1
|
Alfei S, Schito GC. Antimicrobial Nanotubes: From Synthesis and Promising Antimicrobial Upshots to Unanticipated Toxicities, Strategies to Limit Them, and Regulatory Issues. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:633. [PMID: 40278498 PMCID: PMC12029864 DOI: 10.3390/nano15080633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
Nanotubes (NTs) are nanosized tube-like structured materials made from various substances such as carbon, boron, or silicon. Carbon nanomaterials (CNMs), including carbon nanotubes (CNTs), graphene/graphene oxide (G/GO), and fullerenes, have good interatomic interactions and possess special characteristics, exploitable in several applications because of the presence of sp2 and sp3 bonds. Among NTs, CNTs are the most studied compounds due to their nonpareil electrical, mechanical, optical, and biomedical properties. Moreover, single-walled carbon nanotubes (SWNTs) have, in particular, demonstrated high ability as drug delivery systems and in transporting a wide range of chemicals across membranes and into living cells. Therefore, SWNTs, more than other NT structures, have generated interest in medicinal applications, such as target delivery, improved imaging, tissue regeneration, medication, and gene delivery, which provide nanosized devices with higher efficacy and fewer side effects. SWNTs and multi-walled CNTs (MWCNTs) have recently gained a great deal of attention for their antibacterial effects. Unfortunately, numerous recent studies have revealed unanticipated toxicities caused by CNTs. However, contradictory opinions exist regarding these findings. Moreover, the problem of controlling CNT-based products has become particularly evident, especially in relation to their large-scale production and the nanosized forms of the carbon that constitute them. Important directive rules have been approved over the years, but further research and regulatory measures should be introduced for a safer production and utilization of CNTs. Against this background, and after an overview of CNMs and CNTs, the antimicrobial properties of pristine and modified SWNTs and MWCNTs as well as the most relevant in vitro and in vivo studies on their possible toxicity, have been reported. Strategies and preventive behaviour to limit CNT risks have been provided. Finally, a debate on regulatory issues has also been included.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| | - Gian Carlo Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy;
| |
Collapse
|
2
|
Sharma S, Parveen R, Chatterji BP. Toxicology of Nanoparticles in Drug Delivery. CURRENT PATHOBIOLOGY REPORTS 2021; 9:133-144. [PMID: 34840918 PMCID: PMC8611175 DOI: 10.1007/s40139-021-00227-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Nanoparticles have revolutionized biomedicine especially in the field of drug delivery due to their intriguing properties such as systemic stability, level of solubility, and target site specificity. It can, however, be both beneficial and damaging depending on the properties in different environments, thus highlighting the importance of nanotoxicology studies before use in humans. Different types of nanoparticles have been used in drug delivery, and this review summarizes the recent toxicity studies of these nanoparticles. The toxicological evaluation of three widely used nanoparticles in drug delivery that are metal, lipid, and protein nanoparticles has been discussed in detail. Studies have recorded several toxic effects of various nanoparticles such as metal-based nanoparticles have been linked to increased oxidative stress and have the potential to infiltrate the cell nucleus and protein-based nanoparticles have been observed to have hepatotoxicity and nephrotoxicity as their adverse effects. Considering the increasing application of nanoparticles in drug delivery and the growing concerns of regulatory authorities regarding the toxicity of nanocarriers in living organisms, it requires urgent attention to identify the gap in toxicity studies. The review highlights the gap in toxicity studies and potential focus areas to overcome the existing challenges.
Collapse
Affiliation(s)
- Swati Sharma
- St. Xavier's College, Mumbai, Maharashtra 400001 India
| | - Roza Parveen
- School of Engineering, Ajeenkya DY Patil University, Pune, Maharashtra 412105 India
| | | |
Collapse
|
3
|
Souza MR, Mazaro-Costa R, Rocha TL. Can nanomaterials induce reproductive toxicity in male mammals? A historical and critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144354. [PMID: 33736249 DOI: 10.1016/j.scitotenv.2020.144354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 12/05/2020] [Indexed: 05/28/2023]
Abstract
The nanotechnology enabled the development of nanomaterials (NMs) with a variety of industrial, biomedical, and consumer applications. However, the mechanism of action (MoA) and toxicity of NMs remain unclear, especially in the male reproductive system. Thus, this study aimed to perform a bibliometric and systematic review of the literature on the toxic effects of different types of NMs on the male reproductive system and function in mammalian models. A series of 236 articles related to the in vitro and in vivo reproductive toxicity of NMs in mammalian models were analyzed. The data concerning the bioaccumulation, experimental conditions (types of NMs, species, cell lines, exposure period, and routes of exposure), and the MoA and toxicity of NMs were summarized and discussed. Results showed that this field of research began in 2005 and has experienced an exponential increase since 2012. Revised data confirmed that the NMs have the ability to cross the blood-testis barrier and bioaccumulate in several organs of the male reproductive system, such as testis, prostate, epididymis, and seminal vesicle. A similar MoA and toxicity were observed after in vitro and in vivo exposure to NMs. The NM reproductive toxicity was mainly related to ROS production, oxidative stress, DNA damage and apoptosis. In conclusion, the NM exposure induces bioaccumulation and toxic effects on male reproductive system of mammal models, confirming its potential risk to human and environmental health. The knowledge concerning the NM reproductive toxicity contributes to safety and sustainable use of nanotechnology.
Collapse
Affiliation(s)
- Maingredy Rodrigues Souza
- Laboratory of Physiology and Pharmacology of Reproduction, Institute of Biological Sciences, Federal University of Goiás, Goiás, Brazil; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil
| | - Renata Mazaro-Costa
- Laboratory of Physiology and Pharmacology of Reproduction, Institute of Biological Sciences, Federal University of Goiás, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil.
| |
Collapse
|
4
|
Ramal-Sanchez M, Fontana A, Valbonetti L, Ordinelli A, Bernabò N, Barboni B. Graphene and Reproduction: A Love-Hate Relationship. NANOMATERIALS 2021; 11:nano11020547. [PMID: 33671591 PMCID: PMC7926437 DOI: 10.3390/nano11020547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022]
Abstract
Since its discovery, graphene and its multiple derivatives have been extensively used in many fields and with different applications, even in biomedicine. Numerous efforts have been made to elucidate the potential toxicity derived from their use, giving rise to an adequate number of publications with varied results. On this basis, the study of the reproductive function constitutes a good tool to evaluate not only the toxic effects derived from the use of these materials directly on the individual, but also the potential toxicity passed on to the offspring. By providing a detailed scientometric analysis, the present review provides an updated overview gathering all the research studies focused on the use of graphene and graphene-based materials in the reproductive field, highlighting the consequences and effects reported to date from experiments performed in vivo and in vitro and in different animal species (from Archea to mammals). Special attention is given to the oxidized form of graphene, graphene oxide, which has been recently investigated for its ability to increase the in vitro fertilization outcomes. Thus, the potential use of graphene oxide against infertility is hypothesized here, probably by engineering the spermatozoa and thus manipulating them in a safer and more efficient way.
Collapse
Affiliation(s)
- Marina Ramal-Sanchez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (L.V.); (N.B.); (B.B.)
- Correspondence:
| | - Antonella Fontana
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
| | - Luca Valbonetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (L.V.); (N.B.); (B.B.)
- National Research Council (IBCN), CNR-Campus International Development (EMMA-INFRAFRONTIER-IMPC), Monterotondo Scalo, 00015 Rome, Italy
| | | | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (L.V.); (N.B.); (B.B.)
- National Research Council (IBCN), CNR-Campus International Development (EMMA-INFRAFRONTIER-IMPC), Monterotondo Scalo, 00015 Rome, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (L.V.); (N.B.); (B.B.)
| |
Collapse
|
5
|
Farshad O, Heidari R, Zamiri MJ, Retana-Márquez S, Khalili M, Ebrahimi M, Jamshidzadeh A, Ommati MM. Spermatotoxic Effects of Single-Walled and Multi-Walled Carbon Nanotubes on Male Mice. Front Vet Sci 2020; 7:591558. [PMID: 33392285 PMCID: PMC7775657 DOI: 10.3389/fvets.2020.591558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/04/2020] [Indexed: 12/27/2022] Open
Abstract
Carbon-based nanomaterials possess a remarkably high potential for biomedical applications due to their physical properties; however, their detrimental effects on reproduction are also concerned. Several reports indicate the toxicity of carbon nanotubes (CNT); nevertheless, their impact on intracellular organelles in the male reproductive organs has not been fully elucidated. Herein, we report on the reprotoxicity of single-walled (SWCNT) and multi-walled carbon nanotubes (MWCN) on several intracellular events and histological criteria in pubertal male BALB/c mice orally treated with 0, 10, and 50 mg/kg/day doses for 5 weeks. Biomarkers of oxidative stress and mitochondrial functionality, histopathological alterations, and epididymal sperm characteristics were determined. Oral administration of CNTs at 10 and 50 mg/kg evoked a significant decrement in weight coefficient, sperm viability and motility, hypo-osmotic swelling (HOS) test, sperm count, mitochondrial dehydrogenase activity, ATP content, total antioxidant capacity, and GSH/GSSH ratio in the testis and epididymal spermatozoa. On the other hand, percent abnormal sperm, testicular and sperm TBARS contents, protein carbonylation, ROS formation, oxidized glutathione level, and sperm mitochondrial depolarization were considerably increased. Significant histopathological and stereological alterations in the testis occurred in the groups challenged with CNTs. The current findings indicated that oxidative stress and mitochondrial impairment might substantially impact CNTs-induced reproductive system injury and sperm toxicity. The results can also be used to establish environmental standards for CNT consumption by mammals, produce new chemicals for controlling the rodent populations, and develop therapeutic approaches against CNTs-associated reproductive anomalies in the males exposed daily to these nanoparticles.
Collapse
Affiliation(s)
- Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Socorro Retana-Márquez
- Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, Mexico, Mexico
| | - Meghdad Khalili
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Melika Ebrahimi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
6
|
Yan H, Xue Z, Xie J, Dong Y, Ma Z, Sun X, Kebebe Borga D, Liu Z, Li J. Toxicity of Carbon Nanotubes as Anti-Tumor Drug Carriers. Int J Nanomedicine 2019; 14:10179-10194. [PMID: 32021160 PMCID: PMC6946632 DOI: 10.2147/ijn.s220087] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/25/2019] [Indexed: 12/25/2022] Open
Abstract
Nanoparticle drug formulations have enormous application prospects owing to achievement of targeted and sustained release drug delivery, improvement in drug solubility and reduction of adverse drug reactions. Recently, a variety of efficient drug nanometer carriers have been developed, among which carbon nanotubes (CNT) have been increasingly utilized in the field of cancer therapy. However, these nanotubes exert various toxic effects on the body due to their unique physical and chemical properties. CNT-induced toxicity is related to surface modification, degree of aggregation in vivo, and nanoparticle concentration. This review has focused on the potential toxic effects of CNTs utilized as anti-tumor drug carriers. The main modes by which CNTs enter target sites, the toxicity expressive types and the factors affecting toxicity are discussed.
Collapse
Affiliation(s)
- Hongli Yan
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Zhifeng Xue
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Jiarong Xie
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Yixiao Dong
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Zhe Ma
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Xinru Sun
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Dereje Kebebe Borga
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Zhidong Liu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Jiawei Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,Institute of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| |
Collapse
|
7
|
Park EJ, Park YJ, Lee SJ, Yoon C, Lee K. Cigarette smoke extract may induce lysosomal storage disease-like adverse health effects. J Appl Toxicol 2019; 39:510-524. [PMID: 30485468 DOI: 10.1002/jat.3744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
Abstract
Cigarette smoke is known to be associated with the incidence of a variety of pulmonary diseases, and alveolar macrophages are a key player in the defense mechanism against inhalable toxicants. Herein, we have found that a hydrophilic fraction in smoke extracts from 3R4F reference cigarettes (CSE) contains high concentrations of volatile substances compared to cigarette smoke condensate (amphoteric fraction). We also identified the toxic mechanism of CSE using MH-S, a mouse alveolar macrophage cell line. CSE decreased cell viability accompanying increased lactate dehydrogenase release. Additionally, mitochondrial volume and the potential increased along with enhanced expression of mitochondrial fusion proteins and decreased adenosine triphosphate production. Similarly, CSE clearly induced increase of catalase activity and intracellular calcium concentration and decrease of endoplasmic reticulum and lysosome volume at the highest dose. More interestingly, damaged organelles accumulated in the cytosol, and CSE-containing particles specifically penetrated to mitochondria. Meanwhile, any significant change in autophagy related protein expression was not found in CSE-treated cells. Subsequently, we evaluated the effects of CSE on secretion of inflammatory related cytokines and chemokines, considering the relationship between organelle damage and the disturbed immune response. Very importantly, we found that expression of innate and adaptive immunity related mediators is disrupted following CSE exposure. Taken together, we suggest that CSE may cause the accumulation of damaged organelles in the cytoplasm by impairing selective autophagic function. In addition, this accumulation is responsible for the inadequate ability of immune cells to repair the damage of lung tissue following exposure to CSE.
Collapse
Affiliation(s)
- Eun-Jung Park
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, 17104, South Korea
| | - Yoo-Jin Park
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, 17104, South Korea
| | - Sang Jin Lee
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup, Jellobuk-do, Republic of Korea
| | - Cheolho Yoon
- Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Kyuhong Lee
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup, Jellobuk-do, Republic of Korea
| |
Collapse
|
8
|
Bara N, Kaul G. Enhanced steroidogenic and altered antioxidant response by ZnO nanoparticles in mouse testis Leydig cells. Toxicol Ind Health 2018; 34:571-588. [PMID: 29768980 DOI: 10.1177/0748233718774220] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are important nanomaterials with myriad applications and in widespread use. The main aim of this study was to evaluate the direct effect of ZnO NPs on steroidogenesis by considering mouse testicular Leydig cells (TM3) as an in vitro model system. The uptake, intracellular behaviour, cytotoxicity and morphological changes induced by ZnO NPs (0-200 µg/ml) in a time-dependent manner in the TM3 were assessed. A significant ( p < 0.05) decrease in TM3 viability was observed at 2 µg/ml ZnO NP after a 1-h incubation time period. Increased antioxidant enzyme activity, namely, superoxide dismutase (SOD) and catalase, was regularly observed. Not surprisingly, apoptosis also increased significantly after a 4-h exposure period. Transmission electron micrographs illustrated that ZnO NPs were taken up by Leydig cells and resulted in the formation of autophagosomes, autolysosomes and autophagic vacuoles. Concomitant real-time data indicated that ZnO NPs significantly increased the expression of steroidogenesis-related genes (steroidogenic acute regulatory protein and cytochrome P450 side-chain cleavage enzyme) and significantly ( p < 0.05) decreased antioxidant enzyme gene (SOD) expression after a 4-h incubation period. Moreover, ZnO NPs exposure significantly increased testosterone production at 2 µg/ml concentration after a 12-h incubation period. Our findings confirm the adverse effects of ZnO NPs by being cytotoxic, enhancing apoptosis, causing steroidogenic effect in Leydig cells and increasing autophagic vacuole formation possibly via alteration of antioxidant enzyme activity in TM3 cells.
Collapse
Affiliation(s)
- Nisha Bara
- 1 Animal Biochemistry Division, N.T. Lab-I, ICAR-National Dairy Research Institute (Deemed University) (Government of India), Karnal, Haryana, India
| | - Gautam Kaul
- 1 Animal Biochemistry Division, N.T. Lab-I, ICAR-National Dairy Research Institute (Deemed University) (Government of India), Karnal, Haryana, India
| |
Collapse
|
9
|
Pandey RK, Prajapati VK. Molecular and immunological toxic effects of nanoparticles. Int J Biol Macromol 2017; 107:1278-1293. [PMID: 29017884 DOI: 10.1016/j.ijbiomac.2017.09.110] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/21/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023]
Abstract
Nanoparticles have emerged as a boon for the public health applications such as drug delivery, diagnostic, and imaging. Biodegradable and non-bio degradable nanoparticles have been used at a large scale level to increase the efficiency of the biomedical process at the cellular, animal and human level. Exponential use of nanoparticles reinforces the adverse immunological changes at the human health level. Physical and chemical properties of nanoparticles often lead to a variety of immunotoxic effects such as activation of stress-related genes, membrane disruption, and release of pro-inflammatory cytokines. Delivered nanoparticles in animal or human interact with various components of the immune system such as lymphocytes, macrophages, neutrophils etc. Nanoparticles delivered above the threshold level damages the cellular physiology by the generation of reactive oxygen and nitrogen species. This review article represents the potential of nanoparticles in the field of nanomedicine and provides the critical evidence which leads to develop immunotoxicity in living cells and organisms by altering immunological responses.
Collapse
Affiliation(s)
- Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh, 305817, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh, 305817, Ajmer, Rajasthan, India.
| |
Collapse
|