellular cascade related to metabolic control. Those data provide some biomolecular evidences explaining, in part, tadalafil-induced favorable control of human metabolism shown by clinical studies.
Collapse
Affiliation(s)
- F Marampon
- Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Rome, Italy
| | - C Antinozzi
- Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Rome, Italy
| | - C Corinaldesi
- Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Rome, Italy
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - G B Vannelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - E Sarchielli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - S Migliaccio
- Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Rome, Italy
| | - L Di Luigi
- Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Rome, Italy
| | - A Lenzi
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - C Crescioli
- Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Rome, Italy.
| |
Collapse
|
27
|
Di Luigi L, Sansone M, Sansone A, Ceci R, Duranti G, Borrione P, Crescioli C, Sgrò P, Sabatini S. Phosphodiesterase Type 5 Inhibitors, Sport and Doping. Curr Sports Med Rep 2017; 16:443-447. [DOI: 10.1249/jsr.0000000000000422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|