1
|
Grassi G, Scillitani E, Cecchelli C. New horizons for obsessive-compulsive disorder drug discovery: is targeting glutamate receptors the answer? Expert Opin Drug Discov 2024; 19:1235-1245. [PMID: 39105546 DOI: 10.1080/17460441.2024.2387127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
INTRODUCTION Over the past decade, glutamate has emerged as a prominent focus in the field of obsessive-compulsive disorder (OCD) pathophysiology. A convergence of evidence from genetic, preclinical, and clinical studies points to glutamatergic dysfunction as a key feature of this condition. In light of these findings, there has been a growing interest in exploring the potential of glutamatergic agents in the treatment of OCD. AREAS COVERED This paper reviews the literature on glutamate transmission in OCD. In addition, the authors examine the results of clinical trials investigating the efficacy of glutamatergic agents in the treatment of OCD patients. EXPERT OPINION Along with the recognition of neuroinflammation in the brain in OCD, the evidence of glutamate dysfunction represents one of the most promising recent discoveries for understanding the mechanisms involved in OCD. The importance of this discovery lies primarily in its pharmacological implications and has led to intense research activity in the field of glutamatergic agents. While this research has not yet had a substantial clinical impact, targeting glutamate receptors remains a promising horizon for the successful treatment of OCD patients.
Collapse
Affiliation(s)
- Giacomo Grassi
- Department of Psychiatry, Brain Center Firenze, Florence, Italy
| | | | | |
Collapse
|
2
|
Li D, Franco S, Pennell PB. The impact of pregnancy-related hormonal and physiological changes on antiseizure medications: expert perspective. Expert Rev Clin Pharmacol 2024; 17:655-663. [PMID: 38748860 DOI: 10.1080/17512433.2024.2356617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Epilepsy is a disorder of recurrent, unprovoked seizures affecting approximately 15 million individuals of childbearing potential worldwide. Patients with epilepsy rely on regular daily therapy with antiseizure medications (ASMs). Furthermore, ASMs are also prescribed for other neuropsychiatric indications (e.g. bipolar disorder, pain, migraines) with over 2% of the pregnancies in the United States involving prenatal exposure to ASMs. AREAS COVERED ASM concentrations are affected by hormonal and physiological changes in pregnancy, including increases in renal and hepatic blood flow, decreased protein binding, and changes in enzyme activity. Clearance changes typically reverse within a few weeks after delivery. During pregnancy, many ASMs, such as lamotrigine, levetiracetam, and oxcarbazepine, should have serum concentrations monitored and doses increased to maintain the individualized target range for seizure control. ASMs metabolized via glucuronidation, primarily lamotrigine, undergo marked increases in clearance throughout pregnancy, requiring about 3-fold the pre-pregnancy daily dose by delivery. Postpartum, ASM doses are usually decreased over several weeks to prevent drug toxicity. EXPERT OPINION In the future, the development of a physiologically-based pharmacokinetic model for various ASMs may enable empiric dose adjustments in pregnancy without the difficulties of frequent therapeutic drug monitoring.
Collapse
Affiliation(s)
- Denise Li
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Susannah Franco
- Department of Pharmacy, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Page B Pennell
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Du X, Wang B, Wang H, Li Q, Li X, Hu P, Lai Q, Fan H. Is the regulation of lamotrigine on depression in patients with epilepsy related to cytokines? Heliyon 2024; 10:e33129. [PMID: 39022060 PMCID: PMC11252738 DOI: 10.1016/j.heliyon.2024.e33129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Objectives The purpose of this study was to analyze the effects of lamotrigine on peripheral blood cytokines and depression in patients with epilepsy and to explore the possible mechanism by which lamotrigine regulates depression in patients with epilepsy. Methods 50 healthy people, 72 patients treated with lamotrigine (LTG group) and 72 patients treated with valproate were enrolled (VPA group). Cytokine levels in the peripheral blood of the subjects were measured and their level of depression was scored according to the self-rating Depression Scale (SDS), Hamilton Depression Scale (HAMD) and Chinese version of Epilepsy Depression Scale (c-NDDI-E). The cytokine levels and depression scale scores were compared between the three groups. The correlation between cytokine levels and depression scale scores was analyzed. Results The levels of IL-1β, IL-2, IL-6, and TNF-α and the SDS, HAMD, and c-NDDI-E scores in healthy group was lower than that in epileptic group. After 6 months of treatment, the difference valule of IL-1β、IL-6、TNF-α、SDS and HAMD before and after treatment in LTG group significantly higher than that in VPA group. Correlation analysis showed that the SDS scores were correlated with the levels of IL-1β and TNF-α, and the HAMD scores were correlated with the levels of TNF-α. Multiple linear regression analysis showed that the HAMD scores were correlated with the levels of TNF-α. Conclusion Lamotrigine can inhibit peripheral blood inflammation and improve depression in epileptic patients. Lamotrigine improved depressive mood in epileptic patients, which may be related to reduced TNF-α levels.
Collapse
Affiliation(s)
- Xin Du
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, China
- Department of Neurology, First People's Hospital of Xuzhou, Xuzhou City, China
| | - Bingbing Wang
- Department of Neurology, Suining County People's Hospital, Xuzhou City, China
| | - Heng Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, China
| | - Qingyun Li
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, China
| | - Xinyu Li
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, China
| | - Peng Hu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, China
| | - Qingwei Lai
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, China
| | - Hongbin Fan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, China
| |
Collapse
|
4
|
Martens MAG, Zghoul T, Watson E, Rieger SW, Capitão LP, Harmer CJ. Acute neural effects of the mood stabiliser lamotrigine on emotional processing in healthy volunteers: a randomised control trial. Transl Psychiatry 2024; 14:211. [PMID: 38802372 PMCID: PMC11130123 DOI: 10.1038/s41398-024-02944-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Lamotrigine is an effective mood stabiliser, largely used for the management and prevention of depression in bipolar disorder. The neuropsychological mechanisms by which lamotrigine acts to relieve symptoms as well as its neural effects on emotional processing remain unclear. The primary objective of this current study was to investigate the impact of an acute dose of lamotrigine on the neural response to a well-characterised fMRI task probing implicit emotional processing relevant to negative bias. 31 healthy participants were administered either a single dose of lamotrigine (300 mg, n = 14) or placebo (n = 17) in a randomized, double-blind design. Inside the 3 T MRI scanner, participants completed a covert emotional faces gender discrimination task. Brain activations showing significant group differences were identified using voxel-wise general linear model (GLM) nonparametric permutation testing, with threshold free cluster enhancement (TFCE) and a family wise error (FWE)-corrected cluster significance threshold of p < 0.05. Participants receiving lamotrigine were more accurate at identifying the gender of fearful (but not happy or angry) faces. A network of regions associated with emotional processing, including amygdala, insula, and the anterior cingulate cortex (ACC), was significantly less activated in the lamotrigine group compared to the placebo group across emotional facial expressions. A single dose of lamotrigine reduced activation in limbic areas in response to faces with both positive and negative expressions, suggesting a valence-independent effect. However, at a behavioural level lamotrigine appeared to reduce the distracting effect of fear on face discrimination. Such effects may be relevant to the mood stabilisation effects of lamotrigine.
Collapse
Affiliation(s)
- Marieke A G Martens
- Department of Psychiatry, University of Oxford, Oxford, UK.
- Oxford Health NHS Foundation Trust, Oxford, UK.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - Tarek Zghoul
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Evelyn Watson
- Department of Psychiatry, University of Oxford, Oxford, UK
- Institute of Sport Exercise and Health, Faculty of Medical Sciences, University College London, London, UK
- Institute of Cognitive Neuroscience, Faculty of Brain Sciences, University College London, London, UK
| | - Sebastian W Rieger
- Department of Psychiatry, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Liliana P Capitão
- Psychology Research Centre (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | - Catherine J Harmer
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Willems LM, van der Goten M, von Podewils F, Knake S, Kovac S, Zöllner JP, Rosenow F, Strzelczyk A. Adverse Event Profiles of Antiseizure Medications and the Impact of Coadministration on Drug Tolerability in Adults with Epilepsy. CNS Drugs 2023; 37:531-544. [PMID: 37271775 PMCID: PMC10239658 DOI: 10.1007/s40263-023-01013-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Antiseizure medication (ASM) as monotherapy or in combination is the treatment of choice for most patients with epilepsy. Therefore, knowledge about the typical adverse events (AEs) for ASMs and other coadministered drugs (CDs) is essential for practitioners and patients. Due to frequent polypharmacy, it is often difficult to clinically assess the AE profiles of ASMs and differentiate the influence of CDs. OBJECTIVE This retrospective analysis aimed to determine typical AE profiles for ASMs and assess the impact of CDs on AEs in clinical practice. METHODS The Liverpool AE Profile (LAEP) and its domains were used to identify the AE profiles of ASMs based on data from a large German multicenter study (Epi2020). Following established classifications, drugs were grouped according to their mode of action (ASMs) or clinical indication (CDs). Bivariate correlation, multivariate ordinal regression (MORA), and artificial neural network (ANNA) analyses were performed. Bivariate correlation with Fisher's z-transformation was used to compare the correlation strength of LAEP with the Hospital Anxiety and Depression Scale (HADS) and Neurological Disorders Depression Inventory for Epilepsy (NDDI-E) to avoid LAEP bias in the context of antidepressant therapy. RESULTS Data from 486 patients were analyzed. The AE profiles of ASM categories and single ASMs matched those reported in the literature. Synaptic vesicle glycoprotein 2A (SV2A) and voltage-gated sodium channel (VGSC) modulators had favorable AE profiles, while brivaracetam was superior to levetiracetam regarding psychobehavioral AEs. MORA revealed that, in addition to seizure frequency, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) modulators and antidepressants were the only independent predictors of high LAEP values. After Fisher's z-transformation, correlations were significantly lower between LAEP and antidepressants than between LAEP and HADS or NDDI-E. Therefore, a bias in the results toward over interpreting the impact of antidepressants on LAEP was presumed. In the ANNA, perampanel, zonisamide, topiramate, and valproic acid were important nodes in the network, while VGSC and SV2A modulators had low relevance for predicting relevant AEs. Similarly, cardiovascular agents, analgesics, and antipsychotics were important CDs in the ANNA model. CONCLUSION ASMs have characteristic AE profiles that are highly reproducible and must be considered in therapeutic decision-making. Therapy using perampanel as an AMPA modulator should be considered cautiously due to its relatively high AE profile. Drugs acting via VGSCs and SV2A receptors are significantly better tolerated than other ASM categories or substances (e.g., topiramate, zonisamide, and valproate). Switching to brivaracetam is advisable in patients with psychobehavioral AEs who take levetiracetam. Because CDs frequently pharmacokinetically interact with ASMs, the cumulative AE profile must be considered. TRIAL REGISTRATION DRKS00022024, U1111-1252-5331.
Collapse
Affiliation(s)
- Laurent M Willems
- Epilepsy Center Frankfurt Rhine-Main, Goethe-University and University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
- Department of Neurology, Goethe-University and University Hospital Frankfurt, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CEPTeR), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Milena van der Goten
- Epilepsy Center Frankfurt Rhine-Main, Goethe-University and University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
- Department of Neurology, Goethe-University and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Felix von Podewils
- Department of Neurology, University Hospital Greifswald, Greifswald, Germany
| | - Susanne Knake
- LOEWE Center for Personalized Translational Epilepsy Research (CEPTeR), Goethe-University Frankfurt, Frankfurt am Main, Germany
- Epilepsy Center Hessen, Philipps-University Marburg, Marburg (Lahn), Germany
- Department of Neurology, Philipps-University Marburg, Marburg (Lahn), Germany
| | - Stjepana Kovac
- Epilepsy Center Münster-Osnabrück, Westfälische Wilhelms-University, Münster, Germany
- Department of Neurology, Westfälische Wilhelms-University, Münster, Germany
| | - Johann Philipp Zöllner
- Epilepsy Center Frankfurt Rhine-Main, Goethe-University and University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
- Department of Neurology, Goethe-University and University Hospital Frankfurt, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CEPTeR), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main, Goethe-University and University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
- Department of Neurology, Goethe-University and University Hospital Frankfurt, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CEPTeR), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Goethe-University and University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany.
- Department of Neurology, Goethe-University and University Hospital Frankfurt, Frankfurt am Main, Germany.
- LOEWE Center for Personalized Translational Epilepsy Research (CEPTeR), Goethe-University Frankfurt, Frankfurt am Main, Germany.
- Department of Neurology, Philipps-University Marburg, Marburg (Lahn), Germany.
| |
Collapse
|
6
|
Silva JG, de Miranda AS, Ismail FMD, Barbosa LCA. Synthesis and medicinal chemistry of tetronamides: Promising agrochemicals and antitumoral compounds. Bioorg Med Chem 2022; 67:116815. [PMID: 35598527 DOI: 10.1016/j.bmc.2022.116815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Butenolides and tetronic acids occupy a prominent position in synthetic chemistry due to their ubiquitous distribution in nature. This has stimulated investigations firstly in the synthesis of such systems and, laterly, the interest has turned to the understanding of the quantum structure of such systems, allowing a deeper understanding of the mechanism and reactivity of this cyclic scaffold. In contrast, tetronamides, which consist of compounds bearing a 4-aminofuran-2(5H)-one backbone, are relatively rare in nature and synthetic routes to such compounds are poorly explored. This review highlights both the importance of the tetronamide scaffold in medicinal chemistry and the most relevant recondite synthetic strategies for obtaining compounds of this class.
Collapse
Affiliation(s)
- Júnio G Silva
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Amanda S de Miranda
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Fyaz M D Ismail
- Centre for Natural Product Discovery (CNPD), School of Pharmacy & Biomolecular Sciences, Byrom Street, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Luiz C A Barbosa
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
7
|
Faustmann TJ, Corvace F, Faustmann PM, Ismail FS. Effects of Lamotrigine and Topiramate on Glial Properties in an Astrocyte-Microglia Co-Culture Model of Inflammation. Int J Neuropsychopharmacol 2021; 25:185-196. [PMID: 34791253 PMCID: PMC8929754 DOI: 10.1093/ijnp/pyab080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/17/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Astrocytes and microglia are involved in the pathophysiology of epilepsy and bipolar disorder with a link to inflammation. We aimed to investigate the effects of the antiepileptic and mood-stabilizing drugs lamotrigine (LTG) and topiramate (TPM) on glial viability, microglial activation, cytokine release, and expression of gap-junctional protein connexin 43 (Cx43) in different set-ups of an in vitro astrocyte-microglia co-culture model of inflammation. METHODS Primary rat co-cultures of astrocytes containing 5% (M5, representing "physiological" conditions) or 30% (M30, representing "pathological, inflammatory" conditions) of microglia were treated with different concentrations of LTG and TPM for 24 hours. An 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to measure the glial cell viability. The microglial activation state was analyzed by immunocytochemistry. The pro-inflammatory tumor necrosis factor-α (TNF-α) and anti-inflammatory transforming growth factor-ß1 (TGF-ß1) cytokine levels were measured by enzyme-linked immunosorbent assay. The astroglial Cx43 expression was quantified by western blot. RESULTS A significant reduction of the glial cell viability after incubation with LTG or TPM was observed in a concentration-dependent manner under all conditions. LTG caused no significant alterations of the microglial phenotypes. Under pathological conditions, TPM led to a significant concentration-dependent reduction of microglial activation. This correlated with increased astroglial Cx43 expression. TNF-α levels were not affected by LTG and TPM. Treatment with higher concentrations of LTG, but not with TPM, led to a significant increase in TGF-ß1 levels in M5 and M30 co-cultures. CONCLUSIONS Despite the possible glial toxicity of LTG and TPM, both drugs reduced inflammatory activity, suggesting potential positive effects on the neuroinflammatory components of the pathogenesis of epilepsy and bipolar disorder.
Collapse
Affiliation(s)
- Timo Jendrik Faustmann
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Franco Corvace
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Pedro M Faustmann
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Fatme Seval Ismail
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany,Correspondence: Fatme Seval Ismail, MD, Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, In der Schornau 23–25, 44892 Bochum (; )
| |
Collapse
|
8
|
Zhu X, Huang W, Lu H, Wang Z, Ni X, Hu J, Deng S, Tan Y, Li L, Zhang M, Qiu C, Luo Y, Chen H, Huang S, Xiao T, Shang D, Wen Y. A machine learning approach to personalized dose adjustment of lamotrigine using noninvasive clinical parameters. Sci Rep 2021; 11:5568. [PMID: 33692435 PMCID: PMC7946912 DOI: 10.1038/s41598-021-85157-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
The pharmacokinetic variability of lamotrigine (LTG) plays a significant role in its dosing requirements. Our goal here was to use noninvasive clinical parameters to predict the dose-adjusted concentrations (C/D ratio) of LTG based on machine learning (ML) algorithms. A total of 1141 therapeutic drug-monitoring measurements were used, 80% of which were randomly selected as the "derivation cohort" to develop the prediction algorithm, and the remaining 20% constituted the "validation cohort" to test the finally selected model. Fifteen ML models were optimized and evaluated by tenfold cross-validation on the "derivation cohort,” and were filtered by the mean absolute error (MAE). On the whole, the nonlinear models outperformed the linear models. The extra-trees’ regression algorithm delivered good performance, and was chosen to establish the predictive model. The important features were then analyzed and parameters of the model adjusted to develop the best prediction model, which accurately described the C/D ratio of LTG, especially in the intermediate-to-high range (≥ 22.1 μg mL−1 g−1 day), as illustrated by a minimal bias (mean relative error (%) = + 3%), good precision (MAE = 8.7 μg mL−1 g−1 day), and a high percentage of predictions within ± 20% of the empirical values (60.47%). This is the first study, to the best of our knowledge, to use ML algorithms to predict the C/D ratio of LTG. The results here can help clinicians adjust doses of LTG administered to patients to minimize adverse reactions.
Collapse
Affiliation(s)
- Xiuqing Zhu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China
| | - Wencan Huang
- Department of Pharmacy, Guangzhou Bureau of Civil Affairs Psychiatric Hospital, Guangzhou, 510430, China
| | - Haoyang Lu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China
| | - Zhanzhang Wang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China
| | - Xiaojia Ni
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China
| | - Jinqing Hu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China
| | - Shuhua Deng
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China
| | - Yaqian Tan
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China
| | - Lu Li
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China
| | - Ming Zhang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China
| | - Chang Qiu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China
| | - Yayan Luo
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.,Institute of Neuropsychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370, China
| | - Hongzhen Chen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370, China
| | - Shanqing Huang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370, China
| | - Tao Xiao
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370, China
| | - Dewei Shang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370, China. .,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.
| | - Yuguan Wen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370, China. .,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.
| |
Collapse
|
9
|
Orsolini L, Pompili S, Volpe U. The ‘collateral side’ of mood stabilizers: safety and evidence-based strategies for managing side effects. Expert Opin Drug Saf 2020; 19:1461-1495. [DOI: 10.1080/14740338.2020.1820984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Laura Orsolini
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
- Unit of Clinical Psychiatry, Department of Neurosciences/DIMSC, Polytechnic University of Marche, Ancona, Italy
| | - Simone Pompili
- Unit of Clinical Psychiatry, Department of Neurosciences/DIMSC, Polytechnic University of Marche, Ancona, Italy
| | - Umberto Volpe
- Unit of Clinical Psychiatry, Department of Neurosciences/DIMSC, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|