1
|
The Value of Pharmacogenetics to Reduce Drug-Related Toxicity in Cancer Patients. Mol Diagn Ther 2022; 26:137-151. [PMID: 35113367 PMCID: PMC8975257 DOI: 10.1007/s40291-021-00575-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2021] [Indexed: 10/19/2022]
Abstract
Many anticancer drugs cause adverse drug reactions (ADRs) that negatively impact safety and reduce quality of life. The typical narrow therapeutic range and exposure-response relationships described for anticancer drugs make precision dosing critical to ensure safe and effective drug exposure. Germline mutations in pharmacogenes contribute to inter-patient variability in pharmacokinetics and pharmacodynamics of anticancer drugs. Patients carrying reduced-activity or loss-of-function alleles are at increased risk for ADRs. Pretreatment genotyping offers a proactive approach to identify these high-risk patients, administer an individualized dose, and minimize the risk of ADRs. In the field of oncology, the most well-studied gene-drug pairs for which pharmacogenetic dosing recommendations have been published to improve safety are DPYD-fluoropyrimidines, TPMT/NUDT15-thiopurines, and UGT1A1-irinotecan. Despite the presence of these guidelines, the scientific evidence showing the benefits of pharmacogenetic testing (e.g., improved safety and cost-effectiveness) and the development of efficient multi-gene genotyping panels, routine pretreatment testing for these gene-drug pairs has not been implemented widely in the clinic. Important considerations required for widespread clinical implementation include pharmacogenetic education of physicians, availability or allocation of institutional resources to build an efficient clinical infrastructure, international standardization of guidelines, uniform adoption of guidelines by regulatory agencies leading to genotyping requirements in drug labels, and development of cohesive reimbursement policies for pretreatment genotyping. Without clinical implementation, the potential of pharmacogenetics to improve patient safety remains unfulfilled.
Collapse
|
2
|
The role of pharmacogenetics in Efficacy and safety of protease inhibitor based therapy in human immunodeficiency virus type (HIV) infection. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.6-2.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Antiretroviral therapy has markedly reduced morbidity and mortality for persons living with human immunodeficiency virus (HIV). HIV can now be classified as a chronic disease; until a cure is found, patients are likely to require life-long therapy. However, despite these undoubted advances, there are many issues that need to be resolved, including the problems associated with long-term efficacy and toxicity. Moreover, pharmacotherapy of patients infected with HIV is challenging because a great number of comorbidities increase polypharmacy and the risk for drug-drug interactions. There is considerable interindividual variability in patient outcomes in terms of drug disposition, drug efficacy and adverse events. The basis of these differences is multifactorial, but host genetics are believed to play a significant part. HIV-infected population consists of ethnically diverse individuals on complex and potentially toxic antiretroviral regimens on a long-term basis. These individuals would benefit greatly from predictive tests that identify the most durable regimens. Pharmacogenetics holds that promise. Thus, detailed understanding of the metabolism and transport of antiretrovirals and the influence of genetics on these pathways is important. To this end, this review provides an up-to-date overview of the metabolism of antiHIV therapeutics of the protease inhibitors Lopinavir and Ritonavir and the impact of genetic variation in drug metabolism and transport on the treatment of HIV.
Collapse
|
3
|
de Weger VA, Vermunt MAC, Stuurman FE, Burylo AM, Damoiseaux D, Hendrikx JJMA, Sawicki E, Moes JJ, Huitema ADR, Nuijen B, Rosing H, Mergui-Roelvink M, Beijnen JH, Marchetti S. A Phase 1 Dose-Escalation Study of Low-Dose Metronomic Treatment With Novel Oral Paclitaxel Formulations in Combination With Ritonavir in Patients With Advanced Solid Tumors. Clin Pharmacol Drug Dev 2020; 10:607-621. [PMID: 33021083 DOI: 10.1002/cpdd.880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/08/2020] [Indexed: 01/08/2023]
Abstract
ModraPac001 (MP1) and ModraPac005 (MP5) are novel oral paclitaxel formulations that are coadministered with the cytochrome P450 3A4 inhibitor ritonavir (r), enabling daily low-dose metronomic (LDM) treatment. The primary aim of this study was to determine the safety, pharmacokinetics and maximum tolerated dose (MTD) of MP1/r and MP5/r. The second aim was to establish the recommended phase 2 dose (RP2D) as LDM treatment. This was an open-label phase 1 trial. Patients with advanced solid tumors were enrolled according to a classical 3+3 design. After initial employment of the MP1 capsule, the MP5 tablet was introduced. Safety was assessed using the Common Terminology Criteria for Adverse Events version 4.02. Pharmacokinetic sampling was performed on days 1, 2, 8, and 22 for determination of paclitaxel and ritonavir plasma concentrations. In this study, 37 patients were treated with up to twice-daily 30-mg paclitaxel combined with twice-daily 100-mg ritonavir (MP5/r 30-30/100-100) in 9 dose levels. Dose-limiting toxicities were nausea, (febrile) neutropenia, dehydration and vomiting. At the MTD/RP2D of MP5/r 20-20/100-100, the maximum paclitaxel plasma concentration and area under the concentration-time curve until 24 hours were 34.6 ng/mL (coefficient of variation, 79%) and 255 ng • h/mL (coefficient of variation, 62%), respectively. Stable disease was observed as best response in 15 of 31 evaluable patients. Based on these results, LDM therapy with oral paclitaxel coadministrated with ritonavir was considered feasible and safe. The MTD and RP2D were determined as MP5/r 20-20/100-100. Further clinical development of MP5/r as an LDM concept, including potential combination treatment, is warranted.
Collapse
Affiliation(s)
- Vincent A de Weger
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marit A C Vermunt
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Frederik E Stuurman
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Artur M Burylo
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - David Damoiseaux
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jeroen J M A Hendrikx
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emilia Sawicki
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Modra Pharmaceuticals BV, Amsterdam, The Netherlands
| | - Johannes J Moes
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Bastiaan Nuijen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marja Mergui-Roelvink
- Division of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Modra Pharmaceuticals BV, Amsterdam, The Netherlands.,Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Serena Marchetti
- Division of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Exploration of Reduced Doses and Short-Cycle Therapy for Darunavir/Cobicistat in Patients with HIV Using Population Pharmacokinetic Modeling and Simulations. Clin Pharmacokinet 2020; 60:177-189. [PMID: 32696441 PMCID: PMC7862523 DOI: 10.1007/s40262-020-00920-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND OBJECTIVES Protease inhibitors such as darunavir are an important therapeutic option in the anti-human immunodeficiency virus arsenal. Current dosage guidelines recommend using cobicistat- or ritonavir-boosted darunavir 800 mg every 24 h (q24h) in protease inhibitor-naïve patients, or ritonavir-boosted darunavir 600 mg q12h in experienced patients. However, darunavir displays a large, poorly characterized, inter-individual pharmacokinetic variability. The objectives of this study were to investigate the pharmacokinetics of darunavir and to elucidate the sources of its inter-individual variability using population pharmacokinetic modeling. Then, to determine the appropriateness of current treatment guidelines and the feasibility of alternative dosing regimens in a representative cohort of adult patients using simulations. METHODS Sparse pharmacokinetic samples were collected in 127 patients with human immunodeficiency virus type 1 infection, then supplemented with rich sampling data from a subset of 12 individuals. Data were analyzed using the nonlinear mixed-effects modeling software NONMEM. The effect of reduced doses (600 mg q24h and 400 mg q24h) or reduced frequency of administration (800 mg q24h for 5 days followed by 2 days of treatment interruption) was simulated. RESULTS Our model adequately described the pharmacokinetics of darunavir. Predictors of individual exposure were CYP3A5*3 and SLCO3A1 rs8027174 genotypes, sex, and alpha-1 acid glycoprotein level. No relationship was apparent between darunavir area under the curve and treatment efficacy or safety. For reduced dose regimens, darunavir concentrations remained above the protein binding-corrected EC50 in the majority of subjects. More stringent pharmacokinetic targets were not reached in a significant proportion of patients. CONCLUSIONS These results add to the growing body of evidence that darunavir-based therapy could be simplified to reduce costs and toxicity, as well as to improve patient compliance. However, the heterogeneity in pharmacokinetic response should be considered when assessing whether individual patients could benefit from a particular regimen, for instance through the use of population pharmacokinetic models. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT03101644, date of registration: 5 April, 2017.
Collapse
|
5
|
Tan M, Bowers M, Thuma P, Grigorenko EL. The Pharmacogenetics of Efavirenz Metabolism in Children: The Potential Genetic and Medical Contributions to Child Development in the Context of Long-Term ARV Treatment. New Dir Child Adolesc Dev 2020; 2020:107-133. [PMID: 32657046 DOI: 10.1002/cad.20353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Efavirenz (EFV) is a well-known, effective anti-retroviral drug long used in first-line treatment for children and adults with HIV and HIV/AIDS. Due to its narrow window of effective concentrations, between 1 and 4 μg/mL, and neurological side effects at supratherapeutic levels, several investigations into the pharmacokinetics of the drug and its genetic underpinnings have been carried out, primarily with adult samples. A number of studies, however, have examined the genetic influences on the metabolism of EFV in children. Their primary goal has been to shed light on issues of appropriate pediatric dosing, as well as the manifestation of neurotoxic effects of EFV in some children. Although EFV is currently being phased out of use for the treatment of both adults and children, we share this line of research to highlight an important aspect of medical treatment that is relevant to understanding the development of children diagnosed with HIV.
Collapse
|
6
|
Huang W, Xiong Y, Xia C, Hu X. Effects of osthol on activity, mRNA and protein expression of Cyp3a in rats
in vivo. Biopharm Drug Dispos 2020; 41:64-71. [PMID: 31925794 DOI: 10.1002/bdd.2214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Wei Huang
- Institute of Clinical PharmacologyNanchang University Nanchang 330006 China
- The First Affiliated Hospital of Zhejiang Chinese Medical University Hangzhou 310006 China
| | - Yu‐qing Xiong
- Institute of Clinical PharmacologyNanchang University Nanchang 330006 China
| | - Chun‐hua Xia
- Institute of Clinical PharmacologyNanchang University Nanchang 330006 China
| | - Xiao Hu
- Institute of Clinical PharmacologyNanchang University Nanchang 330006 China
| |
Collapse
|