1
|
Min H, Liang X, Wang C, Qin J, Boonhok R, Muneer A, Brashear AM, Li X, Minns AM, Adapa SR, Jiang RHY, Ning G, Cao Y, Lindner SE, Miao J, Cui L. The DEAD-box RNA helicase PfDOZI imposes opposing actions on RNA metabolism in Plasmodium falciparum. Nat Commun 2024; 15:3747. [PMID: 38702310 PMCID: PMC11068891 DOI: 10.1038/s41467-024-48140-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
In malaria parasites, the regulation of mRNA translation, storage and degradation during development and life-stage transitions remains largely unknown. Here, we functionally characterized the DEAD-box RNA helicase PfDOZI in P. falciparum. Disruption of pfdozi enhanced asexual proliferation but reduced sexual commitment and impaired gametocyte development. By quantitative transcriptomics, we show that PfDOZI is involved in the regulation of invasion-related genes and sexual stage-specific genes during different developmental stages. PfDOZI predominantly participates in processing body-like mRNPs in schizonts but germ cell granule-like mRNPs in gametocytes to impose opposing actions of degradation and protection on different mRNA targets. We further show the formation of stress granule-like mRNPs during nutritional deprivation, highlighting an essential role of PfDOZI-associated mRNPs in stress response. We demonstrate that PfDOZI participates in distinct mRNPs to maintain mRNA homeostasis in response to life-stage transition and environmental changes by differentially executing post-transcriptional regulation on the target mRNAs.
Collapse
Affiliation(s)
- Hui Min
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Xiaoying Liang
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Junling Qin
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
| | - Rachasak Boonhok
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Azhar Muneer
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
| | - Awtum M Brashear
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
| | - Xiaolian Li
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
| | - Allen M Minns
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Swamy Rakesh Adapa
- Center for Global Health and Infectious Diseases, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Rays H Y Jiang
- Center for Global Health and Infectious Diseases, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Gang Ning
- Electron Microscopy Facility, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA.
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA.
| |
Collapse
|
2
|
Alaithan H, Kumar N, Islam MZ, Liappis AP, Nava VE. Novel Therapeutics for Malaria. Pharmaceutics 2023; 15:1800. [PMID: 37513987 PMCID: PMC10383744 DOI: 10.3390/pharmaceutics15071800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Malaria is a potentially fatal disease caused by protozoan parasites of the genus Plasmodium. It is responsible for significant morbidity and mortality in endemic countries of the tropical and subtropical world, particularly in Africa, Southeast Asia, and South America. It is estimated that 247 million malaria cases and 619,000 deaths occurred in 2021 alone. The World Health Organization's (WHO) global initiative aims to reduce the burden of disease but has been massively challenged by the emergence of parasitic strains resistant to traditional and emerging antimalarial therapy. Therefore, development of new antimalarial drugs with novel mechanisms of action that overcome resistance in a safe and efficacious manner is urgently needed. Based on the evolving understanding of the physiology of Plasmodium, identification of potential targets for drug intervention has been made in recent years, resulting in more than 10 unique potential anti-malaria drugs added to the pipeline for clinical development. This review article will focus on current therapies as well as novel targets and therapeutics against malaria.
Collapse
Affiliation(s)
- Haitham Alaithan
- Veterans Affairs Medical Center, Washington, DC 20422, USA
- Department of Medicine, George Washington University, Washington, DC 20037, USA
| | - Nirbhay Kumar
- Department of Global Health, Milken Institute of Public Health, George Washington University, Washington, DC 20037, USA
| | - Mohammad Z Islam
- Department of Pathology and Translational Pathology, Louisiana State University Health Science Center, Shreveport, LA 71103, USA
| | - Angelike P Liappis
- Veterans Affairs Medical Center, Washington, DC 20422, USA
- Department of Medicine, George Washington University, Washington, DC 20037, USA
| | - Victor E Nava
- Veterans Affairs Medical Center, Washington, DC 20422, USA
- Department of Pathology, George Washington University, Washington, DC 20037, USA
| |
Collapse
|
3
|
Recent approaches in the drug research and development of novel antimalarial drugs with new targets. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:1-27. [PMID: 36692468 DOI: 10.2478/acph-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 01/25/2023]
Abstract
Malaria is a serious worldwide medical issue that results in substantial annual death and morbidity. The availability of treatment alternatives is limited, and the rise of resistant parasite types has posed a significant challenge to malaria treatment. To prevent a public health disaster, novel antimalarial agents with single-dosage therapies, extensive curative capability, and new mechanisms are urgently needed. There are several approaches to developing antimalarial drugs, ranging from alterations of current drugs to the creation of new compounds with specific targeting abilities. The availability of multiple genomic techniques, as well as recent advancements in parasite biology, provides a varied collection of possible targets for the development of novel treatments. A number of promising pharmacological interference targets have been uncovered in modern times. As a result, our review concentrates on the most current scientific and technical progress in the innovation of new antimalarial medications. The protein kinases, choline transport inhibitors, dihydroorotate dehydrogenase inhibitors, isoprenoid biosynthesis inhibitors, and enzymes involved in the metabolism of lipids and replication of deoxyribonucleic acid, are among the most fascinating antimalarial target proteins presently being investigated. The new cellular targets and drugs which can inhibit malaria and their development techniques are summarised in this study.
Collapse
|
4
|
Zhou M, Varol A, Efferth T. Multi-omics approaches to improve malaria therapy. Pharmacol Res 2021; 167:105570. [PMID: 33766628 DOI: 10.1016/j.phrs.2021.105570] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 01/07/2023]
Abstract
Malaria contributes to the most widespread infectious diseases worldwide. Even though current drugs are commercially available, the ever-increasing drug resistance problem by malaria parasites poses new challenges in malaria therapy. Hence, searching for efficient therapeutic strategies is of high priority in malaria control. In recent years, multi-omics technologies have been extensively applied to provide a more holistic view of functional principles and dynamics of biological mechanisms. We briefly review multi-omics technologies and focus on recent malaria progress conducted with the help of various omics methods. Then, we present up-to-date advances for multi-omics approaches in malaria. Next, we describe resistance phenomena to established antimalarial drugs and underlying mechanisms. Finally, we provide insight into novel multi-omics approaches, new drugs and vaccine developments and analyze current gaps in multi-omics research. Although multi-omics approaches have been successfully used in malaria studies, they are still limited. Many gaps need to be filled to bridge the gap between basic research and treatment of malaria patients. Multi-omics approaches will foster a better understanding of the molecular mechanisms of Plasmodium that are essential for the development of novel drugs and vaccines to fight this disastrous disease.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Ayşegül Varol
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
5
|
Belete TM. Recent Progress in the Development of New Antimalarial Drugs with Novel Targets. Drug Des Devel Ther 2020; 14:3875-3889. [PMID: 33061294 PMCID: PMC7519860 DOI: 10.2147/dddt.s265602] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023] Open
Abstract
Malaria is a major global health problem that causes significant mortality and morbidity annually. The therapeutic options are scarce and massively challenged by the emergence of resistant parasite strains, which causes a major obstacle to malaria control. To prevent a potential public health emergency, there is an urgent need for new antimalarial drugs, with single-dose cures, broad therapeutic potential, and novel mechanism of action. Antimalarial drug development can follow several approaches ranging from modifications of existing agents to the design of novel agents that act against novel targets. Modern advancement in the biology of the parasite and the availability of the different genomic techniques provide a wide range of novel targets in the development of new therapy. Several promising targets for drug intervention have been revealed in recent years. Therefore, this review focuses on the progress made on the latest scientific and technological advances in the discovery and development of novel antimalarial agents. Among the most interesting antimalarial target proteins currently studied are proteases, protein kinases, Plasmodium sugar transporter inhibitor, aquaporin-3 inhibitor, choline transport inhibitor, dihydroorotate dehydrogenase inhibitor, isoprenoid biosynthesis inhibitor, farnesyltransferase inhibitor and enzymes are involved in lipid metabolism and DNA replication. This review summarizes the novel molecular targets and their inhibitors for antimalarial drug development approaches.
Collapse
Affiliation(s)
- Tafere Mulaw Belete
- Department of Pharmacology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
6
|
Yadav BS, Chaturvedi N, Marina N. Recent Advances in System Based Study for Anti-Malarial Drug Development Process. Curr Pharm Des 2019; 25:3367-3377. [DOI: 10.2174/1381612825666190902162105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/30/2019] [Indexed: 12/22/2022]
Abstract
Background:
Presently, malaria is one of the most prevalent and deadly infectious disease across Africa,
Asia, and America that has now started to spread in Europe. Despite large research being carried out in the
field, still, there is a lack of efficient anti-malarial therapeutics. In this paper, we highlight the increasing efforts
that are urgently needed towards the development and discovery of potential antimalarial drugs, which must be
safe and affordable. The new drugs thus mentioned are also able to counter the spread of malaria parasites that
have been resistant to the existing agents.
Objective:
The main objective of the review is to highlight the recent development in the use of system biologybased
approaches towards the design and discovery of novel anti-malarial inhibitors.
Method:
A huge literature survey was performed to gain advance knowledge about the global persistence of
malaria, its available treatment and shortcomings of the available inhibitors. Literature search and depth analysis
were also done to gain insight into the use of system biology in drug discovery and how this approach could be
utilized towards the development of the novel anti-malarial drug.
Results:
The system-based analysis has made easy to understand large scale sequencing data, find candidate
genes expression during malaria disease progression further design of drug molecules those are complementary of
the target proteins in term of shape and configuration.
Conclusion:
The review article focused on the recent computational advances in new generation sequencing,
molecular modeling, and docking related to malaria disease and utilization of the modern system and network
biology approach to antimalarial potential drug discovery and development.
Collapse
Affiliation(s)
- Brijesh S. Yadav
- Department of Bioengineering, University of Information Science and Technology, Partizahska, Ohrid, Macedonia, the Former Yugoslav Republic of
| | - Navaneet Chaturvedi
- Department of Bioengineering, University of Information Science and Technology, Partizahska, Ohrid, Macedonia, the Former Yugoslav Republic of
| | - Ninoslav Marina
- Department of Bioengineering, University of Information Science and Technology, Partizahska, Ohrid, Macedonia, the Former Yugoslav Republic of
| |
Collapse
|
7
|
Rethinking the pragmatic systems biology and systems-theoretical biology divide: Toward a complexity-inspired epistemology of systems biomedicine. Med Hypotheses 2019; 131:109316. [PMID: 31443759 DOI: 10.1016/j.mehy.2019.109316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 11/21/2022]
Abstract
This paper examines some methodological and epistemological issues underlying the ongoing "artificial" divide between pragmatic-systems biology and systems-theoretical biology. The pragmatic systems view of biology has encountered problems and constraints on its explanatory power because pragmatic systems biologists still tend to view systems as mere collections of parts, not as "emergent realities" produced by adaptive interactions between the constituting components. As such, they are incapable of characterizing the higher-level biological phenomena adequately. The attempts of systems-theoretical biologists to explain these "emergent realities" using mathematics also fail to produce satisfactory results. Given the increasing strategic importance of systems biology, both from theoretical and research perspectives, we suggest that additional epistemological and methodological insights into the possibility of further integration between traditional experimental studies and complex modeling are required. This integration will help to improve the currently underdeveloped pragmatic-systems biology and system-theoretical biology. The "epistemology of complexity," I contend, acts as a glue that connects and integrates different and sometimes opposing viewpoints, perspectives, streams, and practices, thus maintaining intellectual and research coherence of systems research of life. It allows scientists to shift the focus from traditional experimental research to integrated, modeling-based holistic practices capable of providing a comprehensive knowledge of organizing principles of living systems. It also opens the possibility of the development of new practical and theoretical foundations of systems biology to build a better understanding of complex organismic functions.
Collapse
|
8
|
da Silva RMRJ, Gandi MO, Mendonça JS, Carvalho AS, Coutinho JP, Aguiar ACC, Krettli AU, Boechat N. New hybrid trifluoromethylquinolines as antiplasmodium agents. Bioorg Med Chem 2019; 27:1002-1008. [PMID: 30737133 DOI: 10.1016/j.bmc.2019.01.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/21/2019] [Accepted: 01/31/2019] [Indexed: 12/18/2022]
Abstract
Malaria remains a major public health problem worldwide, and it is responsible for high rates of morbidity and mortality. Resistance to current antimalarial drugs has been identified, and new drugs are urgently needed. In this study, we designed and synthesized seventeen novel quinolines based on the structures of mefloquine ((2,8-bis(trifluoromethyl)quinolin-4-yl)(piperidin-2-yl)methanol) and amodiaquine (4-((7-chloroquinolin-4-yl)amino)-2-((diethylamino)methyl)phenol) using ring bioisosteric replacement and molecular hybridization of the functional groups. The compounds were evaluated in vitro against Plasmodium falciparum and in vivo in mice infected with P. berghei. All derivatives presented anti-P. falciparum activity with IC50 values ranging from 0.083 to 33.0 µM. The compound with the best anti-P. falciparum activity was N-(5-methyl-4H-1,2,4-triazol-3-yl)-2,8-bis(trifluoromethyl)quinolin-4-amine (12) which showed an IC50 of 0.083 µM. The three most active compounds were selected for antimalarial activity tests against P. berghei-infected mice. Compound 12 was the most active on the 5th day after infection, reducing parasitemia by 66%, which is consistent with its in vitro activity. This is an important result as 12, a simpler molecule than mefloquine, does not contain the stereogenic center, and consequently, its synthesis in the laboratory is easier and less expensive. This system proved promising for the design of potential antimalarial compounds.
Collapse
Affiliation(s)
- Renata M R J da Silva
- Programa de Pós-Graduação Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, UFRJ, Av. Carlos Chagas, 373 - bl. K, 2° andar, sala 35 - Prédio do Centro de Ciências da Saúde, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ 21941-902, Brazil; Departamento de Síntese Orgânica, Instituto de Tecnologia em Fármacos - Farmanguinhos - Fiocruz, Rua Sizenando Nabuco, 100 Manguinhos, Rio de Janeiro, RJ 21041-250, Brazil
| | - Marilia O Gandi
- Programa de Pós-Graduação Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, UFRJ, Av. Carlos Chagas, 373 - bl. K, 2° andar, sala 35 - Prédio do Centro de Ciências da Saúde, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ 21941-902, Brazil; Departamento de Síntese Orgânica, Instituto de Tecnologia em Fármacos - Farmanguinhos - Fiocruz, Rua Sizenando Nabuco, 100 Manguinhos, Rio de Janeiro, RJ 21041-250, Brazil; Faculdade de Farmácia Universidade Iguaçu-UNIG, Av. Abílio Augusto Távora, 2134, Nova Iguaçu, RJ 26275-580, Brazil
| | - Jorge S Mendonça
- Departamento de Síntese Orgânica, Instituto de Tecnologia em Fármacos - Farmanguinhos - Fiocruz, Rua Sizenando Nabuco, 100 Manguinhos, Rio de Janeiro, RJ 21041-250, Brazil
| | - Alcione S Carvalho
- Departamento de Síntese Orgânica, Instituto de Tecnologia em Fármacos - Farmanguinhos - Fiocruz, Rua Sizenando Nabuco, 100 Manguinhos, Rio de Janeiro, RJ 21041-250, Brazil
| | - Julia Penna Coutinho
- Laboratório de Malária, Instituto René Rachou, Fiocruz/MG, Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG 30190-002, Brazil
| | - Anna C C Aguiar
- Laboratório de Malária, Instituto René Rachou, Fiocruz/MG, Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG 30190-002, Brazil
| | - Antoniana U Krettli
- Laboratório de Malária, Instituto René Rachou, Fiocruz/MG, Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG 30190-002, Brazil
| | - Nubia Boechat
- Departamento de Síntese Orgânica, Instituto de Tecnologia em Fármacos - Farmanguinhos - Fiocruz, Rua Sizenando Nabuco, 100 Manguinhos, Rio de Janeiro, RJ 21041-250, Brazil.
| |
Collapse
|