1
|
Fardel O, Moreau A, Jouan E, Denizot C, Le Vée M, Parmentier Y. Human liver cell-based assays for the prediction of hepatic bile acid efflux transporter inhibition by drugs. Expert Opin Drug Metab Toxicol 2025; 21:463-480. [PMID: 39799554 DOI: 10.1080/17425255.2025.2453486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/11/2024] [Accepted: 01/10/2025] [Indexed: 01/15/2025]
Abstract
INTRODUCTION Drug-mediated inhibition of bile salt efflux transporters may cause liver injury. In vitro prediction of drug effects toward canalicular and/or sinusoidal efflux of bile salts from human hepatocytes is therefore a major issue, which can be addressed using liver cell-based assays. AREA COVERED This review, based on a thorough literature search in the scientific databases PubMed and Web of Science, provides key information about hepatic transporters implicated in bile salt efflux, the human liver cell models available for investigating functional inhibition of bile salt efflux, the different methodologies used for this purpose, and the modes of expression of the results. Applications of the assays to drugs are summarized, with special emphasis to the performance values of some assays for predicting hepatotoxicity/cholestatic effects of drugs. EXPERT OPINION Human liver cell-based assays for evaluating drug-mediated inhibition of bile acid efflux transporters face various limitations, such as the lack of method standardization and validation, the present poor adaptability to high throughput approaches, and some pitfalls with respect to interpretation of bile acid biliary excretion indexes. Hepatotoxicity of drugs is additionally likely multifactorial, highlighting that inhibition of hepatic bile salt efflux by drugs provides important, but not full, information about potential drug hepatotoxicity.
Collapse
Affiliation(s)
- Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Amélie Moreau
- Institut de R&D Servier, Paris-Saclay Gif-sur-Yvette, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, Rennes, France
| | - Claire Denizot
- Institut de R&D Servier, Paris-Saclay Gif-sur-Yvette, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, Rennes, France
| | | |
Collapse
|
2
|
Wu Q, Duan Z, Huang L, Li Z. Kuhuang injection exerts a protective effect by activating PPAR-γ in an in vitro model of chlorpromazine-induced cholestatic liver injury constructed by tissue engineering. PHARMACEUTICAL BIOLOGY 2022; 60:1679-1689. [PMID: 36063125 PMCID: PMC9467616 DOI: 10.1080/13880209.2022.2110128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/01/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Kuhuang (KH) injection is a widely used anticholestatic drug in the clinic and the mechanisms are still unclear. OBJECTIVE This study uses a new 3D tissue-engineered (TE) liver platform to study the ability of kuhuang to ameliorate liver injury induced by chlorpromazine (CPZ) and the possible mechanisms involved. MATERIALS AND METHODS The TE livers (n = 25) were divided into 5 groups (n = 5 livers/group) as 3D, 3D + CPZ, 3D + CPZ + KH, 3D + CPZ + GW9662 (a PPARγ inhibitor) and 3D + CPZ + KH + GW9662. The treatments with kuhuang (1 mg/mL) and GW9662 (10 μmol/L) were given to the desired groups on the 7th day of the experimental process. 20 μmol/L CPZ was added on the 8th day. RESULTS According to the 2D experimental results, the minimum effective concentration of kuhuang is 10 μg/mL and the optimal effective concentration is 1 mg/mL. Kuhuang ameliorated tissue damage in the TE livers both in terms of tissue structure and culture supernatant. Kuhuang significantly reduced TBA accumulation (38%) and downregulated CYP7A1 (38%) and CYP8B1 (79%). It reduced hepatic levels of ROS (14%), MDA (27%) but increased the levels of GSH (41%), SOD (12%), BSEP (4.4-fold), and MRP2 (74%). Moreover, kuhuang downregulated DR5 (99%) but increased the mRNA expression of PPARγ (4-fold). Molecular docking analyses determined the bioactivity of the active compounds of kuhuang through their specific bindings to PPARγ. CONCLUSIONS Kuhuang could alleviate CPZ-induced cholestatic liver injury by activating PPARγ to reduce oxidative stress. Applying kuhuang for the treatment of CPZ-induced liver injury could be suggested.
Collapse
Affiliation(s)
- Qiao Wu
- Infection Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing You’an Hospital Affiliated with Capital Medical University; Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Zhongping Duan
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing You’an Hospital Affiliated with Capital Medical University; Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Long Huang
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing You’an Hospital Affiliated with Capital Medical University; Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Zhijie Li
- Hepatobiliary Surgery Center, The Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Llabjani V, Siddique MR, Macos A, Abouzid A, Hoti V, Martin FL, Patel II, Raza A. Introducing CELLBLOKS ®: a novel organ-on-a-chip platform allowing a plug-and-play approach towards building organotypic models. IN VITRO MODELS 2022; 1:423-435. [PMID: 39872618 PMCID: PMC11756440 DOI: 10.1007/s44164-022-00027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 01/30/2025]
Abstract
Human organs are structurally and functionally complex systems. Their function is driven by the interactions between many specialised cell types, which is difficult to unravel on a standard Petri dish format. Conventional "Petri dish" approaches to culturing cells are static and self-limiting. However, current organ-on-a-chip technologies are difficult to use, have a limited throughput and lack compatibility with standard workflow conditions. We developed CELLBLOKS® as a novel "plug-and-play" organ-on-a-chip platform that enables straightforward creation of multiple cell-type organ-specific microenvironments. Herein, we demonstrate its advantages by building a liver model representative of live tissue function. CELLBLOKS® allows one to systematically test and identify various cell combinations that replicate optimal hepatic relevance. The combined interactions of fibroblasts, endothelial cells and hepatocytes were analysed using hepatic biochemistry (CYP3A4 and urea), cellular proliferation indices and transporter activities (albumin). The results demonstrate that optimal liver function can be achieved by exploiting crosstalk in co-culture combinations compared to conventional mono-culture. The optimised CELLBLOKS® liver model was tested to analyse drug-induced liver toxicity using tamoxifen. The data suggests that our CELLBLOKS® liver model is highly sensitive to toxic insult compared to mono-culture liver models. In summary, CELLBLOKS® provides a novel cell culture technology for creating human-relevant organotypic models that are easy and straightforward to establish in laboratory settings. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-022-00027-8.
Collapse
Affiliation(s)
- Valon Llabjani
- REVIVOCELL Limited, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AD UK
| | - M. R. Siddique
- REVIVOCELL Limited, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AD UK
| | - Anaïs Macos
- REVIVOCELL Limited, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AD UK
| | - Afaf Abouzid
- REVIVOCELL Limited, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AD UK
| | - Valmira Hoti
- REVIVOCELL Limited, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AD UK
| | - Francis L. Martin
- REVIVOCELL Limited, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AD UK
| | - Imran I. Patel
- REVIVOCELL Limited, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AD UK
| | - Ahtasham Raza
- REVIVOCELL Limited, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AD UK
| |
Collapse
|
4
|
Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, Pérez-Valdés Z, García-Fuentes E, Andrade RJ, Lucena MI, Villanueva-Paz M. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): Moving towards prediction. Acta Pharm Sin B 2021; 11:3685-3726. [PMID: 35024301 PMCID: PMC8727925 DOI: 10.1016/j.apsb.2021.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (iDILI) encompasses the unexpected harms that prescription and non-prescription drugs, herbal and dietary supplements can cause to the liver. iDILI remains a major public health problem and a major cause of drug attrition. Given the lack of biomarkers for iDILI prediction, diagnosis and prognosis, searching new models to predict and study mechanisms of iDILI is necessary. One of the major limitations of iDILI preclinical assessment has been the lack of correlation between the markers of hepatotoxicity in animal toxicological studies and clinically significant iDILI. Thus, major advances in the understanding of iDILI susceptibility and pathogenesis have come from the study of well-phenotyped iDILI patients. However, there are many gaps for explaining all the complexity of iDILI susceptibility and mechanisms. Therefore, there is a need to optimize preclinical human in vitro models to reduce the risk of iDILI during drug development. Here, the current experimental models and the future directions in iDILI modelling are thoroughly discussed, focusing on the human cellular models available to study the pathophysiological mechanisms of the disease and the most used in vivo animal iDILI models. We also comment about in silico approaches and the increasing relevance of patient-derived cellular models.
Collapse
Affiliation(s)
- Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Carlos López-Gómez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Zeus Pérez-Valdés
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
- Platform ISCIII de Ensayos Clínicos, UICEC-IBIMA, Málaga 29071, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
5
|
Jazaeri F, Sheibani M, Nezamoleslami S, Moezi L, Dehpour AR. Current Models for Predicting Drug-induced Cholestasis: The Role of Hepatobiliary Transport System. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:1-21. [PMID: 34567142 PMCID: PMC8457732 DOI: 10.22037/ijpr.2020.113362.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Drug-induced cholestasis is the main type of liver disorder accompanied by high morbidity and mortality. Evidence for the role of hepatobiliary pumps in the cholestasis patho-mechanism is constantly increasing. Recognition of the interactions of chemical agents with these transporters at the initial phases of drug discovery can help develop new drug candidates with low cholestasis potential. This review delivers an outline of the role of these transport proteins in bile creation. It addresses the pathophysiological mechanism for drug-induced cholestasis. In-vitro models, including cell-based and membrane-based approaches and In-vivo models such as genetic knockout animals, are considered. The benefits and restrictions of each model are discussed in this review. Current understandings into the cellular and molecular process that control the activity of hepatobiliary pumps have directed to a better understanding of the pathophysiology of drug-induced cholestasis. A combination of in-vitro monitoring for transport interaction, in-silico predicting systems, and consideration of and metabolic and physicochemical properties must cause more effective monitoring of possible liver problems.
Collapse
Affiliation(s)
- Farahnaz Jazaeri
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,F. J. and M. Sh. contributed equally to this work
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,F. J. and M. Sh. contributed equally to this work
| | - Sadaf Nezamoleslami
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Moezi
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad-Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Baier V, Clayton O, Nudischer R, Cordes H, Schneider ARP, Thiel C, Wittenberger T, Moritz W, Blank LM, Neumann UP, Trautwein C, Kelm J, Schrooders Y, Caiment F, Gmuender H, Roth A, Castell JV, Kleinjans J, Kuepfer L. A Model-Based Workflow to Benchmark the Clinical Cholestasis Risk of Drugs. Clin Pharmacol Ther 2021; 110:1293-1301. [PMID: 34462909 DOI: 10.1002/cpt.2406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/15/2021] [Indexed: 12/13/2022]
Abstract
We present a generic workflow combining physiology-based computational modeling and in vitro data to assess the clinical cholestatic risk of different drugs systematically. Changes in expression levels of genes involved in the enterohepatic circulation of bile acids were obtained from an in vitro assay mimicking 14 days of repeated drug administration for 10 marketed drugs. These changes in gene expression over time were contextualized in a physiology-based bile acid model of glycochenodeoxycholic acid. The simulated drug-induced response in bile acid concentrations was then scaled with the applied drug doses to calculate the cholestatic potential for each compound. A ranking of the cholestatic potential correlated very well with the clinical cholestasis risk obtained from medical literature. The proposed workflow allows benchmarking the cholestatic risk of novel drug candidates. We expect the application of our workflow to significantly contribute to the stratification of the cholestatic potential of new drugs and to support animal-free testing in future drug development.
Collapse
Affiliation(s)
- Vanessa Baier
- Institute of Applied Microbiology, RWTH, Aachen, Germany
| | - Olivia Clayton
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Ramona Nudischer
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Henrik Cordes
- Institute of Applied Microbiology, RWTH, Aachen, Germany
| | | | | | | | | | - Lars M Blank
- Institute of Applied Microbiology, RWTH, Aachen, Germany
| | - Ulf P Neumann
- Department of Surgery, University Hospital Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Yannick Schrooders
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Florian Caiment
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | | | | | - José V Castell
- Unidad de Hepatología Experimenta, IIS Hospital Universitario La Fe, Valencia, Spain.,Department of Bioquímica, Facultad de Medicina, Universidad de Valencia, CIBEREHD-ISCIII, Valencia, Spain
| | - Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Lars Kuepfer
- Institute of Applied Microbiology, RWTH, Aachen, Germany.,Institute of Systems Medicine with Focus on Organ Interaction, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
7
|
Qiao S, Feng S, Wu Z, He T, Ma C, Peng Z, Tian E, Pan G. Functional Proliferating Human Hepatocytes: In Vitro Hepatocyte Model for Drug Metabolism, Excretion, and Toxicity. Drug Metab Dispos 2021; 49:305-313. [PMID: 33526515 DOI: 10.1124/dmd.120.000275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To develop a functional alternative hepatocyte model for primary human hepatocytes (PHHs) with proliferative property, essential drug metabolic, and transporter functions, proliferating human hepatocytes (ProliHHs) expanded from PHHs were fully characterized in vitro. Herein, ProliHHs generated from multiple PHHs donors could be expanded more than 200-fold within four passages and maintained their metabolic or transporter capacities partially. Furthermore, ProliHHs were able to regain the mature hepatic property after three-dimensional (3D) culture. Particularly, the downregulated mRNA expression and function of three major cytochrome P450 (P450) enzymes (CYP1A2, CYP2B6, and CYP3A4) in the proliferating process (ProliHHs-P) could be recovered by 3D culture. The metabolic variabilities across different PHHs donors could be inherited to their matured ProliHHs (ProliHHs-M). The intrinsic clearances of seven major P450 enzymes in ProliHHs-M correlated well (r = 0.87) with those in PHHs. Also, bile canaliculi structures could be observed in sandwich-cultured ProliHHs (SC-ProliHHs), and the biliary excretion index of four probe compounds [cholyl-lys-fluorescein, 5-(and-6)-carboxy-2', 7'-dichlorofluorescein diacetate (CDF), deuterium-labeled sodium taurocholate acid, and rosuvastatin] in SC-ProliHHs (>10%) were close to sandwich-cultured PHHs. More importantly, both ProliHHs-P and ProliHHs-M could be used to evaluate hepatotoxicity. Therefore, these findings demonstrated that the 3D and sandwich culture system could be used to recover the metabolic and transporter functions in ProliHHs for clearance prediction and cholestasis risk assessment, respectively. Together, ProliHHs could be a promising substitute for PHHs in drug metabolism, transport, and hepatotoxicity screening. SIGNIFICANCE STATEMENT: This report describes the study of drug metabolic capacities, efflux transporter functions, and toxicity assessments of proliferating human hepatocytes (ProliHHs). The metabolic variability in different primary human hepatocyte donors could be inherited by their matured ProliHHs derivatives. Also, ProliHHs could form canalicular networks in sandwich culture and display biliary excretion capacities. More importantly, both the proliferative and maturation statuses of ProliHHs could be used to evaluate hepatotoxicity. Together, ProliHHs were feasible to support drug candidate screening in hepatic metabolism, disposition, and toxicity.
Collapse
Affiliation(s)
- Shida Qiao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (S.Q., Z.W., C.M., Z.P., G.P.); University of Chinese Academy of Sciences, Beijing, China (S.Q., Z.W., C.M., Z.P., G.P.); Shanghai Hexaell Biotech Co., Ltd, Shanghai, China (S.F., E.T.); Nanjing University of Chinese Medicine, Nanjing, China (Z.W.); and Nanjing Tech University, Nanjing, China (T.H.)
| | - Sisi Feng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (S.Q., Z.W., C.M., Z.P., G.P.); University of Chinese Academy of Sciences, Beijing, China (S.Q., Z.W., C.M., Z.P., G.P.); Shanghai Hexaell Biotech Co., Ltd, Shanghai, China (S.F., E.T.); Nanjing University of Chinese Medicine, Nanjing, China (Z.W.); and Nanjing Tech University, Nanjing, China (T.H.)
| | - Zhitao Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (S.Q., Z.W., C.M., Z.P., G.P.); University of Chinese Academy of Sciences, Beijing, China (S.Q., Z.W., C.M., Z.P., G.P.); Shanghai Hexaell Biotech Co., Ltd, Shanghai, China (S.F., E.T.); Nanjing University of Chinese Medicine, Nanjing, China (Z.W.); and Nanjing Tech University, Nanjing, China (T.H.)
| | - Ting He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (S.Q., Z.W., C.M., Z.P., G.P.); University of Chinese Academy of Sciences, Beijing, China (S.Q., Z.W., C.M., Z.P., G.P.); Shanghai Hexaell Biotech Co., Ltd, Shanghai, China (S.F., E.T.); Nanjing University of Chinese Medicine, Nanjing, China (Z.W.); and Nanjing Tech University, Nanjing, China (T.H.)
| | - Chen Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (S.Q., Z.W., C.M., Z.P., G.P.); University of Chinese Academy of Sciences, Beijing, China (S.Q., Z.W., C.M., Z.P., G.P.); Shanghai Hexaell Biotech Co., Ltd, Shanghai, China (S.F., E.T.); Nanjing University of Chinese Medicine, Nanjing, China (Z.W.); and Nanjing Tech University, Nanjing, China (T.H.)
| | - Zhaoliang Peng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (S.Q., Z.W., C.M., Z.P., G.P.); University of Chinese Academy of Sciences, Beijing, China (S.Q., Z.W., C.M., Z.P., G.P.); Shanghai Hexaell Biotech Co., Ltd, Shanghai, China (S.F., E.T.); Nanjing University of Chinese Medicine, Nanjing, China (Z.W.); and Nanjing Tech University, Nanjing, China (T.H.)
| | - E Tian
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (S.Q., Z.W., C.M., Z.P., G.P.); University of Chinese Academy of Sciences, Beijing, China (S.Q., Z.W., C.M., Z.P., G.P.); Shanghai Hexaell Biotech Co., Ltd, Shanghai, China (S.F., E.T.); Nanjing University of Chinese Medicine, Nanjing, China (Z.W.); and Nanjing Tech University, Nanjing, China (T.H.)
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (S.Q., Z.W., C.M., Z.P., G.P.); University of Chinese Academy of Sciences, Beijing, China (S.Q., Z.W., C.M., Z.P., G.P.); Shanghai Hexaell Biotech Co., Ltd, Shanghai, China (S.F., E.T.); Nanjing University of Chinese Medicine, Nanjing, China (Z.W.); and Nanjing Tech University, Nanjing, China (T.H.)
| |
Collapse
|
8
|
Foster JR, Semino-Beninel G, Melching-Kollmuss S. The Cumulative Risk Assessment of Hepatotoxic Chemicals: A Hepatic Histopathology Perspective. Toxicol Pathol 2020; 48:397-410. [PMID: 31933429 DOI: 10.1177/0192623319895481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The increased concern on the consequence of exposure to multiple chemical combinations has led national regulatory authorities to develop different concepts to conduct risk assessments on chemical mixtures. Pesticide residues were identified as "problem formulation" in the respective European regulations and in this context, the European Food and Safety Authority has suggested to group pesticidal active ingredients (AIs) into cumulative assessment groups (CAGs) based on the toxicological properties of each AI. One proposed CAG, on the liver, currently consists of 15 subgroups, each representing a specific hepatotoxic effect observed in toxicity studies. Dietary cumulative risk assessments would then have to be conducted assuming dose additivity of all members of each CAG subgroup. The purpose of this publication is to group AIs based upon the knowledge of the pathogenesis of liver effects to discriminate between primary end points (direct consequence of chemical interaction with a biological target) and secondary end points (which are a consequence of, or that arise out of, a previous pathological change). Focusing on the relevant primary end points strengthens and simplifies the selection of compounds for cumulative risk assessment regarding the liver and better rationalizes the basis for chemical grouping. Relevant dose additivity is to be expected at the level of the primary/leading pathological end points and not at the level of the secondary end points. We recognize, however, that special consideration is needed for substances provoking neoplasia, and this category is included in the group of primary end points for which chemicals inducing them are grouped for risk assessment. Using the pathological basis for defining the respective CAGs, 6 liver subgroups and 2 gallbladder/bile duct groups are proposed. This approach simplifies the cumulative assessment calculation without obviously affecting consumer safety.
Collapse
Affiliation(s)
- John R Foster
- Regulatory Science Associates, Kip Marina, Inverkip, Renfrewshire, United Kingdom
| | | | | |
Collapse
|
9
|
Petrov PD, Fernández-Murga L, Conde I, Martínez-Sena T, Guzmán C, Castell JV, Jover R. Epistane, an anabolic steroid used for recreational purposes, causes cholestasis with elevated levels of cholic acid conjugates, by upregulating bile acid synthesis (CYP8B1) and cross-talking with nuclear receptors in human hepatocytes. Arch Toxicol 2020; 94:589-607. [PMID: 31894354 DOI: 10.1007/s00204-019-02643-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
Anabolic-androgenic steroids are testosterone derivatives, used by body-builders to increase muscle mass. Epistane (EPI) is an orally administered 17α-alkylated testosterone derivative with 2a-3a epithio ring. We identified four individuals who, after EPI consumption, developed long-lasting cholestasis. The bile acid (BA) profile of three patients was characterized, as well the molecular mechanisms involved in this pathology. The serum BA pool was increased from 14 to 61-fold, basically on account of primary conjugated BA (cholic acid (CA) conjugates), whereas secondary BA were very low. In in vitro experiments with cultured human hepatocytes, EPI caused the accumulation of glycoCA in the medium. Moreover, as low as 0.01 μM EPI upregulated the expression of key BA synthesis genes (CYP7A1, by 65% and CYP8B1, by 67%) and BA transporters (NTCP, OSTA and BSEP), and downregulated FGF19. EPI increased the uptake/accumulation of a fluorescent BA analogue in hepatocytes by 50-70%. Results also evidenced, that 40 μM EPI trans-activated the nuclear receptors LXR and PXR. More importantly, 0.01 μM EPI activated AR in hepatocytes, leading to an increase in the expression of CYP8B1. In samples from a human liver bank, we proved that the expression of AR was positively correlated with that of CYP8B1 in men. Taken together, we conclude that EPI could cause cholestasis by inducing BA synthesis and favouring BA accumulation in hepatocytes, at least in part by AR activation. We anticipate that the large phenotypic variability of BA synthesis enzymes and transport genes in man provide a putative explanation for the idiosyncratic nature of EPI-induced cholestasis.
Collapse
Affiliation(s)
- Petar D Petrov
- Unidad Mixta de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, 46026, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Leonor Fernández-Murga
- Unidad Mixta de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Isabel Conde
- Unidad Mixta de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, 46026, Valencia, Spain.,Unidad de Hepatotoxicidad Clínica, Servicio de Medicina Digestiva, Sección Hepatología, Hospital La Fe, Valencia, Spain
| | - Teresa Martínez-Sena
- Unidad Mixta de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Carla Guzmán
- Unidad Mixta de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - José Vicente Castell
- Unidad Mixta de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, 46026, Valencia, Spain. .,Departamento de Bioquímica Y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| | - Ramiro Jover
- Unidad Mixta de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, 46026, Valencia, Spain. .,Departamento de Bioquímica Y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
10
|
Raschi E, De Ponti F. Strategies for Early Prediction and Timely Recognition of Drug-Induced Liver Injury: The Case of Cyclin-Dependent Kinase 4/6 Inhibitors. Front Pharmacol 2019; 10:1235. [PMID: 31708776 PMCID: PMC6821876 DOI: 10.3389/fphar.2019.01235] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
The idiosyncratic nature of drug-induced liver injury (DILI) represents a current challenge for drug developers, regulators and clinicians. The myriad of agents (including medications, herbals, and dietary supplements) with recognized DILI potential not only strengthens the importance of the post-marketing phase, when urgent withdrawal sometimes occurs for rare unanticipated liver toxicity, but also shows the imperfect predictivity of pre-clinical models and the lack of validated biomarkers beyond traditional, non-specific liver function tests. After briefly reviewing proposed key mechanisms of DILI, we will focus on drug-related risk factors (physiochemical and pharmacokinetic properties) recently proposed as predictors of DILI and use cyclin-dependent kinase 4/6 inhibitors, relatively novel oral anticancer medications approved for breast cancer, as a case study to discuss the feasibility of early detection of DILI signals during drug development: published data from pivotal clinical trials, unpublished post-marketing reports of liver adverse events, and pharmacokinetic properties will be used to provide a comparative evaluation of their liver safety and gain insight into drug-related risk factors likely to explain the observed differences.
Collapse
Affiliation(s)
| | - Fabrizio De Ponti
- Pharmacology Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Cuykx M, Beirnaert C, Rodrigues RM, Laukens K, Vanhaecke T, Covaci A. Untargeted liquid chromatography-mass spectrometry metabolomics to assess drug-induced cholestatic features in HepaRG® cells. Toxicol Appl Pharmacol 2019; 379:114666. [PMID: 31323262 DOI: 10.1016/j.taap.2019.114666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 02/09/2023]
Abstract
Cholestasis is a liver disease associated with retention of bile in the liver, which leads to local hepatic inflammation and severe liver damage. In order to investigate the mode of action of drug-induced cholestasis, in vitro models have shown to be able to recapitulate important elements of this disease. In this study, we applied untargeted metabolomics to investigate the metabolic perturbances in HepaRG® cells exposed for 24 h and 72 h to bosentan, a cholestatic reference toxicant. Intracellular profiles were extracted and analysed with liquid chromatography and accurate-mass spectrometry. Metabolites of interest were selected using partial least-squares discriminant analysis and random forest classifier models. The observed metabolic patterns associated with cholestasis in vitro were complex. Acute (24 h) exposure revealed metabolites related to apoptosis, such as ceramide and triglyceride accumulation, in combination with phosphatidylethanolamine, choline and carnitine depletion. Metabolomic alterations during exposure to lower dosages and a prolonged exposure (72 h) included carnitine upregulation and changes in the polyamine metabolism. These metabolites were linked to changes in phospholipid metabolism, mitochondrial pathways and energy homeostasis. The metabolic changes confirmed the mitotoxic effects of bosentan and revealed the potential involvement of phospholipid metabolism as part of the mode of action of drug-induced cholestasis.
Collapse
Affiliation(s)
- Matthias Cuykx
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Research group In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Jette, Belgium.
| | - Charlie Beirnaert
- Department of Mathematics & Computer Science, University of Antwerp, Middelheimlaan 1, 2020 Antwerp, Belgium; Biomedical Informatics Network Antwerpen (Biomina), University of Antwerp, Middelheimlaan 1, 2020 Antwerp, Belgium
| | - Robim M Rodrigues
- Research group In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Jette, Belgium
| | - Kris Laukens
- Department of Mathematics & Computer Science, University of Antwerp, Middelheimlaan 1, 2020 Antwerp, Belgium; Biomedical Informatics Network Antwerpen (Biomina), University of Antwerp, Middelheimlaan 1, 2020 Antwerp, Belgium
| | - Tamara Vanhaecke
- Research group In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Jette, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|