1
|
Effects of Oil Supplements on Growth Performance, Eating Behavior, Ruminal Fermentation, and Ruminal Morphology in Lambs during Transition from a Low- to a High-Grain Diet. Animals (Basel) 2022; 12:ani12192566. [PMID: 36230307 PMCID: PMC9558502 DOI: 10.3390/ani12192566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
The objectives of this study were to investigate the effect of a maximum recommended oil supplementation on growth performance, eating behavior, ruminal fermentation, and ruminal morphological characteristics in growing lambs during transition from a low- to a high-grain diet. A total of 21 Afshari male lambs with an initial body weight (BW) of 41.4 ± 9.1 kg (mean ± SD) and at 5−6 months of age were randomly assigned to one of three dietary treatments (n = 7 per group), including (1) a grain-based diet with no fat supplement (CON), (2) CON plus 80 g/d of prilled palm oil (PALM), and (3) CON plus 80 g/d soybean oil (SOY); oils were equivalent to 50 g/kg of dry matter based on initial dry matter intake (DMI). All lambs were adapted to the high-grain diet for 21 d. In the adaptation period, lambs were gradually transferred to a dietary forage-to-concentrate ratio of 20:80 by replacing 100 g/kg of the preceding diet every 3 d. Thereafter, lambs were fed experimental diets for another 22 days. Fat-supplemented lambs had greater DMI, body weight (BW), and average daily gain (ADG), with a lower feed to gain ratio (p < 0.05), compared to CON lambs. The highest differences of DMI between fat-supplemented and CON-lambs were observed in week 3 of the adaptation period (p = 0.010). PALM- or SOY-supplementation lowered DM and NDF digestibility compared with CON (p < 0.05), and SOY caused the lowest organic matter (OM) digestibility compared with CON and PALM lambs (62.0 vs. 67.6 and 66.9; p < 0.05). Ruminal pH was higher for PALM and SOY compared with CON (p = 0.018). Lambs in SOY tended to have the highest ammonia-N concentrations (p = 0.075), together with a trend for higher concentrations of propionic acid, at the expense of acetic acid in ruminal fluid, on the last day of the adaptation period (diet × time, p = 0.079). Fat-supplemented lambs had lower isovaleric and valeric acid concentrations compared with CON on d 40 (diet × time, p < 0.05). PALM and SOY-fed lambs had a longer eating time (min/d and min/kg of DMI), chewing activity (min/d), meal frequency (n), and duration of eating the first and second meals after morning feeding (p < 0.05), and the largest meal size (p < 0.001). Fat supplemented lambs had greater ruminal papillary length (p < 0.05) and width (p < 0.01), and thicker submucosal, epithelial, and muscle layers, compared with the CON (p < 0.01). Blood metabolites were not influenced by dietary treatments (p > 0.05). The results from this study suggest that fat supplementation to high-grain diets may improve the development of ruminal epithelia and modify ruminal fermentation via optimized eating behavior or the direct effect of oils on the ruminal environment, resulting in better growth performance in growing lambs.
Collapse
|
2
|
Mirzaei-Alamouti H, Abdollahi A, Rahimi H, Moradi S, Vazirigohar M, Aschenbach JR. Effects of dietary oil sources (sunflower and fish) on fermentation characteristics, epithelial gene expression and microbial community in the rumen of lambs fed a high-concentrate diet. Arch Anim Nutr 2022; 75:405-421. [PMID: 35112609 DOI: 10.1080/1745039x.2021.1997539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The feeding of high-concentrate diets commonly results in lowered pH and ruminal dysbiosis which cause shifts in uptake dynamics of short-chain fatty acids (SCFA) and altered epithelial function. Therefore, the current study evaluated the effect of dietary polyunsaturated fatty acids (PUFA) on ruminal fermentation products, gene expression in the ruminal epithelium and the associated changes in ruminal microorganisms in lambs fed a high-concentrate diet. Twenty-six Afshari lambs adapted to a high-concentrate diet during a completely randomised design were fed with a basal diet supplemented with 100 g oil supplement (OS; 60 g sunflower oil and 40 g fish oil) for 10 (OS10), 20 (OS20) and 30 (OS30) d, respectively (n = 6). Lambs with no oil supplementation (OS0, n = 8) were considered as control and slaughtered at d 0 of the experiment, and the remaining lambs were slaughtered at 10, 20 and 30 d on feed. After slaughter, ruminal digesta was collected for evaluating fermentation and microbial community. Ruminal papillae were taken for assessment of epithelial gene expression. Compared with OS0 lambs, supplemental PUFA in OS30 lambs tended to decrease total SCFA concentration with decreased acetic and increased propionic acid concentrations. Acetate:propionate ratios were decreased and ruminal pH was increased in OS20 and OS30 lambs compared to OS0. All groups with included OS had decreased concentrations of iso-valeric and valeric acids compared to OS0. Relative mRNA abundance of monocarboxylate transporter isoforms 1 and 4, insulin-like growth factor binding protein 3, sterol regulatory element-binding proteins 1 and 2 decreased with increasing OS duration. The relative abundance of 3-hydroxy-3-methylglutaryl-CoA synthase 1 mRNA transcript was higher for OS10 and OS20 lambs relative to OS0 lambs. OS20 and OS30 showed a decrease of lipopolysaccharide binding protein mRNA expression compared with OS0. Feeding supplemental PUFA decreased Ciliate protozoa and increased Butyrivibrio fibrisolvens in OS20 and OS30 lambs, whereas Megasphaera elsdenii was increased in OS30 lambs. In conclusion, combined supplementation of sunflower and fish oil to a high-concentrate diet affects the ruminal microbial community with prominent decreases in ruminal ciliate protozoa and increases in B. fibrisolvens and M. elsdenii. These results lead to a more stabilised ruminal pH and a fermentation shift towards more propionate generation. Consideration of nutrients digestion will help to fully understand the benefits of feeding PUFA with a high-concentrate diet.
Collapse
Affiliation(s)
| | - Arman Abdollahi
- Department of Animal Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| | - Hasan Rahimi
- Department of Animal Sciences, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Saeedeh Moradi
- Department of Animal Sciences, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Mina Vazirigohar
- Zist Dam Group, University of Zanjan Incubator Center, Zanjan, Iran
| | - Jörg R Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Wang J, Han L, Wang D, Li P, Shahidi F. Conjugated Fatty Acids in Muscle Food Products and Their Potential Health Benefits: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13530-13540. [PMID: 33175544 DOI: 10.1021/acs.jafc.0c05759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conjugated fatty acids (CFAs) are a group of positional and geometric isomers of polyunsaturated fatty acids (PUFAs) with conjugated double bonds. There are several subgroups of CFAs including conjugated linoleic acids (CLAs), conjugated linolenic acids (CLNAs), conjugated eicosapentaenoic acids (CEPAs), and conjugated docosahexaenoic acids (CDHAs). CFAs, especially CLAs, have been studied in recent years both for their health benefits and factors that affect their level in muscle food products. CFAs have been reported in numerous studies as having antitumor, antiobesity, antidiabetes, anticardiovascular disease, and modulating immune system effects. These biological activies are involved in changes of lipid peroxidation and energy expenditure, as well as inhibitory effects on the hormone receptor, lipid metabolism, lipoprotein lipase activity, and adiponectin production. A large body of studies has revealed that the diet, processing, storage conditions, slaughter season, and age are common factors that affect CFA content in muscle food products, as detailed in this review. Recommendations are made regarding animal farming and meat product processing to obtain high CFA content meat products and to optimize the benefits of CFA for health promotion.
Collapse
Affiliation(s)
- Jiankang Wang
- School of Food and Biological Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Linxiao Han
- School of Food and Biological Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Daoying Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Pengpeng Li
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Fereidoon Shahidi
- Departments of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| |
Collapse
|
4
|
Li XZ, Park BK, Shin JS, Choi SH, Smith SB, Yan CG. Effects of dietary linseed oil and propionate precursors on ruminal microbial community, composition, and diversity in Yanbian yellow cattle. PLoS One 2015; 10:e0126473. [PMID: 26024491 PMCID: PMC4449012 DOI: 10.1371/journal.pone.0126473] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 04/02/2015] [Indexed: 01/27/2023] Open
Abstract
The rumen microbial ecosystem is a complex system where rumen fermentation processes involve interactions among microorganisms. There are important relationships between diet and the ruminal bacterial composition. Thus, we investigated the ruminal fermentation characteristics and compared ruminal bacterial communities using tag amplicon pyrosequencing analysis in Yanbian yellow steers, which were fed linseed oil (LO) and propionate precursors. We used eight ruminally cannulated Yanbian yellow steers (510 ± 5.8 kg) in a replicated 4 × 4 Latin square design with four dietary treatments. Steers were fed a basal diet that comprised 80% concentrate and 20% rice straw (DM basis, CON). The CON diet was supplemented with LO at 4%. The LO diet was also supplemented with 2% dl-malate or 2% fumarate as ruminal precursors of propionate. Dietary supplementation with LO and propionate precursors increased ruminal pH, total volatile fatty acid concentrations, and the molar proportion of propionate. The most abundant bacterial operational taxonomic units in the rumen were related to dietary treatments. Bacteroidetes dominated the ruminal bacterial community and the genus Prevotella was highly represented when steers were fed LO plus propionate precursors. However, with the CON and LO diet plus malate or fumarate, Firmicutes was the most abundant phylum and the genus Ruminococcus was predominant. In summary, supplementing the diets of ruminants with a moderate level of LO plus propionate precursors modified the ruminal fermentation pattern. The most positive responses to LO and propionate precursors supplementation were in the phyla Bacteriodetes and Firmicutes, and in the genus Ruminococcus and Prevotella. Thus, diets containing LO plus malate or fumarate have significant effects on the composition of the rumen microbial community.
Collapse
Affiliation(s)
- Xiang Z. Li
- Department of Animal Science, Yanbian University, Yanji, Jilin, 133002, P. R. China
| | - Byung K. Park
- Feed Research Institute, Nonghyup Feed Co. Ltd, Seoul, 134–763, Republic of Korea
| | - Jong S. Shin
- Department of Animal Life Science, Kangwon National University, Chunchoen, 200–701, Republic of Korea
| | - Seong H. Choi
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361–763, Korea
| | - Stephen B. Smith
- Department of Animal Science, Texas A & M University, College Station, 77843–2471, United States of America
| | - Chang G. Yan
- Department of Animal Science, Yanbian University, Yanji, Jilin, 133002, P. R. China
- * E-mail:
| |
Collapse
|
5
|
Li XZ, Long RJ, Yan CG, Lee HG, Kim YJ, Song MK. Rumen microbial response in production of CLA and methane to safflower oil in association with fish oil or/and fumarate. Anim Sci J 2011; 82:441-50. [PMID: 21615838 DOI: 10.1111/j.1740-0929.2010.00857.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Supplementation effect of fish oil and/or fumarate on production of conjugated linoleic acid (CLA) and methane by rumen microbes was examined when incubated with safflower oil. One hundred and twenty milligrams of safflower oil (SO), safflower oil with 24 mg fish oil (SOFO), safflower oil with 24 mmol/L fumarate (SOFA), or safflower oil with 24 mg fish oil and 24 mmol/L fumarate (SOFOFA) were added to the 90 mL culture solution. The culture solution was also made without any supplements (control). The SOFA and SOFOFA increased pH and propionate (C3) compared to other treatments from 3 h incubation time. An accumulated amount of total methane (CH(4) ) for 12 h incubation was decreased by all the supplements compared to control. The concentrations of c9,t11CLA for all the incubation times were increased in the treatments of SOFO, SOFA and SOFOFA compared to SO. The highest concentration of c9,t11CLA was observed from SOFOFA among all the treatments at all incubation times. Overall data indicate that supplementation of combined fumarate and/or fish oil when incubated with safflower oil could depress CH(4) generation and increase production of C(3) and CLA under the condition of current in vitro study.
Collapse
Affiliation(s)
- Xiang Z Li
- Department of Animal Science, Yanbian University, Yanji, China
| | | | | | | | | | | |
Collapse
|
6
|
Franzolin R, Garcia VP, Soares WV, Costa FA. Influence of palm fatty acid distillate on rumen degradability and protozoa population in buffaloes. ITALIAN JOURNAL OF ANIMAL SCIENCE 2010. [DOI: 10.4081/ijas.2010.e75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Dhiman TR, Nam SH, Ure AL. Factors affecting conjugated linoleic acid content in milk and meat. Crit Rev Food Sci Nutr 2006; 45:463-82. [PMID: 16183568 DOI: 10.1080/10408390591034463] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Conjugated linoleic acid (CLA) has been recently studied mainly because of its potential in protecting against cancer, atherogenesis, and diabetes. Conjugated linoleic acid (CLA) is a collective term for a series of conjugated dienoic positional and geometrical isomers of linoleic acid, which are found in relative abundance in milk and tissue fat of ruminants compared with other foods. The cis-9, trans-11 isomer is the principle dietary form of CLA found in ruminant products and is produced by partial ruminal biohydrogenation of linoleic acid or by endogenous synthesis in the tissues themselves. The CLA content in milk and meat is affected by several factors, such as animal's breed, age, diet, and management factors related to feed supplements affecting the diet. Conjugated linoleic acid in milk or meat has been shown to be a stable compound under normal cooking and storage conditions. Total CLA content in milk or dairy products ranges from 0.34 to 1.07% of total fat. Total CLA content in raw or processed beef ranges from 0.12 to 0.68% of total fat. It is currently estimated that the average adult consumes only one third to one half of the amount of CLA that has been shown to reduce cancer in animal studies. For this reason, increasing the CLA contents of milk and meat has the potential to raise the nutritive and therapeutic values of dairy products and meat.
Collapse
Affiliation(s)
- Tilak R Dhiman
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322-4815, USA.
| | | | | |
Collapse
|