1
|
Cho KH, Hong MR, Song WK. Effects of end-effector robotic arm reach training with functional electrical stimulation for chronic stroke survivors. Top Stroke Rehabil 2025; 32:337-348. [PMID: 39361711 DOI: 10.1080/10749357.2024.2409595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Upper-extremity dysfunction significantly affects dependence in the daily lives of stroke survivors, limiting their participation in the social environment and reducing their quality of life. OBJECTIVES This study aimed to investigate the effect of end-effector robotic arm reach training (RAT) with functional electrical stimulation (FES) on upper-limb motor recovery in chronic stroke survivors. METHODS In this single-blinded randomized controlled trial, 28 chronic stroke survivors were randomized to receive RAT-with-FES and RAT-without-FES for 40 min/day, three times per week over a 4-week period, and the data of 26 participants were used in the final analysis. Upper-limb motor recovery was measured using the Fugl-Meyer assessment (FMA), and kinematics (movement time, speed, and distance) during reaching movements toward targets placed in three directions (ipsilateral, median, and contralateral sides) were measured using a robotic arm. RESULTS The upper-limb motor recovery (FMA and kinematics) improvement for the within-group comparisons tended to be greater in the RAT-with-FES group than in the RAT-without-FES group. However, in the between-group comparison, no significant differences were found in FMA, and significant differences were observed only for 2 distance parameters of kinematic factors: total (23.0% vs. 1.7%) and straight total (25.5% vs. 2.6%) distance on the ipsilateral side (p < 0.05). CONCLUSIONS This study was unable to clearly reveal the positive effects of electrical stimulation combined with robotic arm training. However, we believe that it provides basic data that furthers our understanding of the role of hybrid neuroprostheses in stroke rehabilitation and the factors determining successful treatment.
Collapse
Affiliation(s)
- Ki Hun Cho
- Department of Physical Therapy, Korea National University of Transportation, Jeungpyeong, Republic of Korea
| | - Mi Ran Hong
- Department of Rehabilitative & Assistive Technology, National Rehabilitation Research Institute, National Rehabilitation Center, Seoul, Republic of Korea
| | - Won-Kyung Song
- Department of Rehabilitative & Assistive Technology, National Rehabilitation Research Institute, National Rehabilitation Center, Seoul, Republic of Korea
| |
Collapse
|
2
|
Zhao X, Zhang Y, Zhang Y, Zhang P, Yu J, Yuan S. Development and Evaluation of a Novel Upper-Limb Rehabilitation Device Integrating Piano Playing for Enhanced Motor Recovery. Biomimetics (Basel) 2025; 10:200. [PMID: 40277599 PMCID: PMC12025186 DOI: 10.3390/biomimetics10040200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/18/2025] [Accepted: 03/22/2025] [Indexed: 04/26/2025] Open
Abstract
This study developed and evaluated a novel upper-limb rehabilitation device that integrates piano playing into task-oriented occupational therapy, addressing the limitations of traditional continuous passive motion (CPM) training in patient engagement and functional recovery. The system features a bi-axial sliding platform for precise 61-key positioning and a ten-link, four-loop robotic hand for key striking. A hierarchical control framework incorporates MIDI-based task mapping, finger optimization using an improved Hungarian algorithm, and impedance-admittance hybrid control for adaptive force-position modulation. An 8-week randomized controlled trial demonstrated that the experimental group significantly outperformed the control group, with a 74.7% increase in Fugl-Meyer scores (50.5 ± 2.5), a 14.6-point improvement in the box and block test (BBT), a 20.2-s reduction in nine-hole peg test (NHPT) time, and a 72.6% increase in rehabilitation motivation scale (RMS) scores (55.4 ± 3.8). The results indicate that combining piano playing with robotic rehabilitation enhances neuroplasticity and engagement, significantly improving motor function, daily activity performance, and rehabilitation adherence. This mechanical-control synergy introduces a new paradigm for music-interactive rehabilitation, with potential applications in home-based remote therapy and multimodal treatment integration.
Collapse
Affiliation(s)
- Xin Zhao
- School of Arts and Design, Yanshan University, Haigang District, Qinhuangdao 066000, China;
| | - Ying Zhang
- Arts Department of Qinhuangdao Vocational and Technical College, Beidaihe District, Qinhuangdao 066100, China;
| | - Yi Zhang
- Organization and Publicity Office of the CPC Qinhuangdao Vocational and Technical College Committee, Beidaihe District, Qinhuangdao 066100, China;
| | - Peng Zhang
- Department of Design, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Jinxu Yu
- College of Mechanical and Automotive Engineering/Hangzhou Bay Automotive Engineering, Ningbo University of Technology, Ningbo 315211, China;
| | - Shuai Yuan
- School of Arts and Design, Yanshan University, Haigang District, Qinhuangdao 066000, China;
| |
Collapse
|
3
|
Te Boekhorst KE, Kuipers SJ, Ribbers GM, Cramm JM. The complexity of home-based rehabilitation technology implementation for post-stroke motor rehabilitation in the Netherlands. BMC Health Serv Res 2025; 25:21. [PMID: 39755612 DOI: 10.1186/s12913-024-12044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Rehabilitation technology is a growing field, but the sustainable implementation of these technologies, particularly in home settings, is lacking. The aim of this study was to explore the factors influencing the uptake of stroke rehabilitation technology among various stakeholders, including developers, healthcare professionals, individuals who had strokes, strategic experts, management and innovation staff, health insurers, and the National Health Care Institute. METHODS In total, 22 semi-structured interviews were conducted with a purposive stakeholder sample. The Non-adoption, Abandonment, Scale-up, Spread, and Sustainability (NASSS) framework was used as the theoretical basis for the interview design. The interview content was analysed to generate (sub)themes representing factors influencing the implementation of home-based rehabilitation technology. These (sub)themes were organised according to the NASSS framework domains to ensure a systematic and theoretically grounded analysis. RESULTS Ten influencing factors emerged, nine of which fell within six of the seven NASSS domains. These factors include: (1) the unpredictable aftermath of stroke, (2) technology (mis)alignment with care delivery processes and end users' preferences, (3) disparities in the assessment of technology's value, (4) differences in commercial and university developers' interests, (5) patient group capabilities, (6) perceived workload, (7) formal implementation plans in rehabilitation centres, (8) laws and regulations, and (9) the financial system. The factor that did not align with a single NASSS domain was: (10) the fragmentation of responsibilities among diverse stakeholders. CONCLUSION This study shows that the sustainable implementation of home-based rehabilitation technology faces several challenges across multiple domains of the NASSS framework. Effective collaboration among stakeholders is crucial for addressing these challenges but is currently hindered by fragmented responsibilities. To improve collaboration, it is essential to clearly define the roles and responsibilities of all stakeholders. Additionally, national-level policies adopting a systems approach are necessary to align these responsibilities and foster effective collaboration.
Collapse
Affiliation(s)
- Karlijn E Te Boekhorst
- Socio-Medical Sciences Department, Erasmus School of Health Policy & Management, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| | - Sanne J Kuipers
- Socio-Medical Sciences Department, Erasmus School of Health Policy & Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Gerard M Ribbers
- Rehabilitation Medicine Department, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Jane M Cramm
- Socio-Medical Sciences Department, Erasmus School of Health Policy & Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Pearce LMN, Pryor J, Redhead J, Sherrington C, Hassett L. Advanced Technology in a Real-World Rehabilitation Setting: Longitudinal Observational Study on Clinician Adoption and Implementation. J Med Internet Res 2024; 26:e60374. [PMID: 39753210 PMCID: PMC11729780 DOI: 10.2196/60374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/04/2024] [Accepted: 10/21/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Advanced technologies are becoming increasingly accessible in rehabilitation. Current research suggests technology can increase therapy dosage, provide multisensory feedback, and reduce manual handling for clinicians. While more high-quality evidence regarding the effectiveness of rehabilitation technologies is needed, understanding of how to effectively integrate technology into clinical practice is also limited. Current implementation of rehabilitation technology is inconsistent, with low uptake among clinicians and frequent reports of technology abandonment. An Australian rehabilitation provider opened a new technology therapy center in 2022, offering a unique opportunity to generate practice-based evidence to inform future technology implementation and research. OBJECTIVE This study aimed to investigate the implementation and adoption of advanced technology within a real-world rehabilitation setting. METHODS This study was a longitudinal observational study in a rehabilitation organization with inpatient, outpatient, and community settings. Allied health clinicians (n=119) within the organization had access to advanced technologies, with patients receiving neurological, spinal cord injury, brain injury, or general rehabilitation. Interventions included 21 advanced technologies, including robotic, virtual reality (VR), sensor-based, and functional electrical stimulation devices. Clinicians received training for devices in a staged approach by external and internal trainers. Data were collected from patient electronic medical records from July 1, 2022, to June 30, 2023. Outcomes included frequency of advanced technology use, patient demographics (age, gender, and primary health condition), clinician discipline, rehabilitation service (inpatient, outpatient, or community), goals of technology therapy sessions, and therapy dosage achieved (minutes active, number of repetitions, and meters walked). RESULTS Clinicians used advanced technology 4208 times with 269 patients over 12 months; specifically, physiotherapists (2716/4208, 65%), occupational therapists (1396/4208, 33%), and allied health assistants (96/4208, 2%). The majority of patients had stroke, spinal cord injury, or brain injury diagnoses (188/269, 70%). Devices were typically used to target impairment and activity limitation-related goals. Frequently used devices included gait training body-weight support (VR treadmill and overground), overground robotic exoskeletons, and upper limb robotic VR devices. Outpatient services were the dominant users of advanced technology (3940/4208, 94%). Clinicians most commonly used devices for patients with stroke (1973/4208, 47%) and the greatest variety of devices for patients with stroke and spinal cord injury. The relative use of lower limb robotic devices was greater in inpatient services (91/178, 51%, vs outpatient services, 963/2335, 41%) (χ21=6.6, P=.01) and for patients with spinal cord injury (48/95, 51%, vs all other conditions, between 24%-31%; χ25=16.8, P=.005). CONCLUSIONS The type and amount of advanced technology use differed between patient populations and rehabilitation settings. To support clinician use of advanced technology, devices should match the rehabilitation context. Tailored strategies are important, such as clinician training. Further practice-based research is required to provide guidance on implementation and to establish the effectiveness of advanced technology use.
Collapse
Affiliation(s)
- Louise Michelle Nettleton Pearce
- Royal Rehab Group, Sydney, Australia
- Institute for Musculoskeletal Health, Sydney Local Health District, Sydney, Australia
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Julie Pryor
- Royal Rehab Group, Sydney, Australia
- Susan Wakil School of Nursing and Midwifery, The University of Sydney, Sydney, Australia
| | | | - Catherine Sherrington
- Institute for Musculoskeletal Health, Sydney Local Health District, Sydney, Australia
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Leanne Hassett
- Institute for Musculoskeletal Health, Sydney Local Health District, Sydney, Australia
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Implementation Science Academy, Sydney Health Partners, Sydney, Australia
| |
Collapse
|
5
|
Alashram AR. Combined robot-assisted therapy virtual reality for upper limb rehabilitation in stroke survivors: a systematic review of randomized controlled trials. Neurol Sci 2024; 45:5141-5155. [PMID: 38837113 DOI: 10.1007/s10072-024-07628-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Upper limb impairments are among the most common consequences following a stroke. Recently, robot-assisted therapy (RT) and virtual reality (VR) have been used to improve upper limb function in stroke survivors. OBJECTIVES This review aims to investigate the effects of combined RT and VR on upper limb function in stroke survivors and to provide recommendations for researchers and clinicians in the medical field. METHODS We searched PubMed, SCOPUS, REHABDATA, PEDro, EMBASE, and Web of Science from inception to March 28, 2024. Randomized controlled trials (RCTs) involving stroke survivors that compared combined RT and VR interventions with either passive (i.e., sham, rest) or active (i.e., traditional therapy, VR, RT) interventions and assessed outcomes related to upper limb function (e.g., strength, muscle tone, or overall function) were included. The Cochrane Collaboration tool was used to evaluate the methodological quality of the included studies. RESULTS Six studies were included in this review. In total, 201 patients with stroke (mean age 57.84 years) were involved in this review. Four studies were considered 'high quality', while two were considered as 'moderate quality' on the Cochrane Collaboration tool. The findings showed inconsistent results for the effects of combined RT and VR interventions on upper limb function poststroke. CONCLUSION In conclusion, there are potential effects of combined RT and VR interventions on improving upper limb function, but further research is needed to confirm these findings, understand the underlying mechanisms, and assess the consistency and generalizability of the results.
Collapse
Affiliation(s)
- Anas R Alashram
- Department of Physiotherapy, Middle East University, Ammam, Jordan.
- Applied Science Research Center, Applied Science Private University, Amman, Jordan.
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy.
| |
Collapse
|
6
|
Cheng C, Liu T, Zhang B, Wu X, Song Z, Zhao Z, Ren X, Zhao M, Su Y, Wang J. Effects of robot-assisted hand function therapy on brain functional mechanisms: a synchronized study using fNIRS and sEMG. Front Med (Lausanne) 2024; 11:1411616. [PMID: 39544380 PMCID: PMC11560759 DOI: 10.3389/fmed.2024.1411616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024] Open
Abstract
Background Robot-assisted hand function therapy is pivotal in the rehabilitation of patients with stroke; however, its therapeutic mechanism remains elusive. Currently, research examining the impact of robot-assisted hand function therapy on brain function in patients with stroke is scarce, and there is a lack of studies investigating the correlation between muscle activity and alterations in brain function. Objective This study aimed to investigate the correlation between forearm muscle movement and brain functional activation by employing the synchronized use of functional near-infrared spectroscopy and surface electromyography methods. Moreover, it sought to compare neural activity patterns during different rehabilitation tasks and refine the mechanism of robot-assisted hand function therapy for post-stroke hand function impairments. Methods Stroke patients with hand dysfunction underwent three sessions of robot-assisted hand function therapy within 2 weeks to 3 months of onset. The fNIRS-sEMG synchronous technique was used to observe brain function and forearm muscle activation. Ten participants were randomly assigned to receive mirror, resistance, or passive rehabilitation training. During the intervention, cortical and muscle activation information was obtained using fNIRS and electromyographic signals. The primary outcomes included changes in oxyhemoglobin concentration and root mean square of surface electromyography. Results Compared to the resting state, the Oxy-Hb concentration in the brain regions involved in three rehabilitation tasks with robot-assisted hand function therapy significantly increased (p < 0.05). Mirror therapy significantly enhanced the prefrontal cortex and the superior frontal cortex activation levels. In contrast, resistance therapy significantly promoted the activation of the supplementary motor area and the premotor cortex. Passive rehabilitation tasks showed some activation in the target brain area premotor cortex region. Robot-assisted hand function therapy has shown that forearm muscle movement is closely related to oxygenated hemoglobin concentration activity in specific brain regions during different rehabilitation tasks. Conclusion The simultaneous sEMG-fNIRS study found a significant correlation between muscle movement and brain activity after stroke, which provides an important basis for understanding the treatment mechanism of hand function impairment.
Collapse
Affiliation(s)
- Changfeng Cheng
- Shanghai Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tiantian Liu
- Shanghai Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Beibei Zhang
- The first affiliated hospital of Anhui University of Traditional Chinese Medicine, Anhui, China
| | - Xubo Wu
- Shanghai Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenwang Song
- Shanghai Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhongzhi Zhao
- Shanghai Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Ren
- Shanghai Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Minjun Zhao
- Shanghai Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yajuan Su
- Shanghai Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiening Wang
- Shanghai Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Bernal-Jiménez JJ, Dileone M, Mordillo-Mateos L, Martín-Conty JL, Durantez-Fernández C, Viñuela A, Martín-Rodríguez F, Lerin-Calvo A, Alcántara-Porcuna V, Polonio-López B. Combining Transcranial Direct Current Stimulation With Hand Robotic Rehabilitation in Chronic Stroke Patients: A Double-Blind Randomized Clinical Trial. Am J Phys Med Rehabil 2024; 103:875-882. [PMID: 38363693 DOI: 10.1097/phm.0000000000002446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
OBJECTIVE This study aimed to assess the impact of combining transcranial direct current stimulation with end-effector robot-assisted treatment on upper limb function, spasticity, and hand dexterity in chronic stroke patients. DESIGN This was a prospective, double-blind randomized trial with 20 equally allocated stroke patients. The experimental group received dual transcranial direct current stimulation (anode over affected M1, cathode over contralateral M1) alongside robot-assisted treatment, while the control group received sham transcranial direct current stimulation with the same electrode placement + robot-assisted treatment. Each patient underwent 20 combined transcranial direct current stimulation and robot-assisted treatment sessions. The primary outcome measure was the Fugl-Meyer Upper Limb motor score, with secondary outcomes including AMADEO kinematic measures, Action Research Arm Test, and Functional Independence Measure. Assessments were conducted at baseline, after rehabilitation, and 3 mos later. RESULTS Combining bilateral transcranial direct current stimulation with robot-assisted treatment did not yield additional improvements in Fugl-Meyer Upper Limb motor score, Functional Independence Measure, or Action Research Arm Test scores among stroke patients. However, the real transcranial direct current stimulation group showed enhanced finger flexion in the affected hand based on AMADEO kinematic measures. CONCLUSIONS The addition of transcranial direct current stimulation to robot-assisted treatment did not result in significant overall functional improvements in chronic stroke patients. However, a benefit was observed in finger flexion of the affected hand.
Collapse
Affiliation(s)
- Juan J Bernal-Jiménez
- From the Faculty of Health Sciences, University of Castilla-La Mancha, Talavera de la Reina, Spain (JJB-J, MD, LM-M, JLM-C, AV, VA-P, BP-L); Technological Innovation Applied to Health Research Group (ITAS), Faculty of Health Sciences, University of Castilla-La Mancha, Talavera de la Reina, Spain (JJB-J, MD, LM-M, JLM-C, AV, VA-P, BP-L); Neurology Department, Hospital Nuestra Señora del Prado, SESCAM Servicio de Salud de Castilla-La Mancha, Talavera de la Reina, Spain (DM); Department of Nursing, Faculty of Nursing, University of Valladolid, Valladolid, Spain (CD-F); Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain (FM-R); Prehospital Early Warning Scoring-System Investigation Group, Valladolid, Spain (FM-R); Advanced Life Support, Emergency Medical Services (SACYL), Valladolid, Spain (FM-R); Neuron Neurobotic, Madrid, Spain (AL-C); and Department of Physiotherapy, Faculty of Health Sciences, University La Salle, Madrid, Spain (AL-C)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Fan Y, Zhu L, Wang H, Song A. Synthesize Personalized Training for Robot-Assisted Upper Limb Rehabilitation With Diversity Enhancement. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:5705-5718. [PMID: 37639418 DOI: 10.1109/tvcg.2023.3308940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
For upper limb rehabilitation, the robot-assisted technique in combination with serious games requires well-specified training plans. For the best quality of the rehabilitation process, customized game levels for each user are desired, while it is labor-intensive to design and adjust game levels for different individuals. We work on generating training content for a desktop end-effector rehabilitation robot and propose a method to automatically generate individualized training plans. By modeling the search of the training motions as finding optimal hand paths and trajectories, we introduce solving the design problem with a multi-objective optimization (MO) solver. We further improve the MO solver to enhance the diversity of the solutions. With the proposed approach, our system is capable of automatically generating various training plans considering the training intensity and dexterity of each joint in the upper limb. In addition, the enhanced diversity avoids repeated training plans, which helps motivate the user in the rehabilitation. We test our method with different requirements on the training plans and validate the solutions.
Collapse
|
9
|
Pavan A, Fasano A, Cortellini L, Lattanzi S, Papadopoulou D, Insalaco S, Germanotta M, Aprile I. Implementation of a robot-mediated upper limb rehabilitation protocol for a customized treatment after stroke: A retrospective analysis. NeuroRehabilitation 2024; 54:411-420. [PMID: 38457161 DOI: 10.3233/nre-230367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
BACKGROUND Many authors have emphasized the need for individualized treatments in rehabilitation, but no tailored robotic rehabilitation protocol for stroke patients has been established yet. OBJECTIVE To evaluate the effectiveness of a robot-mediated upper limb rehabilitation protocol based on clinical assessment for customized treatment of stroke patients. METHODS Clinical data from 81 patients with subacute stroke, undergoing an upper limb robot-mediated rehabilitation, were analyzed retrospectively. 49 patients were treated using a customized robotic protocol (experimental group, EG) based on a clinically guided flowchart, while 32 were treated without it (control group, CG). Fugl-Meyer Assessment for Upper Extremity (FMA-UE), Motricity Index (MI), modified Barthel Index (mBI) and Numerical Rating Scale (NRS) measured before (T0) and after (T1) rehabilitation intervention were used as clinical outcomes. RESULTS There was statistically significant improvement in both groups in terms of FMA-UE, MI, and mBI, while no change in NRS. Intergroup analysis showed significantly greater improvement of the FMA-UE (P = 0.002) and MI (P < 0.001) in the EG, compared with the CG. CONCLUSION The implementation of our robotic protocol for customized treatment of stroke patients yielded greater recovery in upper limb motor function and strength over robotic treatment without a defined protocol.
Collapse
Affiliation(s)
- Arianna Pavan
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Florence, Italy
| | - Alessio Fasano
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Florence, Italy
| | | | | | | | | | | | - Irene Aprile
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Florence, Italy
| |
Collapse
|
10
|
He LW, Guo XJ, Zhao C, Rao JS. Rehabilitation Training after Spinal Cord Injury Affects Brain Structure and Function: From Mechanisms to Methods. Biomedicines 2023; 12:41. [PMID: 38255148 PMCID: PMC10813763 DOI: 10.3390/biomedicines12010041] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Spinal cord injury (SCI) is a serious neurological insult that disrupts the ascending and descending neural pathways between the peripheral nerves and the brain, leading to not only functional deficits in the injured area and below the level of the lesion but also morphological, structural, and functional reorganization of the brain. These changes introduce new challenges and uncertainties into the treatment of SCI. Rehabilitation training, a clinical intervention designed to promote functional recovery after spinal cord and brain injuries, has been reported to promote activation and functional reorganization of the cerebral cortex through multiple physiological mechanisms. In this review, we evaluate the potential mechanisms of exercise that affect the brain structure and function, as well as the rehabilitation training process for the brain after SCI. Additionally, we compare and discuss the principles, effects, and future directions of several rehabilitation training methods that facilitate cerebral cortex activation and recovery after SCI. Understanding the regulatory role of rehabilitation training at the supraspinal center is of great significance for clinicians to develop SCI treatment strategies and optimize rehabilitation plans.
Collapse
Affiliation(s)
- Le-Wei He
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (L.-W.H.); (X.-J.G.)
| | - Xiao-Jun Guo
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (L.-W.H.); (X.-J.G.)
| | - Can Zhao
- Institute of Rehabilitation Engineering, China Rehabilitation Science Institute, Beijing 100068, China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (L.-W.H.); (X.-J.G.)
| |
Collapse
|
11
|
Giansanti D. Bridging the Gap: Exploring Opportunities, Challenges, and Problems in Integrating Assistive Technologies, Robotics, and Automated Machines into the Health Domain. Healthcare (Basel) 2023; 11:2462. [PMID: 37685498 PMCID: PMC10487463 DOI: 10.3390/healthcare11172462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/11/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The field of healthcare is continually evolving and advancing due to new technologies and innovations [...].
Collapse
Affiliation(s)
- Daniele Giansanti
- National Centre for Innovative Technologies in Public Health, Italian National Institute of Health, 00161 Rome, Italy
| |
Collapse
|
12
|
Broderick M, O'Shea R, Burridge J, Demain S, Johnson L, Bentley P. Examining Usability, Acceptability, and Adoption of a Self-Directed, Technology-Based Intervention for Upper Limb Rehabilitation After Stroke: Cohort Study. JMIR Rehabil Assist Technol 2023; 10:e45993. [PMID: 37603405 PMCID: PMC10477927 DOI: 10.2196/45993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/25/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Upper limb (UL) recovery after stroke is strongly dependent upon rehabilitation dose. Rehabilitation technologies present pragmatic solutions to dose enhancement, complementing therapeutic activity within conventional rehabilitation, connecting clinicians with patients remotely, and empowering patients to drive their own recovery. To date, rehabilitation technologies have been poorly adopted. Understanding the barriers to adoption may shape strategies to enhance technology use and therefore increase rehabilitation dose, thus optimizing recovery potential. OBJECTIVE We examined the usability, acceptability, and adoption of a self-directed, exercise-gaming technology within a heterogeneous stroke survivor cohort and investigated how stroke survivor characteristics, technology usability, and attitudes toward technology influenced adoption. METHODS A feasibility study of a novel exercise-gaming technology for self-directed UL rehabilitation in early subacute stroke survivors (N=30) was conducted in an inpatient, acute hospital setting. Demographic and clinical characteristics were recorded; participants' performance in using the system (usability) was assessed using a 4-point performance rating scale (adapted from the Barthel index), and adherence with the system was electronically logged throughout the trial. The technology acceptance model was used to formulate a survey examining the acceptability of the system. Spearman rank correlations were used to examine associations between participant characteristics, user performance (usability), end-point technology acceptance, and intervention adherence (adoption). RESULTS The technology was usable for 87% (n=26) of participants, and the overall technology acceptance rating was 68% (95% CI 56%-79%). Participants trained with the device for a median of 26 (IQR 16-31) minutes daily over an enrollment period of 8 (IQR 5-14) days. Technology adoption positively correlated with user performance (usability) (ρ=0.55; 95% CI 0.23-0.75; P=.007) and acceptability as well as domains of perceived usefulness (ρ=0.42; 95% CI 0.09-0.68; P=.03) and perceived ease of use (ρ=0.46; 95% CI 0.10-0.74; P=.02). Technology acceptance decreased with increased global stroke severity (ρ=-0.56; 95% CI -0.79 to -0.22; P=.007). CONCLUSIONS This technology was usable and acceptable for the majority of the cohort, who achieved an intervention dose with technology-facilitated, self-directed UL training that exceeded conventional care norms. Technology usability and acceptability were determinants of adoption and appear to be mediated by stroke severity. The results demonstrate the importance of selecting technologies for stroke survivors on the basis of individual needs and abilities, as well as optimizing the accessibility of technologies for the target user group. Facilitating changes in stroke survivors' beliefs and attitudes toward rehabilitation technologies may enhance adoption. Further work is needed to understand how technology can be optimized to benefit those with more severe stroke.
Collapse
Affiliation(s)
- Michelle Broderick
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Robert O'Shea
- Department of Cancer Imaging, Kings College London, London, United Kingdom
| | - Jane Burridge
- School of Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Sara Demain
- School of Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Louise Johnson
- School of Life Sciences, University of Southampton, Southampton, United Kingdom
- University Hospitals Dorset NHS Foundation Trust, Bournemouth, United Kingdom
| | - Paul Bentley
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Li M, Chen J, He B, He G, Zhao CG, Yuan H, Xie J, Xu G, Li J. Stimulation enhancement effect of the combination of exoskeleton-assisted hand rehabilitation and fingertip haptic stimulation. Front Neurosci 2023; 17:1149265. [PMID: 37287795 PMCID: PMC10242052 DOI: 10.3389/fnins.2023.1149265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Providing stimulation enhancements to existing hand rehabilitation training methods may help stroke survivors achieve better treatment outcomes. This paper presents a comparison study to explore the stimulation enhancement effects of the combination of exoskeleton-assisted hand rehabilitation and fingertip haptic stimulation by analyzing behavioral data and event-related potentials. Methods The stimulation effects of the touch sensations created by a water bottle and that created by cutaneous fingertip stimulation with pneumatic actuators are also investigated. Fingertip haptic stimulation was combined with exoskeleton-assisted hand rehabilitation while the haptic stimulation was synchronized with the motion of our hand exoskeleton. In the experiments, three experimental modes, including exoskeleton-assisted grasping motion without haptic stimulation (Mode 1), exoskeleton-assisted grasping motion with haptic stimulation (Mode 2), and exoskeleton-assisted grasping motion with a water bottle (Mode 3), were compared. Results The behavioral analysis results showed that the change of experimental modes had no significant effect on the recognition accuracy of stimulation levels (p = 0.658), while regarding the response time, exoskeleton-assisted grasping motion with haptic stimulation was the same as grasping a water bottle (p = 0.441) but significantly different from that without haptic stimulation (p = 0.006). The analysis of event-related potentials showed that the primary motor cortex, premotor cortex, and primary somatosensory areas of the brain were more activated when both the hand motion assistance and fingertip haptic feedback were provided using our proposed method (P300 amplitude 9.46 μV). Compared to only applying exoskeleton-assisted hand motion, the P300 amplitude was significantly improved by providing both exoskeleton-assisted hand motion and fingertip haptic stimulation (p = 0.006), but no significant differences were found between any other two modes (Mode 2 vs. Mode 3: p = 0.227, Mode 1 vs. Mode 3: p = 0.918). Different modes did not significantly affect the P300 latency (p = 0.102). Stimulation intensity had no effect on the P300 amplitude (p = 0.295, 0.414, 0.867) and latency (p = 0.417, 0.197, 0.607). Discussion Thus, we conclude that combining exoskeleton-assisted hand motion and fingertip haptic stimulation provided stronger stimulation on the motor cortex and somatosensory cortex of the brain simultaneously; the stimulation effects of the touch sensations created by a water bottle and that created by cutaneous fingertip stimulation with pneumatic actuators are similar.
Collapse
Affiliation(s)
- Min Li
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jing Chen
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Bo He
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Guoying He
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chen-Guang Zhao
- Department of Rehabilitation, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hua Yuan
- Department of Rehabilitation, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jun Xie
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Guanghua Xu
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jichun Li
- School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
14
|
Pournajaf S, Morone G, Straudi S, Goffredo M, Leo MR, Calabrò RS, Felzani G, Paolucci S, Filoni S, Santamato A, Franceschini M. Neurophysiological and Clinical Effects of Upper Limb Robot-Assisted Rehabilitation on Motor Recovery in Patients with Subacute Stroke: A Multicenter Randomized Controlled Trial Study Protocol. Brain Sci 2023; 13:brainsci13040700. [PMID: 37190665 DOI: 10.3390/brainsci13040700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND The efficacy of upper limb (UL) robot-assisted therapy (RAT) on functional improvement after stroke remains unclear. However, recently published randomized controlled trials have supported its potential benefits in enhancing the activities of daily living, arm and hand function, and muscle strength. Task-specific and high-intensity exercises are key points in facilitating motor re-learning in neurorehabilitation since RAT can provide an assisted-as-needed approach. This study aims to investigate the clinical effects of an exoskeleton robotic system for UL rehabilitation compared with conventional therapy (CT) in people with subacute stroke. As a secondary aim, we seek to identify patients' characteristics, which can predict better recovery after UL-RAT and detects whether it could elicit greater brain stimulation. METHODS A total of 84 subacute stroke patients will be recruited from 7 Italian rehabilitation centers over 3 years. The patients will be randomly allocated to either CT (control group, CG) or CT plus UL-RT through an Armeo®Power (Hocoma AG, CH, Volketswil, Switzerland) exoskeleton (experimental group, EG). A sample stratification based on distance since onset, DSO (DSO ≤ 30; DSO > 30), and Fugl-Meyer Assessment (FM)-UL (FM-UL ≤ 22; 22 < FM-UL ≤ 44) will be considered for the randomization. The outcomes will be recorded at baseline (T0), after 25 + 3 sessions of intervention (T1), and at 6 months post-stroke (T2). The motor functioning assessed by the FM-UL (0-66) will be considered the primary outcome. The clinical assessments will be set based on the International Classification of Function, Disability and Health (ICF). A patient satisfaction questionnaire will be evaluated in the EG at T1. A subgroup of patients will be evaluated at T0 and T1 via electroencephalography. Their brain electrical activity will be recorded during rest conditions with their eyes closed and open (5 min each). CONCLUSION The results of this trial will provide an in-depth understanding of the efficacy of early UL-RAT through a whole arm exoskeleton and how it may relate to the neural plasticity process. The trial was registered at ClinicalTrial.gov with the registration identifier NCT04697368.
Collapse
Affiliation(s)
| | - Giovanni Morone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
- San Raffaele Istitute of Sulmona, 67039 Sulmona, Italy
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Ferrara University Hospital, 44121 Ferrara, Italy
| | | | | | | | | | | | - Serena Filoni
- Fondazione Centri di Riabilitazione Padre Pio Onlus, San Giovani Rotondo, 71013 Foggia, Italy
| | - Andrea Santamato
- Physical Medicine and Rehabilitative Unit-Riuniti Hospital, University of Foggia, 71100 Foggia, Italy
| | - Marco Franceschini
- IRCSS San Raffaele Roma, 000163 Rome, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele University, 00166 Rome, Italy
| |
Collapse
|
15
|
Rizvi A, Parveen S, Bazigha F, Noohu MM. Effect of transcranial direct current stimulation in combination with robotic therapy in upper limb impairments in people with stroke: a systematic review. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2023. [DOI: 10.1186/s41983-023-00640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Abstract
Background
Stroke is a devastating condition, which not only affects patients’ activity, but also is a primary reason for the psychosocial impact on them, their caregivers, and the healthcare system. Transcranial direct current stimulation (tDCS) modulates cortical activity, encouraging neuro-modulation and motor recovery in stroke rehabilitation. Robotic therapy (RT) provides repetitive, high-intensity, interactive, task-specific intervention and can measure changes while providing feedback to people with stroke.
Objectives
This study aimed to evaluate and summarize the scientific literature systematically to investigate the combined effect of tDCS and RT in patients with stroke.
Methods
Four databases (MEDLINE, Web of Science, ScienceDirect, & PEDro) were searched for clinical trials investigating the effect of RT and tDCS in stroke patients with upper limb impairment. PEDro scale was used for the quality assessment of included studies.
Results
The search yielded 208 articles. A total of 213 patients with stroke who had upper limb impairment were studied. In the majority of the trials, RT combined with tDCS lead to positive improvement in various measures of upper limb function and spasticity.
Conclusions
RT along with tDCS is an effective mode of rehabilitation, although no additional effects of tDCS plus RT in comparison with RT alone were reported. Large, robust studies are needed, so that health care providers and researchers can make better decisions about merging tDCS and RT in stroke rehabilitation settings in the future.
Collapse
|
16
|
Tohanean N, Tucan P, Vanta OM, Abrudan C, Pintea S, Gherman B, Burz A, Banica A, Vaida C, Neguran DA, Ordog A, Tarnita D, Pisla D. The Efficacity of the NeuroAssist Robotic System for Motor Rehabilitation of the Upper Limb-Promising Results from a Pilot Study. J Clin Med 2023; 12:jcm12020425. [PMID: 36675354 PMCID: PMC9866490 DOI: 10.3390/jcm12020425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
The research aimed to evaluate the efficacy of the NeuroAssist, a parallel robotic system comprised of three robotic modules equipped with human-robot interaction capabilities, an internal sensor system for torque monitoring, and an external sensor system for real-time patient monitoring for the motor rehabilitation of the shoulder, elbow, and wrist. The study enrolled 10 consecutive patients with right upper limb paresis caused by stroke, traumatic spinal cord disease, or multiple sclerosis admitted to the Neurology I Department of Cluj-Napoca Emergency County Hospital. The patients were evaluated clinically and electrophysiologically before (T1) and after the intervention (T2). The intervention consisted of five consecutive daily sessions of 30-45 min each of 30 passive repetitive movements performed with the robot. There were significant differences (Wilcoxon signed-rank test) between baseline and end-point clinical parameters, specifically for the Barthel Index (53.00 ± 37.72 vs. 60.50 ± 36.39, p = 0.016) and Activities of Daily Living Index (4.70 ± 3.43 vs. 5.50 ± 3.80, p = 0.038). The goniometric parameters improved: shoulder flexion (70.00 ± 56.61 vs. 80.00 ± 63.59, p = 0.026); wrist flexion/extension (34.00 ± 28.75 vs. 42.50 ± 33.7, p = 0.042)/(30.00 ± 22.97 vs. 41.00 ± 30.62, p = 0.042); ulnar deviation (23.50 ± 19.44 vs. 33.50 ± 24.15, p = 0.027); and radial deviation (17.50 ± 18.14 vs. 27.00 ± 24.85, p = 0.027). There was a difference in muscle activation of the extensor digitorum communis muscle (1.00 ± 0.94 vs. 1.40 ± 1.17, p = 0.046). The optimized and dependable NeuroAssist Robotic System improved shoulder and wrist range of motion and functional scores, regardless of the cause of the motor deficit. However, further investigations are necessary to establish its definite role in motor recovery.
Collapse
Affiliation(s)
- Nicoleta Tohanean
- Neurology I Department, Cluj-Napoca Emergency Clinical County Hospital, 400012 Cluj-Napoca, Romania
- Neurology Department, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania
| | - Paul Tucan
- CESTER, Research Center for Industrial Robots Simulation and Testing, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania
| | - Oana-Maria Vanta
- Neurology I Department, Cluj-Napoca Emergency Clinical County Hospital, 400012 Cluj-Napoca, Romania
- Neurology Department, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania
- Correspondence: (O.-M.V.); (A.B.); (A.B.)
| | - Cristian Abrudan
- Neurology Department, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania
- Neurosurgery Department, Cluj-Napoca Emergency Clinical County Hospital, 400349 Cluj-Napoca, Romania
| | - Sebastian Pintea
- Department of Psychology, Babes-Bolyai University, 400029 Cluj-Napoca, Romania
| | - Bogdan Gherman
- CESTER, Research Center for Industrial Robots Simulation and Testing, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania
| | - Alin Burz
- CESTER, Research Center for Industrial Robots Simulation and Testing, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania
- Correspondence: (O.-M.V.); (A.B.); (A.B.)
| | - Alexandru Banica
- CESTER, Research Center for Industrial Robots Simulation and Testing, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania
- Correspondence: (O.-M.V.); (A.B.); (A.B.)
| | - Calin Vaida
- CESTER, Research Center for Industrial Robots Simulation and Testing, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania
| | - Deborah Alice Neguran
- Neurology I Department, Cluj-Napoca Emergency Clinical County Hospital, 400012 Cluj-Napoca, Romania
| | - Andreea Ordog
- Neurology I Department, Cluj-Napoca Emergency Clinical County Hospital, 400012 Cluj-Napoca, Romania
| | - Daniela Tarnita
- Faculty of Mechanics, University of Craiova, 200512 Craiova, Romania
| | - Doina Pisla
- CESTER, Research Center for Industrial Robots Simulation and Testing, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania
| |
Collapse
|
17
|
Gandolfi M, Mazzoleni S, Morone G, Iosa M, Galletti F, Smania N. The role of feedback in the robotic-assisted upper limb rehabilitation in people with multiple sclerosis: a systematic review. Expert Rev Med Devices 2023; 20:35-44. [PMID: 36649574 DOI: 10.1080/17434440.2023.2169129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Robotic-assisted upper limb rehabilitation might improve upper limb recovery in people with multiple sclerosis (PwMS) with moderate-to-severe disability. In the few existing studies, the training effects have been related to the type of intervention, if intensive, repetitive, or task-oriented training might promote neuroplasticity and recovery. Notably, most of these devices operate within a serious game context providing different feedback. Since feedback is a key component of motor control and thus involved in motor and cognitive rehabilitation, clinicians cannot desist from considering the potential contribution of feedback in the upper limb robot-assisted rehabilitation effects. AREA COVERED In this systematic review, we reported the rehabilitation protocols used in the robot-assisted upper limb training in PwMS to provide state-of-the-art on the role of feedback in robotic-assisted Upper Limb rehabilitation. PubMed, the Cochrane Library, and the Physiotherapy Evidence Database databases were systematically searched from inception to March 2022. After a literature search, the classification systems for feedback and the serious game were applied. EXPERT OPINION There is a need for sharing standard definitions and components of feedback and serious game in technologically assisted upper limb rehabilitation. Indeed, improving these aspects might further improve the effectiveness of such training in the management of PwMS.
Collapse
Affiliation(s)
- Marialuisa Gandolfi
- Department of Neurosciences, Biomedicine and Movement Sciences, Neuromotor and Cognitive Rehabilitation Research Centre (CRRNC), University of Verona, 37134 Verona, Italy
| | - Stefano Mazzoleni
- Department of Electrical and Information Engineering, Politecnico di Bari, Italy
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giovanni Morone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
- San Raffaele Institute of Sulmona, Sulmona (AQ), Italy
| | - Marco Iosa
- Department of Psychology, University Sapienza of Rome, Italy
- Smart Lab, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Filippo Galletti
- Master in Riabilitazione Neurologica, University of Verona, Italy
- Fondazione IRCCS San Gerardo dei Tintori, Riabilitazione Specialistica, 20900, Monza, Italy
| | - Nicola Smania
- Department of Neurosciences, Biomedicine and Movement Sciences, Neuromotor and Cognitive Rehabilitation Research Centre (CRRNC), University of Verona, 37134 Verona, Italy
| |
Collapse
|
18
|
Straudi S, Baluardo L, Arienti C, Bozzolan M, Lazzarini SG, Agostini M, Aprile I, Paci M, Casanova E, Marino D, La Rosa G, Bressi F, Sterzi S, Giansanti D, Perrero L, Battistini A, Miccinilli S, Filoni S, Sicari M, Petrozzino S, Solaro CM, Gargano S, Benanti P, Boldrini P, Bonaiuti D, Castelli E, Draicchio F, Falabella V, Galeri S, Gimigliano F, Grigioni M, Mazzoleni S, Mazzon S, Molteni F, Petrarca M, Picelli A, Posteraro F, Senatore M, Turchetti G, Morone G. Effectiveness of robot-assisted arm therapy in stroke rehabilitation: An overview of systematic reviews. NeuroRehabilitation 2022; 51:559-576. [PMID: 36530097 DOI: 10.3233/nre-220027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Robot-assisted arm therapy (RAT) has been used mainly in stroke rehabilitation in the last 20 years with rising expectations and growing evidence summarized in systematic reviews (SRs). OBJECTIVE The aim of this study is to provide an overview of SRs about the effectiveness, within the ICF domains, and safety of RAT in the rehabilitation of adult with stroke compared to other treatments. METHODS The search strategy was conducted using search strings adapted explicitly for each database. A screening base on title and abstract was realized to find all the potentially relevant studies. The methodological quality of the included SRs was assessed using AMSTAR-2. A pre-determined standardized form was used to realize the data extraction. RESULTS 18 SRs were included in this overview. Generally, positive effects from the RAT were found for motor function and muscle strength, whereas there is no agreement for muscle tone effects. No effect was found for pain, and only a SR reported the positive impact of RAT in daily living activity. CONCLUSION RAT can be considered a valuable option to increase motor function and muscle strength after stroke. However, the poor quality of most of the included SRs could limit the certainty around the results.
Collapse
Affiliation(s)
- Sofia Straudi
- Department of Neuroscience and Rehabilitation, Ferrara University, Ferrara, Italy
| | - Ludovica Baluardo
- Department of Neuroscience and Rehabilitation, Ferrara University, Ferrara, Italy
| | | | - Michela Bozzolan
- Interdepartmental Educational Service, Azienda Ospedaliero Universitaria S. Anna Ferrara, Ferrara, Italy
| | | | | | - Irene Aprile
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Matteo Paci
- AUSL (Unique Sanitary Local Company) District of Central Tuscany, Florence, Italy
| | - Emanuela Casanova
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Dario Marino
- IRCCS Neurolysis Center "Bonino Pulejo", Messina, Italy
| | | | - Federica Bressi
- Campus Bio-Medico University Hospital Foundation, Rome, Italy
| | - Silvia Sterzi
- Campus Bio-Medico University Hospital Foundation, Rome, Italy
| | - Daniele Giansanti
- National Center for Innovative Technologies in Public Health, Italian National Institute of Health, Rome, Italy
| | - Luca Perrero
- Neurorehabilitation Unit, Azienda Ospedaliera Nazionale SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | | | | | - Serena Filoni
- Padre Pio Onlus Rehabilitation Centers Foundation, San Giovanni Rotondo, Italy
| | - Monica Sicari
- A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | | | | | | | | | - Paolo Boldrini
- Società Italiana di Medicina Fisica e Riabilitativa (SIMFER), Rome, Italy
| | | | - Enrico Castelli
- Department of Paediatric Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital,, Rome, Italy
| | - Francesco Draicchio
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Rome, Italy
| | - Vincenzo Falabella
- Italian Federation of Persons with Spinal Cord Injuries (Faip Onlus), Rome, Italy
| | | | - Francesca Gimigliano
- Department of Mental, Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mauro Grigioni
- National Center for Innovative Technologies in Public Health, Italian National Institute of Health, Rome, Italy
| | - Stefano Mazzoleni
- Department of Electrical and Information Engineering, Politecnico di Bari, Bari, Italy
| | - Stefano Mazzon
- AULSS6 (Unique Sanitary Local Company), Euganea Padova - Distretto 4 "Alta Padovana", Padua, Italy
| | - Franco Molteni
- Department of Rehabilitation Medicine, Villa Beretta Rehabilitation Center, Valduce Hospital, Lecco, Italy
| | - Maurizio Petrarca
- Movement Analysis and Robotics Laboratory (MARlab), IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Alessandro Picelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Posteraro
- Department of Rehabilitation, Versilia Hospital - AUSL12, Viareggio, Italy
| | - Michele Senatore
- Associazione Italiana dei Terapisti Occupazionali (AITO), Rome, Italy
| | | | - Giovanni Morone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | |
Collapse
|
19
|
Grosmaire AG, Pila O, Breuckmann P, Duret C. Robot-assisted therapy for upper limb paresis after stroke: Use of robotic algorithms in advanced practice. NeuroRehabilitation 2022; 51:577-593. [PMID: 36530096 DOI: 10.3233/nre-220025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Rehabilitation of stroke-related upper limb paresis is a major public health issue. OBJECTIVE Robotic systems have been developed to facilitate neurorehabilitation by providing key elements required to stimulate brain plasticity and motor recovery, namely repetitive, intensive, adaptative training with feedback. Although the positive effect of robot-assisted therapy on motor impairments has been well demonstrated, the effect on functional capacity is less certain. METHOD This narrative review outlines the principles of robot-assisted therapy for the rehabilitation of post-stroke upper limb paresis. RESULTS A paradigm is proposed to promote not only recovery of impairment but also function. CONCLUSION Further studies that would integrate some principles of the paradigm described in this paper are needed.
Collapse
Affiliation(s)
- Anne-Gaëlle Grosmaire
- Unité de Neurorééducation, Médecine Physique et de Réadaptation, Centre de Rééducation Fonctionnelle Les Trois Soleils, Boissise-Le-Roi, France
| | - Ophélie Pila
- Unité de Neurorééducation, Médecine Physique et de Réadaptation, Centre de Rééducation Fonctionnelle Les Trois Soleils, Boissise-Le-Roi, France
| | - Petra Breuckmann
- Unité de Neurorééducation, Médecine Physique et de Réadaptation, Centre de Rééducation Fonctionnelle Les Trois Soleils, Boissise-Le-Roi, France
| | - Christophe Duret
- Unité de Neurorééducation, Médecine Physique et de Réadaptation, Centre de Rééducation Fonctionnelle Les Trois Soleils, Boissise-Le-Roi, France
| |
Collapse
|
20
|
Shin S, Lee HJ, Chang WH, Ko SH, Shin YI, Kim YH. A Smart Glove Digital System Promotes Restoration of Upper Limb Motor Function and Enhances Cortical Hemodynamic Changes in Subacute Stroke Patients with Mild to Moderate Weakness: A Randomized Controlled Trial. J Clin Med 2022; 11:jcm11247343. [PMID: 36555960 PMCID: PMC9782087 DOI: 10.3390/jcm11247343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
This study was a randomized controlled trial to examine the effects of the RAPAEL® Smart Glove digital training system on upper extremity function and cortical hemodynamic changes in subacute stroke patients. Of 48 patients, 20 experimental and 16 controls completed the study. In addition to conventional occupational therapy (OT), the experimental group received game-based digital hand motor training with the RAPAEL® Smart Glove digital system, while the control group received extra OT for 30 min. The Fugl-Meyer assessment (UFMA) and Jebsen-Tayler hand function test (JTT) were assessed before (T0), immediately after (T1), and four weeks after intervention (T2). Cortical hemodynamics (oxyhemoglobin [OxyHb] concentration) were measured by functional near-infrared spectroscopy. The experimental group had significantly better improvements in UFMA (T1-T0 mean [SD]; Experimental 13.50 [7.49]; Control 8.00 [4.44]; p = 0.014) and JTT (Experimental 21.10 [20.84]; Control 5.63 [5.06]; p = 0.012). The OxyHb concentration change over the ipsilesional primary sensorimotor cortex during the affected wrist movement was greater in the experimental group (T1, Experimental 0.7943 × 10-4 μmol/L; Control -0.3269 × 10-4 μmol/L; p = 0.025). This study demonstrated a beneficial effect of game-based virtual reality training with the RAPAEL® Smart Glove digital system with conventional OT on upper extremity motor function in subacute stroke patients.
Collapse
Affiliation(s)
- Seyoung Shin
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Hwang-Jae Lee
- Robot Business Team, Samsung Electronics, Suwon 16677, Republic of Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Sung Hwa Ko
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
- Research Institute of Convergence for Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
- Correspondence: (Y.-I.S.); (Y.-H.K.); Tel.: +82-51-360-2872 (Y.-I.S.); +82-2-3410-2824 (ext. 2818) (Y.-H.K.); Fax: +82-2-3410-0388 (Y.-H.K.)
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Department of Health Science and Technology, Department of Medical Devices Management and Research, Department of Digital Healthcare, SAIHST, Sungkyunkwan University, Seoul 06355, Republic of Korea
- Correspondence: (Y.-I.S.); (Y.-H.K.); Tel.: +82-51-360-2872 (Y.-I.S.); +82-2-3410-2824 (ext. 2818) (Y.-H.K.); Fax: +82-2-3410-0388 (Y.-H.K.)
| |
Collapse
|
21
|
Goffredo M, Proietti S, Pournajaf S, Galafate D, Cioeta M, Le Pera D, Posteraro F, Franceschini M. Baseline robot-measured kinematic metrics predict discharge rehabilitation outcomes in individuals with subacute stroke. Front Bioeng Biotechnol 2022; 10:1012544. [PMID: 36561043 PMCID: PMC9763272 DOI: 10.3389/fbioe.2022.1012544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Background: The literature on upper limb robot-assisted therapy showed that robot-measured metrics can simultaneously predict registered clinical outcomes. However, only a limited number of studies correlated pre-treatment kinematics with discharge motor recovery. Given the importance of predicting rehabilitation outcomes for optimizing physical therapy, a predictive model for motor recovery that incorporates multidirectional indicators of a patient's upper limb abilities is needed. Objective: The aim of this study was to develop a predictive model for rehabilitation outcome at discharge (i.e., muscle strength assessed by the Motricity Index of the affected upper limb) based on multidirectional 2D robot-measured kinematics. Methods: Re-analysis of data from 66 subjects with subacute stroke who underwent upper limb robot-assisted therapy with an end-effector robot was performed. Two least squares error multiple linear regression models for outcome prediction were developed and differ in terms of validation procedure: the Split Sample Validation (SSV) model and the Leave-One-Out Cross-Validation (LOOCV) model. In both models, the outputs were the discharge Motricity Index of the affected upper limb and its sub-items assessing elbow flexion and shoulder abduction, while the inputs were the admission robot-measured metrics. Results: The extracted robot-measured features explained the 54% and 71% of the variance in clinical scores at discharge in the SSV and LOOCV validation procedures respectively. Normalized errors ranged from 22% to 35% in the SSV models and from 20% to 24% in the LOOCV models. In all models, the movement path error of the trajectories characterized by elbow flexion and shoulder extension was the significant predictor, and all correlations were significant. Conclusion: This study highlights that motor patterns assessed with multidirectional 2D robot-measured metrics are able to predict clinical evalutation of upper limb muscle strength and may be useful for clinicians to assess, manage, and program a more specific and appropriate rehabilitation in subacute stroke patients.
Collapse
Affiliation(s)
- Michela Goffredo
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy
| | - Stefania Proietti
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Rome, Italy,Department of Human Sciences and Promotion of the Quality of Life, San Raffaele University, Rome, Italy
| | - Sanaz Pournajaf
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy,*Correspondence: Sanaz Pournajaf,
| | - Daniele Galafate
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy
| | - Matteo Cioeta
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy
| | - Domenica Le Pera
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy
| | | | - Marco Franceschini
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy,Department of Human Sciences and Promotion of the Quality of Life, San Raffaele University, Rome, Italy
| |
Collapse
|
22
|
Xie H, Li X, Huang W, Yin J, Luo C, Li Z, Dou Z. Effects of robot-assisted task-oriented upper limb motor training on neuroplasticity in stroke patients with different degrees of motor dysfunction: A neuroimaging motor evaluation index. Front Neurosci 2022; 16:957972. [PMID: 36188465 PMCID: PMC9523102 DOI: 10.3389/fnins.2022.957972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionAlthough robot-assisted task-oriented upper limb (UL) motor training had been shown to be effective for UL functional rehabilitation after stroke, it did not improve UL motor function more than conventional therapy. Due to the lack of evaluation of neurological indicators, it was difficult to confirm the robot treatment parameters and clinical efficacy in a timely manner. This study aimed to explore the changes in neuroplasticity induced by robot-assisted task-oriented UL motor training in different degrees of dysfunction patients and extract neurological evaluation indicators to provide the robot with additional parameter information.Materials and methodsA total of 33 adult patients with hemiplegic motor impairment after stroke were recruited as participants in this study, and a manual muscle test divided patients into muscle strength 0–1 level (severe group, n = 10), 2–3 level (moderate group, n = 14), and 4 or above level (mild group, n = 9). Tissue concentration of oxyhemoglobin and deoxyhemoglobin oscillations in the bilateral prefrontal cortex, dorsolateral prefrontal cortex (DLPFC), superior frontal cortex (SFC), premotor cortex, primary motor cortex (M1), primary somatosensory cortex (S1), and occipital cortex were measured by functional near-infrared spectroscopy (fNIRS) in resting and motor training state. The phase information of a 0.01 −0.08 Hz signal was identified by the wavelet transform method. The wavelet amplitude, lateralization index, and wavelet phase coherence (WPCO) were calculated to describe the frequency-specific cortical changes.ResultsCompared with the resting state, significant increased cortical activation was observed in ipsilesional SFC in the mild group and bilateral SFC in the moderate group during UL motor training. Patients in the mild group demonstrated significantly decreased lateralization of activation in motor training than resting state. Moreover, the WPCO value of motor training between contralesional DLPFC and ipsilesional SFC, bilateral SFC, contralesional, S1, and ipsilesional M1 showed a significant decrease compared with the resting state in the mild group.ConclusionRobot-assisted task-oriented UL motor training could modify the neuroplasticity of SFC and contribute to control movements and continuous learning motor regularity for patients. fNIRS could provide a variety of real-time sensitive neural evaluation indicators for the robot, which was beneficial to formulating more reasonable and effective personalized prescriptions during motor training.
Collapse
Affiliation(s)
- Hui Xie
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xin Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenhao Huang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiahui Yin
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Cailing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- *Correspondence: Zengyong Li
| | - Zulin Dou
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Zulin Dou
| |
Collapse
|
23
|
Zhang L, Jia G, Ma J, Wang S, Cheng L. Short and long-term effects of robot-assisted therapy on upper limb motor function and activity of daily living in patients post-stroke: a meta-analysis of randomized controlled trials. J Neuroeng Rehabil 2022; 19:76. [PMID: 35864524 PMCID: PMC9306153 DOI: 10.1186/s12984-022-01058-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/14/2022] [Indexed: 11/27/2022] Open
Abstract
Objective To investigate the effect of robot-assisted therapy (RAT) on upper limb motor control and activity function in poststroke patients compared with that of non-robotic therapy. Methods We searched PubMed, EMBASE, Cochrane Library, Google Scholar and Scopus. Randomized controlled trials published from 2010 to nowadays comparing the effect of RAT and control treatment on upper limb function of poststroke patients aged 18 or older were included. Researchers extracted all relevant data from the included studies, assessed the heterogeneity with inconsistency statistics (I2 statistics), evaluated the risk of bias of individual studies and performed data analysis. Result Forty-six studies were included. Meta-analysis showed that the outcome of the Fugl-Meyer Upper Extremity assessment (FM-UE) (SMD = 0.20, P = 0.001) and activity function post intervention was significantly higher (SMD = 0.32, P < 0.001) in the RAT group than in the control group. Differences in outcomes of the FM-UE and activity function between the RAT group and control group were observed at the end of treatment and were not found at the follow-up. Additionally, the outcomes of the FM-UE (SMD = 0.15, P = 0.005) and activity function (SMD = 0.32, P = 0.002) were significantly different between the RAT and control groups only with a total training time of more than 15 h. Moreover, the differences in outcomes of FM-UE and activity post intervention were not significant when the arm robots were applied to patients with severe impairments (FM-UE: SMD = 0.14, P = 0.08; activity: SMD = 0.21, P = 0.06) or when patients were provided with patient-passive training (FM-UE: SMD = − 0.09, P = 0.85; activity: SMD = 0.70, P = 0.16). Conclusion RAT has the significant immediate benefits for motor control and activity function of hemiparetic upper limb in patients after stroke compared with controls, but there is no evidence to support its long-term additional benefits. The superiority of RAT in improving motor control and activity function is limited by the amount of training time and the patients' active participation. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-022-01058-8.
Collapse
Affiliation(s)
- Liping Zhang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong, Chongqing, 400010, China
| | - Gongwei Jia
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong, Chongqing, 400010, China
| | - Jingxi Ma
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China.,Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China
| | - Sanrong Wang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong, Chongqing, 400010, China
| | - Li Cheng
- Department of Health Management, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong, Chongqing, 400010, China.
| |
Collapse
|
24
|
Schrader M, Sterr A, Kettlitz R, Wohlmeiner A, Buschfort R, Dohle C, Bamborschke S. The effect of mirror therapy can be improved by simultaneous robotic assistance. Restor Neurol Neurosci 2022; 40:185-194. [PMID: 35848045 PMCID: PMC9484120 DOI: 10.3233/rnn-221263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Background: Standard mirror therapy (MT) is a well-established therapy regime for severe arm paresis after acquired brain injury. Bilateral robot-assisted mirror therapy (RMT) could be a solution to provide visual and somatosensory feedback simultaneously. Objective: The study compares the treatment effects of MT with a version of robot-assisted MT where the affected arm movement was delivered through a robotic glove (RMT). Methods: This is a parallel, randomized trial, including patients with severe arm paresis after stroke or traumatic brain injury with a Fugl-Meyer subscore hand/finger < 4. Participants received either RMT or MT in individual 30 minute sessions (15 sessions within 5 weeks). Main outcome parameter was the improvement in the Fugl-Meyer Assessment upper extremity (FMA-UE) motor score. Additionally, the Motricity Index (MI) and the FMA-UE sensation test as well as a pain scale were recorded. Furthermore, patients’ and therapists’ experiences with RMT were captured through qualitative tools. Results: 24 patients completed the study. Comparison of the FMA-UE motor score difference values between the two groups revealed a significantly greater therapy effect in the RMT group than the MT group (p = 0.006). There were no significant differences for the MI (p = 0.108), the FMA-UE surface sensibility subscore (p = 0.403) as well as the FMA-UE position sense subscore (p = 0.192). In both groups the levels of pain remained stable throughout the intervention. No other adverse effects were observed. The RMT training was well accepted by patients and therapists. Conclusions: The study provides evidence that bilateral RMT achieves greater treatment benefit on motor function than conventional MT. The use of robotics seems to be a good method to implement passive co-movement in clinical practice. Our study further demonstrates that this form of training can feasibly and effectively be delivered in an inpatient setting.
Collapse
Affiliation(s)
- Mareike Schrader
- P.A.N. Zentrum für Post-Akute Neurorehabilitation, Fürst-Donnersmarck-Stiftung zu Berlin, Berlin, Germany
| | - Annette Sterr
- P.A.N. Zentrum für Post-Akute Neurorehabilitation, Fürst-Donnersmarck-Stiftung zu Berlin, Berlin, Germany
- School of Psychology, University of Surrey, Guildford, UK
| | - Robyn Kettlitz
- P.A.N. Zentrum für Post-Akute Neurorehabilitation, Fürst-Donnersmarck-Stiftung zu Berlin, Berlin, Germany
| | | | | | - Christian Dohle
- P.A.N. Zentrum für Post-Akute Neurorehabilitation, Fürst-Donnersmarck-Stiftung zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité – University Medicine Berlin, Berlin, Germany
| | - Stephan Bamborschke
- P.A.N. Zentrum für Post-Akute Neurorehabilitation, Fürst-Donnersmarck-Stiftung zu Berlin, Berlin, Germany
| |
Collapse
|
25
|
Development of portable robotic orthosis and biomechanical validation in people with limited upper limb function after stroke. ROBOTICA 2022. [DOI: 10.1017/s0263574722000881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Stroke has a considerable incidence in the world population and would cause sequelae in the upper limbs. One way to increase the efficiency in the rehabilitation process of patients with these sequelae is through robot-assisted therapy. The present study developed a portable robotic orthosis called Pinotti Portable Robotic Exoskeleton (PPRE) and validated its functioning in clinical tests. The static and dynamic parts of the device modules are described. Design issues, such as heavyweight and engine positioning, have been optimized. The implementation of control was through a smartphone application that communicates with a microcontroller to perform desired movements. Four individuals with motor impairment of the upper limbs due to stroke performed clinical tests to validate the device. Participants did not mention pain, discomfort, tingling, and paresthesia. The robotic device showed the ability to perform the flexion and extension movements of the fingers and elbow. The PPRE was confirmed to be adequate and functional at different levels of motor impairment assessed. The orthosis presented advantages over the currently existing devices, concerning its biomechanical functioning, portability, comfort, and versatility. Thus, the apparatus has the great innovative potential to become a device for home use, serving as an aid to the therapist and facilitating the rehabilitation of patients after an injury. In a larger sample, future studies are needed to assess the effect of a robotic orthosis on the level of rehabilitation in individuals with upper limb impairment.
Collapse
|
26
|
Kim YW. Update on Stroke Rehabilitation in Motor Impairment. BRAIN & NEUROREHABILITATION 2022; 15:e12. [PMID: 36743199 PMCID: PMC9833472 DOI: 10.12786/bn.2022.15.e12] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 11/08/2022] Open
Abstract
Motor impairment due to stroke limits patients' mobility, activities of daily living, and negatively affects their return to the workplace. It also reduces patients' quality of life and increases the socioeconomic burden of stroke. Therefore, optimizing the recovery of motor impairment after stroke is a very important goal for both individuals and society as a whole. The emergence and improvement of various technologies in the Fourth Industrial Revolution have exerted a major influence on the development of new rehabilitation methods and efficiency enhancements for existing methods. This review categorizes rehabilitation methods that promote the recovery of motor function into upper limb function and lower limb function and summarizes recent advances in stroke rehabilitation. Although debate continues regarding the effects of some rehabilitation therapies, it is hoped that the evidence will be improved through ongoing research so that clinicians can treat patients with a higher level of evidence.
Collapse
Affiliation(s)
- Yeong Wook Kim
- Department of Rehabilitation Medicine, Chungnam National University Sejong Hospital, Sejong, Korea
| |
Collapse
|
27
|
Wang J, Wang W, Ren S, Shi W, Hou ZG. Neural Correlates of Single-Task Versus Cognitive-Motor Dual-Task Training. IEEE Trans Cogn Dev Syst 2022. [DOI: 10.1109/tcds.2021.3053050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jiaxing Wang
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Weiqun Wang
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Shixin Ren
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Weiguo Shi
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zeng-Guang Hou
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Pérez-de la Cruz S. Use of Robotic Devices for Gait Training in Patients Diagnosed with Multiple Sclerosis: Current State of the Art. SENSORS 2022; 22:s22072580. [PMID: 35408195 PMCID: PMC9002809 DOI: 10.3390/s22072580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease that produces alterations in balance and gait in most patients. Robot-assisted gait training devices have been proposed as a complementary approach to conventional rehabilitation treatment as a means of improving these alterations. The aim of this study was to investigate the available scientific evidence on the benefits of the use of robotics in the physiotherapy treatment in people with MS. A systematic review of randomized controlled trials was performed. Studies from the last five years on walking in adults with MS were included. The PEDro scale was used to assess the methodological quality of the included studies, and the Jadad scale was used to assess the level of evidence and the degree of recommendation. Seventeen studies met the eligibility criteria. For the improvement of gait speed, robotic devices do not appear to be superior, compared to the rest of the interventions evaluated. The methodological quality of the studies was moderate–low. For this reason, robot-assisted gait training is considered just as effective as conventional rehabilitation training for improving gait in people with MS.
Collapse
Affiliation(s)
- Sagrario Pérez-de la Cruz
- Department of Nursing, Physical Therapy and Medicine, University of Almería, Carretera de Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| |
Collapse
|
29
|
Xiong F, Liao X, Xiao J, Bai X, Huang J, Zhang B, Li F, Li P. Emerging Limb Rehabilitation Therapy After Post-stroke Motor Recovery. Front Aging Neurosci 2022; 14:863379. [PMID: 35401147 PMCID: PMC8984121 DOI: 10.3389/fnagi.2022.863379] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke, including hemorrhagic and ischemic stroke, refers to the blood supply disorder in the local brain tissue for various reasons (aneurysm, occlusion, etc.). It leads to regional brain circulation imbalance, neurological complications, limb motor dysfunction, aphasia, and depression. As the second-leading cause of death worldwide, stroke poses a significant threat to human life characterized by high mortality, disability, and recurrence. Therefore, the clinician has to care about the symptoms of stroke patients in the acute stage and formulate an effective postoperative rehabilitation plan to facilitate the recovery in patients. We summarize a novel application and update of the rehabilitation therapy in limb motor rehabilitation of stroke patients to provide a potential future stroke rehabilitation strategy.
Collapse
Affiliation(s)
- Fei Xiong
- Department of Operation Room, The First People’s Hospital of Jiande, Hangzhou, China
| | - Xin Liao
- Department of Orthopedics, The First People’s Hospital of Jiande, Hangzhou, China
| | - Jie Xiao
- Department of Orthopedics, The First People’s Hospital of Jiande, Hangzhou, China
| | - Xin Bai
- Department of Orthopedics, The First People’s Hospital of Jiande, Hangzhou, China
| | - Jiaqi Huang
- Department of Orthopedics, The First People’s Hospital of Jiande, Hangzhou, China
| | - Bi Zhang
- Department of Orthopedics, The First People’s Hospital of Jiande, Hangzhou, China
| | - Fang Li
- Department of Orthopedics, The First People’s Hospital of Jiande, Hangzhou, China
| | - Pengfei Li
- Department of Orthopedics, The First People’s Hospital of Jiande, Hangzhou, China
- *Correspondence: Pengfei Li,
| |
Collapse
|
30
|
Goffredo M, Pournajaf S, Proietti S, Gison A, Posteraro F, Franceschini M. Retrospective Robot-Measured Upper Limb Kinematic Data From Stroke Patients Are Novel Biomarkers. Front Neurol 2022; 12:803901. [PMID: 34992576 PMCID: PMC8725786 DOI: 10.3389/fneur.2021.803901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Background: The efficacy of upper-limb Robot-assisted Therapy (ulRT) in stroke subjects is well-established. The robot-measured kinematic data can assess the biomechanical changes induced by ulRT and the progress of patient over time. However, literature on the analysis of pre-treatment kinematic parameters as predictive biomarkers of upper limb recovery is limited. Objective: The aim of this study was to calculate pre-treatment kinematic parameters from point-to-point reaching movements in different directions and to identify biomarkers of upper-limb motor recovery in subacute stroke subjects after ulRT. Methods: An observational retrospective study was conducted on 66 subacute stroke subjects who underwent ulRT with an end-effector robot. Kinematic parameters were calculated from the robot-measured trajectories during movements in different directions. A Generalized Linear Model (GLM) was applied considering the post-treatment Upper Limb Motricity Index and the kinematic parameters (from demanding directions of movement) as dependent variables, and the pre-treatment kinematic parameters as independent variables. Results: A subset of kinematic parameters significantly predicted the motor impairment after ulRT: the accuracy in adduction and internal rotation movements of the shoulder was the major predictor of post-treatment Upper Limb Motricity Index. The post-treatment kinematic parameters of the most demanding directions of movement significantly depended on the ability to execute elbow flexion-extension and abduction and external rotation movements of the shoulder at baseline. Conclusions: The multidirectional analysis of robot-measured kinematic data predicts motor recovery in subacute stroke survivors and paves the way in identifying subjects who may benefit more from ulRT.
Collapse
Affiliation(s)
- Michela Goffredo
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy
| | - Sanaz Pournajaf
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy
| | - Stefania Proietti
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy
| | - Annalisa Gison
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy
| | - Federico Posteraro
- Rehabilitation Department, Versilia Hospital, Azienda Unità Sanitaria Locale (AUSL) Northwest Tuscany, Camaiore, Italy
| | - Marco Franceschini
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy.,Department of Human Sciences and Promotion of the Quality of Life, San Raffaele University, Rome, Italy
| |
Collapse
|
31
|
Electromechanical and Robotic Devices for Gait and Balance Rehabilitation of Children with Neurological Disability: A Systematic Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112412061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the last two decades, a growing interest has been focused on gait and balance robot-assisted rehabilitation in children with neurological disabilities. Robotic devices allow the implementation of intensive, task-specific training fostering functional recovery and neuroplasticity phenomena. However, limited attention has been paid to the protocols used in this research framework. This systematic review aims to provide an overview of the existing literature on robotic systems for the rehabilitation of gait and balance in children with neurological disabilities and their rehabilitation applications. The literature search was carried out independently and synchronously by three authors on the following databases: MEDLINE, Cochrane Library, PeDro, Institute of Electrical and Electronics Engineers, ScienceDirect, and Google Scholar. The data collected included three subsections referring to clinical, technical, and regulatory aspects. Thirty-one articles out of 81 found on the primary literature search were included in the systematic review. Most studies involved children with cerebral palsy. Only one-third of the studies were randomized controlled trials. Overall, 17 devices (nine end-effector systems and eight exoskeletons) were investigated, among which only 4 (24%) were bore the CE mark. Studies differ on rehabilitation protocols duration, intensity, and outcome measures. Future research should improve both rehabilitation protocols’ and devices’ descriptions.
Collapse
|
32
|
Morone G, de Sire A, Martino Cinnera A, Paci M, Perrero L, Invernizzi M, Lippi L, Agostini M, Aprile I, Casanova E, Marino D, La Rosa G, Bressi F, Sterzi S, Giansanti D, Battistini A, Miccinilli S, Filoni S, Sicari M, Petrozzino S, Solaro CM, Gargano S, Benanti P, Boldrini P, Bonaiuti D, Castelli E, Draicchio F, Falabella V, Galeri S, Gimigliano F, Grigioni M, Mazzoleni S, Mazzon S, Molteni F, Petrarca M, Picelli A, Gandolfi M, Posteraro F, Senatore M, Turchetti G, Straudi S. Upper Limb Robotic Rehabilitation for Patients with Cervical Spinal Cord Injury: A Comprehensive Review. Brain Sci 2021; 11:1630. [PMID: 34942935 PMCID: PMC8699455 DOI: 10.3390/brainsci11121630] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 01/08/2023] Open
Abstract
The upper extremities limitation represents one of the essential functional impairments in patients with cervical spinal cord injury. Electromechanics assisted devices and robots are increasingly used in neurorehabilitation to help functional improvement in patients with neurological diseases. This review aimed to systematically report the evidence-based, state-of-art on clinical applications and robotic-assisted arm training (RAT) in motor and functional recovery in subjects affected by cervical spinal cord injury. The present study has been carried out within the framework of the Italian Consensus Conference on "Rehabilitation assisted by robotic and electromechanical devices for persons with disability of neurological origin" (CICERONE). PubMed/MEDLINE, Cochrane Library, and Physiotherapy Evidence Database (PEDro) databases were systematically searched from inception to September 2021. The 10-item PEDro scale assessed the study quality for the RCT and the AMSTAR-2 for the systematic review. Two different authors rated the studies included in this review. If consensus was not achieved after discussion, a third reviewer was interrogated. The five-item Oxford CEBM scale was used to rate the level of evidence. A total of 11 studies were included. The selected studies were: two systematic reviews, two RCTs, one parallel-group controlled trial, one longitudinal intervention study and five case series. One RCT was scored as a high-quality study, while the systematic review was of low quality. RAT was reported as feasible and safe. Initial positive effects of RAT were found for arm function and quality of movement in addition to conventional therapy. The high clinical heterogeneity of treatment programs and the variety of robot devices could severely affect the generalizability of the study results. Therefore, future studies are warranted to standardize the type of intervention and evaluate the role of robotic-assisted training in subjects affected by cervical spinal cord injury.
Collapse
Affiliation(s)
| | - Alessandro de Sire
- Physical and Rehabilitative Medicine, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | | | - Matteo Paci
- AUSL (Unique Sanitary Local Company), 50123 Florence, Italy;
| | - Luca Perrero
- Neurorehabilitation Unit, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy;
| | - Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 10121 Novara, Italy; (M.I.); (L.L.)
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera Nazionale SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Lorenzo Lippi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 10121 Novara, Italy; (M.I.); (L.L.)
| | - Michela Agostini
- Section of Rehabilitation, Department of Neuroscience, University General Hospital of Padova, 35128 Padua, Italy;
| | - Irene Aprile
- IRCCS Fondazione Don Carlo Gnocchi, 50123 Florence, Italy;
| | - Emanuela Casanova
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Medicina Riabilitativa e Neuroriabilitazione, 40139 Bologna, Italy; (E.C.); (A.B.)
| | - Dario Marino
- IRCCS Neurolysis Center “Bonino Pulejo”, 98124 Messina, Italy;
| | - Giuseppe La Rosa
- C.S.R.—Consorzio Siciliano di Riabilitazione, 95123 Catania, Italy;
| | - Federica Bressi
- Campus Bio-Medico University Hospital, University of Rome, 00128 Rome, Italy; (F.B.); (S.S.); (S.M.)
| | - Silvia Sterzi
- Campus Bio-Medico University Hospital, University of Rome, 00128 Rome, Italy; (F.B.); (S.S.); (S.M.)
| | - Daniele Giansanti
- National Center for Innovative Technologies in Public Health, Italian National Institute of Health, 00161 Rome, Italy; (D.G.); (M.G.)
| | - Alberto Battistini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Medicina Riabilitativa e Neuroriabilitazione, 40139 Bologna, Italy; (E.C.); (A.B.)
| | - Sandra Miccinilli
- Campus Bio-Medico University Hospital, University of Rome, 00128 Rome, Italy; (F.B.); (S.S.); (S.M.)
| | - Serena Filoni
- Padre Pio Foundation and Rehabilitation Center, San Giovanni Rotondo 71013, Italy;
| | - Monica Sicari
- A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (M.S.); (S.P.)
| | - Salvatore Petrozzino
- A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (M.S.); (S.P.)
| | | | | | - Paolo Benanti
- Department of Moral Theology, Pontifical Gregorian University, 00187 Rome, Italy;
| | - Paolo Boldrini
- Società Italiana di Medicina Fisica e Riabilitativa (SIMFER), 00198 Rome, Italy; (P.B.); (D.B.)
| | - Donatella Bonaiuti
- Società Italiana di Medicina Fisica e Riabilitativa (SIMFER), 00198 Rome, Italy; (P.B.); (D.B.)
| | - Enrico Castelli
- Paediatric Neurorehabilitation Department, IRCCS Bambino Gesù Children’s Hospital, 00163 Rome, Italy;
| | - Francesco Draicchio
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00185 Rome, Italy;
| | - Vincenzo Falabella
- Italian Federation of Persons with Spinal Cord Injuries (Faip Onlus), 00195 Rome, Italy;
| | - Silvia Galeri
- IRCCS Fondazione Don Carlo Gnocchi, 20148 Milan, Italy;
| | - Francesca Gimigliano
- Multidisciplinary Department of Medicine for Surgery and Orthodontics, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Mauro Grigioni
- National Center for Innovative Technologies in Public Health, Italian National Institute of Health, 00161 Rome, Italy; (D.G.); (M.G.)
| | - Stefano Mazzoleni
- Department of Electrical and Information Engineering, Politecnico di Bari, 70125 Bari, Italy;
| | - Stefano Mazzon
- AULSS6 (Unique Sanitary Local Company) Euganea Padova, Rehabilitation Department, 35128 Padua, Italy;
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Department of Rehabilitation Medicine, Valduce Hospital, 23845 Costa Masnaga, Italy;
| | - Maurizio Petrarca
- Movement Analysis and Robotics Laboratory MARlab, IRCCS Bambino Gesù Children’s Hospital, 00163 Rome, Italy;
| | - Alessandro Picelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy; (A.P.); (M.G.)
| | - Marialuisa Gandolfi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy; (A.P.); (M.G.)
| | - Federico Posteraro
- Rehabilitation Department Versilia Hospital, Versilia Hospital AUSL Toscana Nord Ovest, 55049 Lido di Camaiore, Italy;
| | - Michele Senatore
- AITO (Associazione Italiana Terapisti Occupazionali), 00136 Rome, Italy;
| | - Giuseppe Turchetti
- Management Institute, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy;
| | - Sofia Straudi
- Neuroscience and Rehabilitation Department, Ferrara University Hospital, 44121 Ferrara, Italy;
| |
Collapse
|
33
|
Opportunities and Problems of the Consensus Conferences in the Care Robotics. Healthcare (Basel) 2021; 9:healthcare9121624. [PMID: 34946350 PMCID: PMC8701370 DOI: 10.3390/healthcare9121624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 02/02/2023] Open
Abstract
Care robots represent an opportunity for the health domain. The use of these devices has important implications. They can be used in surgical operating rooms in important and delicate clinical interventions, in motion, in training-and-simulation, and cognitive and rehabilitation processes. They are involved in continuous processes of evolution in technology and clinical practice. Therefore, the introduction into routine clinical practice is difficult because this needs the stability and the standardization of processes. The agreement tools, in this case, are of primary importance for the clinical acceptance and introduction. The opinion focuses on the Consensus Conference tool and: (a) highlights its potential in the field; (b) explores the state of use; (c) detects the peculiarities and problems (d) expresses ideas on how improve its diffusion.
Collapse
|
34
|
Robot-Assisted Training for Upper Limb in Stroke (ROBOTAS): An Observational, Multicenter Study to Identify Determinants of Efficacy. J Clin Med 2021; 10:jcm10225245. [PMID: 34830527 PMCID: PMC8622640 DOI: 10.3390/jcm10225245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 02/01/2023] Open
Abstract
Background: The loss of arm function is a common and disabling outcome after stroke. Robot-assisted upper limb (UL) training may improve outcomes. The aim of this study was to explore the effect of robot-assisted training using end-effector and exoskeleton robots on UL function following a stroke in real-life clinical practice. Methods: A total of 105 patients affected by a first-ever supratentorial stroke were enrolled in 18 neurorehabilitation centers and treated with electromechanically assisted arm training as an add-on to conventional therapy. Both interventions provided either an exoskeleton or an end-effector device (as per clinical practice) and consisted of 20 sessions (3/5 times per week; 6–8 weeks). Patients were assessed by validated UL scales at baseline (T0), post-treatment (T1), and at three-month follow-up (T2). The primary outcome was the Fugl-Meyer Assessment for the upper extremity (FMA-UE). Results: FMA-UE improved at T1 by 6 points on average in the end-effector group and 11 points on average in the exoskeleton group (p < 0.0001). Exoskeletons were more effective in the subacute phase, whereas the end-effectors were more effective in the chronic phase (p < 0.0001). Conclusions: robot-assisted training might help improve UL function in stroke patients as an add-on treatment in both subacute and chronic stages. Pragmatic and highmethodological studies are needed to confirm the showed effectiveness of the exoskeleton and end-effector devices.
Collapse
|
35
|
Gandolfi M, Valè N, Posteraro F, Morone G, Dell'orco A, Botticelli A, Dimitrova E, Gervasoni E, Goffredo M, Zenzeri J, Antonini A, Daniele C, Benanti P, Boldrini P, Bonaiuti D, Castelli E, Draicchio F, Falabella V, Galeri S, Gimigliano F, Grigioni M, Mazzon S, Molteni F, Petrarca M, Picelli A, Senatore M, Turchetti G, Giansanti D, Mazzoleni S. State of the art and challenges for the classification of studies on electromechanical and robotic devices in neurorehabilitation: a scoping review. Eur J Phys Rehabil Med 2021; 57:831-840. [PMID: 34042413 DOI: 10.23736/s1973-9087.21.06922-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION The rapid development of electromechanical and robotic devices has profoundly influenced neurorehabilitation. Growth in the scientific and technological aspects thereof is crucial for increasing the number of newly developed devices, and clinicians have welcomed such growth with enthusiasm. Nevertheless, improving the standard for the reporting clinical, technical, and normative aspects of such electromechanical and robotic devices remains an unmet need in neurorehabilitation. Accordingly, this study aimed to analyze the existing literature on electromechanical and robotic devices used in neurorehabilitation, considering the current clinical, technical, and regulatory classification systems. EVIDENCE ACQUISITION Within the CICERONE Consensus Conference framework, studies on electromechanical and robotic devices used for upper- and lower-limb rehabilitation in persons with neurological disabilities in adulthood and childhood were reviewed. We have conducted a literature search using the following databases: MEDLINE, Cochrane Library, PeDro, Institute of Electrical and Electronics Engineers, Science Direct, and Google Scholar. Clinical, technical, and regulatory classification systems were applied to collect information on the electromechanical and robotic devices. The study designs and populations were investigated. EVIDENCE SYNTHESIS Overall, 316 studies were included in the analysis. More than half (52%) of the studies were randomised controlled trials (RCTs). The population investigated the most suffered from strokes, followed by spinal cord injuries, multiple sclerosis, cerebral palsy, and traumatic brain injuries. In total, 100 devices were described; of these, 19% were certified with the CE mark. Overall, the main type of device was an exoskeleton. However, end-effector devices were primarily used for the upper limbs, whereas exoskeletons were used for the lower limbs (for both children and adults). CONCLUSIONS The current literature on robotic neurorehabilitation lacks detailed information regarding the technical characteristics of the devices used. This affects the understanding of the possible mechanisms underlying recovery. Unfortunately, many electromechanical and robotic devices are not provided with CE marks, strongly hindering the research on the clinical outcomes of rehabilitation treatments based on these devices. A more significant effort is needed to improve the description of the robotic devices used in neurorehabilitation in terms of the technical and functional details, along with high-quality RCT studies.
Collapse
Affiliation(s)
- Marialuisa Gandolfi
- Unit of Neurorehabilitation, Department of Neuroscience, Biomedicine, and Movement Sciences, University Hospital of Verona, University of Verona, Verona, Italy -
| | - Nicola Valè
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Posteraro
- Department of Rehabilitation, Hospital of Versilia, ASL Toscana Nord-Ovest, Lucca, Italy
| | | | - Antonella Dell'orco
- Unit of Neurorehabilitation, Department of Neuroscience, Biomedicine, and Movement Sciences, University Hospital of Verona, University of Verona, Verona, Italy
| | - Anita Botticelli
- Unit of Neurorehabilitation, Department of Neuroscience, Biomedicine, and Movement Sciences, University Hospital of Verona, University of Verona, Verona, Italy
| | - Eleonora Dimitrova
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Michela Goffredo
- Department of Neurological and Rehabilitation Sciences, Neurorehabilitation Research Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
| | - Jacopo Zenzeri
- Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | | | | | | | - Paolo Boldrini
- Italian Society of Physical Medicine and Rehabilitation (SIMFER), Rome, Italy
| | | | - Enrico Castelli
- Pediatric Neurorehabilitation, Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesco Draicchio
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Rome, Italy
| | - Vincenzo Falabella
- Italian Federation of Persons with Spinal Cord Injuries (Flip Onlus), Rome, Italy
| | | | - Francesca Gimigliano
- Department of Mental and Physical Health and Preventive Medicine, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Mauro Grigioni
- National Center for Innovative Technologies in Public Health, Italian National Institute of Health, Rome, Italy
| | - Stefano Mazzon
- ULSS 6 (Unique Sanitary Local Company) Euganea Padova - Distretto 4 "Alta Padovana, " Padua, Italy
| | | | - Maurizio Petrarca
- The Movement Analysis and Robotics Laboratory, Bambino Gesù Children's Hospital, Rome, Italy
| | - Alessandro Picelli
- Unit of Neurorehabilitation, Department of Neuroscience, Biomedicine, and Movement Sciences, University Hospital of Verona, University of Verona, Verona, Italy
| | - Michele Senatore
- Italian Association of Occupational Therapists (AITO), Rome, Italy
| | | | - Daniele Giansanti
- National Center for Innovative Technologies in Public Health, Italian National Institute of Health, Rome, Italy
| | - Stefano Mazzoleni
- Department of Electrical and Information Engineering, Polytechnic of Bari, Bari, Italy
| |
Collapse
|
36
|
Berlet R, Anthony S, Brooks B, Wang ZJ, Sadanandan N, Shear A, Cozene B, Gonzales-Portillo B, Parsons B, Salazar FE, Lezama Toledo AR, Monroy GR, Gonzales-Portillo JV, Borlongan CV. Combination of Stem Cells and Rehabilitation Therapies for Ischemic Stroke. Biomolecules 2021; 11:1316. [PMID: 34572529 PMCID: PMC8468342 DOI: 10.3390/biom11091316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Stem cell transplantation with rehabilitation therapy presents an effective stroke treatment. Here, we discuss current breakthroughs in stem cell research along with rehabilitation strategies that may have a synergistic outcome when combined together after stroke. Indeed, stem cell transplantation offers a promising new approach and may add to current rehabilitation therapies. By reviewing the pathophysiology of stroke and the mechanisms by which stem cells and rehabilitation attenuate this inflammatory process, we hypothesize that a combined therapy will provide better functional outcomes for patients. Using current preclinical data, we explore the prominent types of stem cells, the existing theories for stem cell repair, rehabilitation treatments inside the brain, rehabilitation modalities outside the brain, and evidence pertaining to the benefits of combined therapy. In this review article, we assess the advantages and disadvantages of using stem cell transplantation with rehabilitation to mitigate the devastating effects of stroke.
Collapse
Affiliation(s)
- Reed Berlet
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL 60064, USA;
| | - Stefan Anthony
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA;
| | - Beverly Brooks
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (Z.-J.W.)
| | - Zhen-Jie Wang
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (Z.-J.W.)
| | | | - Alex Shear
- University of Florida, 205 Fletcher Drive, Gainesville, FL 32611, USA;
| | - Blaise Cozene
- Tulane University, 6823 St. Charles Ave, New Orleans, LA 70118, USA;
| | | | - Blake Parsons
- Washington and Lee University, 204 W Washington St, Lexington, VA 24450, USA;
| | - Felipe Esparza Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (F.E.S.); (A.R.L.T.); (G.R.M.)
| | - Alma R. Lezama Toledo
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (F.E.S.); (A.R.L.T.); (G.R.M.)
| | - Germán Rivera Monroy
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (F.E.S.); (A.R.L.T.); (G.R.M.)
| | | | - Cesario V. Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (Z.-J.W.)
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| |
Collapse
|
37
|
Broderick M, Almedom L, Burdet E, Burridge J, Bentley P. Self-Directed Exergaming for Stroke Upper Limb Impairment Increases Exercise Dose Compared to Standard Care. Neurorehabil Neural Repair 2021; 35:974-985. [PMID: 34449290 PMCID: PMC8593287 DOI: 10.1177/15459683211041313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background. One of the strongest modifiable determinants of rehabilitation outcome is exercise dose. Technologies enabling self-directed exercise offer a pragmatic means to increase dose, but the extent to which they achieve this in unselected cohorts, under real-world constraints, is poorly understood. Objective. Here we quantify the exercise dose achieved by inpatient stroke survivors using an adapted upper limb (UL) exercise gaming (exergaming) device and compare this with conventional (supervised) therapy. Methods. Over 4 months, patients presenting with acute stroke and associated UL impairment were screened at a single stroke centre. Participants were trained in a single session and provided with the device for unsupervised use during their inpatient admission. Results. From 75 patients referred for inpatient UL therapy, we recruited 30 (40%), of whom 26 (35%) were able to use the device meaningfully with their affected UL. Over a median enrolment time of 8 days (IQR: 5–14), self-directed UL exercise duration using the device was 26 minutes per day (median; IQR: 16–31), in addition to 25 minutes daily conventional UL therapy (IQR: 12–34; same cohort plus standard care audit; joint n = 50); thereby doubling total exercise duration (51 minutes; IQR: 32–64) relative to standard care (Z = 4.0, P <.001). The device enabled 104 UL repetitions per day (IQR: 38–393), whereas conventional therapy achieved 15 UL repetitions per day (IQR: 11–23; Z = 4.3, P <.001). Conclusion. Self-directed adapted exergaming enabled participants in our stroke inpatient cohort to increase exercise duration 2-fold, and repetitions 8-fold, compared to standard care, without requiring additional professional supervision.
Collapse
Affiliation(s)
- Michelle Broderick
- Department of Brain Sciences, 4615Imperial College London, Charing Cross Hospital Campus, London, UK
| | - Leeza Almedom
- Department of Brain Sciences, 4615Imperial College London, Charing Cross Hospital Campus, London, UK
| | - Etienne Burdet
- Department. of Bioengineering, Human Robotics Group, Imperial College, South Kensington Campus, London, UK
| | - Jane Burridge
- Department of Restorative Neuroscience, University of Southampton, Southampton, UK
| | - Paul Bentley
- Department of Brain Sciences, 4615Imperial College London, Charing Cross Hospital Campus, London, UK
| |
Collapse
|
38
|
Qu Q, Lin Y, He Z, Fu J, Zou F, Jiang Z, Guo F, Jia J. The Effect of Applying Robot-Assisted Task-Oriented Training Using Human-Robot Collaborative Interaction Force Control Technology on Upper Limb Function in Stroke Patients: Preliminary Findings. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9916492. [PMID: 34368358 PMCID: PMC8342143 DOI: 10.1155/2021/9916492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/13/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023]
Abstract
Stroke is one of the leading causes of death and the primary cause of acquired disability worldwide. Many stroke survivors have difficulty using their upper limbs, which have important functional roles in the performance of daily life activities. Consequently, the independence and quality of life of most stroke patients are reduced. Robot-assisted therapy is an effective intervention for improving the upper limb function of individuals with stroke. Human-robot collaborative interaction force control technology is critical for improving the flexibility and followability of the robot's motion, thereby improving rehabilitation training outcomes. However, there are few reports on the effect of robot-assisted rehabilitative training on upper limb function. We applied this technology using a robot to assist patients with task-oriented training. Posttreatment changes in Fugl-Meyer and modified Barthel index (MBI) scores were assessed to determine whether this technology could improve the upper limb function of stroke patients. One healthy adult and five stroke patients, respectively, participated in functional and clinical experiments. The MBI and Fugl-Meyer scores of the five patients in the clinical experiments showed significant improvements after the intervention. The experimental results indicate that human-robot collaborative interaction force control technology is valuable for improving robots' properties and patients' recovery. This trial was registered in the Chinese clinical trial registry (ChiCTR2000038676).
Collapse
Affiliation(s)
- Qingming Qu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, China
| | - Yingnan Lin
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, China
| | - Zhijie He
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, China
| | - Jianghong Fu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, China
| | - Fei Zou
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, China
| | - Zewu Jiang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, China
| | - Fengxian Guo
- Shanghai Electric GeniKIT Medical Science and Technology Co. Ltd., Shanghai, China
| | - Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, China
| |
Collapse
|
39
|
Gimigliano F, Palomba A, Arienti C, Morone G, Perrero L, Agostini M, Aprile I, Paci M, Casanova E, Marino D, LA Rosa G, Bressi F, Sterzi S, Giansanti D, Battistini A, Miccinilli S, Filoni S, Sicari M, Petrozzino S, Solaro CM, Gargano S, Benanti P, Boldrini P, Bonaiuti D, Castelli E, Draicchio F, Falabella V, Galeri S, Grigioni M, Mazzoleni S, Mazzon S, Molteni F, Petrarca M, Picelli A, Posteraro F, Senatore M, Turchetti G, Straudi S. Robot-assisted arm therapy in neurological health conditions: rationale and methodology for the evidence synthesis in the CICERONE Italian Consensus Conference. Eur J Phys Rehabil Med 2021; 57:824-830. [PMID: 34128606 DOI: 10.23736/s1973-9087.21.07011-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Robot-assisted Arm Therapy (RAT) has been increasingly applied in the last years for promoting functional recovery in patients with disabilities related to neurological health conditions. Evidence of a knowledge-to-action gap for applying robot-assisted technologies in the rehabilitation of patients with neurological health conditions and the difficulty to apply and tailor the knowledge to the local contexts solicited the need for a national consensus conference on these interventions. AIM This paper aims to explain the methodology used by the working group dedicated to synthesize evidence on the effectiveness of RAT in neurological health conditions in the context of the CICERONE Italian Consensus Conference. DESIGN The methodological approach of the working group. SETTING All rehabilitation settings. POPULATION Patients with disability following a neurological health condition. METHODS Following the indications proposed by the Methodological Manual published by the Italian National Institute of Health, a Promoting Committee and a Technical Scientific Committee have been set up. Six working groups (WGs) have been composed to collect evidence on different questions, among which WG2.2 was focused on the effectiveness of RAT in neurological health conditions. RESULTS WG2.2 started its work defining the specific research questions. It was decided to adopt the ICF as the reference framework for the reporting of all outcomes. Literature search, data extraction and qualitative assessment, evidence analysis and synthesis have been performed. CONCLUSIONS This paper summarizes the methodological approaches used by the WG2.2 of the CICERONE Italian Consensus Conference to define the effectiveness of RAT in the management of patients with neurological health conditions. CLINICAL REHABILITATION IMPACT WG2.2 synthesis might help clinicians, researchers, and all rehabilitation stakeholders to address the use of RAT in the Individualized Rehabilitation Plan, to guide the allocation of resources and define clinical protocols and indications for the management of patients with different neurological health conditions.
Collapse
Affiliation(s)
- Francesca Gimigliano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Angela Palomba
- Multidisciplinary Department of Medicine for Surgery and Orthodontics, University of Campania "Luigi Vanvitelli", Naples, Italy -
| | | | | | - Luca Perrero
- Neurorehabilitation Unit, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | | | - Irene Aprile
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Matteo Paci
- AUSL (Unique Sanitary Local Company) District of Central Tuscany, Florence, Italy
| | - Emanuela Casanova
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Medicina Riabilitativa e Neuroriabilitazione, Bologna, Italia
| | - Dario Marino
- IRCCS Neurolysis Center "Bonino Pulejo", Messina, Italy
| | | | | | | | - Daniele Giansanti
- National Center for Innovative Technologies in Public Health, Italian National Institute of Health, Rome, Italy
| | - Alberto Battistini
- AUSL (Unique Sanitary Local Company) District of Central Tuscany, Florence, Italy
| | | | - Serena Filoni
- Padre Pio Foundation and Rehabilitation Centers, San Giovanni Rotondo, Foggia, Italy
| | - Monica Sicari
- A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | | | | | | | | | - Paolo Boldrini
- Società Italiana di Medicina Fisica e Riabilitativa (SIMFER)
| | | | - Enrico Castelli
- Paediatric Neurorehabilitation, Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesco Draicchio
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, Rome, Italy
| | - Vincenzo Falabella
- President Italian Federation of Persons with Spinal Cord Injuries (Faip Onlus), Rome, Italy
| | | | - Mauro Grigioni
- National Center for Innovative Technologies in Public Health, Italian National Institute of Health, Rome, Italy
| | - Stefano Mazzoleni
- Department of Electrical and Information Engineering, Politecnico di Bari, Bari, Italy
| | - Stefano Mazzon
- Rehabilitation Department, AULSS6 (Unique Sanitary Local Company) Euganea Padova, Padova, Italy
| | | | - Maurizio Petrarca
- "Bambino Gesù" Children's Hospital - IRCCS, Movement Analysis and Robotics Laboratory MARlab, Rome, Italy
| | - Alessandro Picelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Posteraro
- Versilia Hospital AUSL Toscana Nord Ovest, Lido di Camaiore, Lucca, Italy
| | | | | | - Sofia Straudi
- Neuroscience and Rehabilitation Department, Ferrara University Hospital, Ferrara, Italy
| | | |
Collapse
|
40
|
Customizing Robot-Assisted Passive Neurorehabilitation Exercise Based on Teaching Training Mechanism. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9972560. [PMID: 34195289 PMCID: PMC8184331 DOI: 10.1155/2021/9972560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/23/2021] [Indexed: 12/21/2022]
Abstract
Passive movement is an important mean of rehabilitation for stroke survivors in the early stage or with greater paralysis. The upper extremity robot is required to assist therapists with passive movement during clinical rehabilitation, while customizing is one of the crucial issues for robot-assisted upper extremity training, which fits the patient-centeredness. Robot-assisted teaching training could address the need well. However, the existing control strategies of teaching training are usually commanded by position merely, having trouble to achieve the efficacy of treatment by therapists. And deficiency of flexibility and compliance comes to the training trajectory. This research presents a novel motion control strategy for customized robot-assisted passive neurorehabilitation. The teaching training mechanism is developed to coordinate the movement of the shoulder and elbow, ensuring the training trajectory correspondence with human kinematics. Furthermore, the motion trajectory is adjusted by arm strength to realize dexterity and flexibility. Meanwhile, the torque sensor employed in the human-robot interactive system identifies movement intention of human. The goal-directed games and feedbacks promote the motor positivity of stroke survivors. In addition, functional experiments and clinical experiments are investigated with a healthy adult and five recruited stroke survivors, respectively. The experimental results present that the suggested control strategy not only serves with safety training but also presents rehabilitation efficacy.
Collapse
|
41
|
Wu J, Cheng H, Zhang J, Yang S, Cai S. Robot-Assisted Therapy for Upper Extremity Motor Impairment After Stroke: A Systematic Review and Meta-Analysis. Phys Ther 2021; 101:6103015. [PMID: 33454787 DOI: 10.1093/ptj/pzab010] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/31/2020] [Accepted: 12/06/2020] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The purpose of this study was to review the effects of robot-assisted therapy (RT) for improving poststroke upper extremity motor impairment. METHODS The PubMed, Embase, Medline, and Web of Science databases were searched from inception to April 8, 2020. Randomized controlled trials that were conducted to evaluate the effects of RT on upper extremity motor impairment poststroke and that used Fugl-Meyer assessment for upper extremity scores as an outcome were included. Two authors independently screened articles, extracted data, and assessed the methodological quality of the included studies using the Physiotherapy Evidence Database (PEDro) scale. A random-effects meta-analysis was performed to pool the effect sizes across the studies. RESULTS Forty-one randomized controlled trials with 1916 stroke patients were included. Compared with dose-matched conventional rehabilitation, RT significantly improved the Fugl-Meyer assessment for upper extremity scores of the patients with stroke, with a small effect size (Hedges g = 0.25; 95% CI, 0.11-0.38; I2 = 45.9%). The subgroup analysis revealed that the effects of unilateral RT, but not that of bilateral RT, were superior to conventional rehabilitation (Hedges g = 0.32; 95% CI, 0.15-0.50; I2 = 55.9%). Regarding the type of robot devices, the effects of the end effector device (Hedges g = 0.22; 95% CI, 0.09-0.36; I2 = 35.4%), but not the exoskeleton device, were superior to conventional rehabilitation. Regarding the stroke stage, the between-group difference (ie, RT vs convention rehabilitation) was significant only for people with late subacute or chronic stroke (Hedges g = 0.33; 95% CI, 0.16-0.50; I2 = 34.2%). CONCLUSION RT might be superior to conventional rehabilitation in improving upper extremity motor impairment in people after stroke with notable upper extremity hemiplegia and limited potential for spontaneous recovery.
Collapse
Affiliation(s)
- Jingyi Wu
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Hao Cheng
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Shanli Yang
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Sufang Cai
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| |
Collapse
|
42
|
Is cognition considered in post-stroke upper limb robot-assisted therapy trials? A brief systematic review. Int J Rehabil Res 2020; 43:195-198. [PMID: 32769583 DOI: 10.1097/mrr.0000000000000420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this systematic review was, first, to determine whether or not individuals with cognitive deficits after stroke were enrolled in trials that investigated upper limb robot-assisted therapy effectiveness, and, second, whether these trials measured cognitive outcomes. We retrieved 6 relevant systematic reviews covering, altogether, 66 articles and 2214 participants. Among these 66 clinical trials, only 10 (15%) enrolled stroke participants with impaired cognition, whereas 50 (76%) excluded those with impaired cognition. The remaining six trials (9%) were classified as unclear as they either excluded individuals unable to understand simple instructions or did not specify if those with cognitive disorders were included. Furthermore, only 5 trials (8%) used cognitive measures as outcomes. This review highlights a lack of consideration for individuals with cognitive impairments in upper limb robotic trials after stroke. However, cognition is important for complex motor relearning processes and should not be ignored.
Collapse
|
43
|
Tramontano M, Morone G, De Angelis S, Casagrande Conti L, Galeoto G, Grasso MG. Sensor-based technology for upper limb rehabilitation in patients with multiple sclerosis: A randomized controlled trial. Restor Neurol Neurosci 2020; 38:333-341. [PMID: 32925119 DOI: 10.3233/rnn-201033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Sensor-based technological therapy devices may be good candidates for neuromotor rehabilitation of people with Multiple Sclerosis (MS), especially for treating upper extremities function limitations. The sensor-based device rehabilitation is characterized by interactive therapy games with audio-visual feedback that allows training the movement of shoulders, elbows, and wrist, measuring the strength and the active range of motion of upper limb, registering data in an electronic database to quantitatively monitoring measures and therapy progress. OBJECTIVE This study aimed to investigate the effects of sensor-based motor rehabilitation in add-on to the conventional neurorehabilitation, on increasing the upper limb functions of patients with MS. METHODS Thirty patients were enrolled in the study and randomly assigned to the experimental group and the control group. The training consisting of twelve sessions of upper limb training was compared with twelve sessions of upper limb sensory-motor training, without robotic support. Both rehabilitation programs were performed for 40 minutes three times a week, for 4 weeks, in addition to conventional therapy. All patients were evaluated at the baseline (T0) and after 4 weeks of training (T1). RESULTS The within-subject analysis showed a statistically significant improvement in both groups, in the Modified Barthel Index and in the Rivermead Mobility Index scores and a significant improvement in Multiple Sclerosis Quality of Life-54 in the experimental. The analysis of effectiveness revealed that, compared with baseline (T0), the improvement percentage in all clinical scale scores was greater in the experimental group than the control group. CONCLUSIONS Proposed training provides an intensive and functional-oriented rehabilitation that objectively evaluates achieved progress through exercises. Therefore, it can represent a good complementary strategy for hand rehabilitation in MS patients.
Collapse
Affiliation(s)
- Marco Tramontano
- Santa Lucia Foundation, IRCCS, Rome, Italy
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Rome, Italy
| | | | | | | | - Giovanni Galeoto
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | | |
Collapse
|