1
|
Johansson KS, Jimenez-Solem E, Petersen TS, Christensen MB. Increasing Medication Use and Polypharmacy in Type 2 Diabetes: The Danish Experience From 2000 to 2020. Diabetes Care 2024; 47:2120-2127. [PMID: 38709662 DOI: 10.2337/dc24-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/14/2024] [Indexed: 05/08/2024]
Abstract
OBJECTIVE Type 2 diabetes often coexists with other conditions that are amenable to pharmacological treatment. We hypothesized that polypharmacy among individuals with type 2 diabetes has increased since 2000. RESEARCH DESIGN AND METHODS Using Danish national registries, we established a cohort of all Danish individuals (aged ≥18 years) with type 2 diabetes between 2000 and 2020. We analyzed their medication use and prevalence of varying degrees of polypharmacy (≥5 or ≥10 medications), stratifying by age, sex, number of chronic diseases, and socioeconomic status. RESULTS The cohort grew from 84,917 patients in 2000 to 307,011 in 2020, totaling 461,849 unique patients. The number of daily medications used per patient increased from (mean ± SD) 3.7 ± 2.8 (in 2000) to 5.3 ± 3.2 (in 2020). The lifetime risk of polypharmacy was substantial, with 89% (n = 409,062 of 461,849) being exposed to ≥5 medications at some point and 47% (n = 217,467 of 461,849) to ≥10 medications. The increases were driven by an expanding group of medications, with analgesics, antihypertensives, proton pump inhibitors, and statins having the largest net increase. Advanced age, male sex, lower socioeconomic status, and Danish ethnicity positively correlated with polypharmacy but could not explain the overall increase in polypharmacy. CONCLUSIONS Medication use and polypharmacy have increased among patients with type 2 diabetes. Although the implications and appropriateness of this increased medication use are uncertain, the results stress the increasing need for health care personnel to understand the potential risks associated with polypharmacy, including medication interactions, adverse effects, and over- and underprescribing.
Collapse
Affiliation(s)
- Karl Sebastian Johansson
- Copenhagen University Hospital, Bispebjerg and Frederiksberg, Department of Clinical Pharmacology, Copenhagen, Denmark
| | - Espen Jimenez-Solem
- Copenhagen University Hospital, Bispebjerg and Frederiksberg, Department of Clinical Pharmacology, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Phase IV Unit, Department of Clinical Pharmacology and Center for Clinical Research and Prevention, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Tonny Studsgaard Petersen
- Copenhagen University Hospital, Bispebjerg and Frederiksberg, Department of Clinical Pharmacology, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Bring Christensen
- Copenhagen University Hospital, Bispebjerg and Frederiksberg, Department of Clinical Pharmacology, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Copenhagen University Hospital, Herlev and Gentofte, Center for Clinical Metabolic Research, Copenhagen, Denmark
- Copenhagen University Hospital, Bispebjerg and Frederiksberg, Copenhagen Center for Translational Research, Copenhagen, Denmark
| |
Collapse
|
2
|
Cao H, Huang Z, Liu Z, Zhang X, Ren Y, Hameed MS, Rao L, Makunga NP, Dobrikov GM, Wan J. Structure-Guided Design of Affinity/Covalent-Bond Dual-Driven Inhibitors Targeting the AMP Site of FBPase. J Med Chem 2024; 67:20421-20437. [PMID: 39520680 DOI: 10.1021/acs.jmedchem.4c01886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Fructose-1,6-bisphosphatase (FBPase) has attracted substantial interest as a target associated with cancer and type II diabetes. FBPase inhibitors targeting the AMP allosteric site have been documented, but their limited selectivity has raised concerns about adverse effects. To address this issue, we designed the affinity/covalent-bond dual-driven inhibitors based on the pharmacophore knowledge of the AMP pocket and neighboring cysteine residue (C179) of FBPase using the cysteine-targeting reactivity warhead screen followed by a structural optimization strategy. Pull-down and Western Blotting assays confirmed FBPase as a direct target in hepatic cells. X-ray cocrystallographic structure of FBPase-11 and Cov_DOX calculation demonstrated that hydrogen bonding and π-π stacking were the predominant driving force for the inhibition of sulfonylurea-based FBPase covalent inhibitors, while covalent binding with C179 enhances the inhibitors' long-lasting hypoglycemic effects. Together, this work highlights the potential of affinity/covalent-bond dual-driven inhibitors in drug development and provides a promising approach for developing potent drugs targeting AMP-associated proteins.
Collapse
Affiliation(s)
- Hongxuan Cao
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zeyue Huang
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zheng Liu
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiao Zhang
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanliang Ren
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Muhammad Salman Hameed
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Li Rao
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Nokwanda P Makunga
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - Georgi M Dobrikov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bl. 9, 1113 Sofia, Bulgaria
| | - Jian Wan
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
3
|
Chen W, Wu X, Hu J, Liu X, Guo Z, Wu J, Shao Y, Hao M, Zhang S, Hu W, Wang Y, Zhang M, Zhu M, Wang C, Wu Y, Wang J, Xing D. The translational potential of miR-26 in atherosclerosis and development of agents for its target genes ACC1/2, COL1A1, CPT1A, FBP1, DGAT2, and SMAD7. Cardiovasc Diabetol 2024; 23:21. [PMID: 38195542 PMCID: PMC10777520 DOI: 10.1186/s12933-024-02119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Atherosclerosis is one of the leading causes of death worldwide. miR-26 is a potential biomarker of atherosclerosis. Standardized diagnostic tests for miR-26 (MIR26-DX) have been developed, but the fastest progress has been in predicting the efficacy of IFN-α therapy for hepatocellular carcinoma (HCC, phase 3). MiR-26 slows atherosclerosis development by suppressing ACC1/2, ACLY, ACSL3/4, ALDH3A2, ALPL, BMP2, CD36, COL1A1, CPT1A, CTGF, DGAT2, EHHADH, FAS, FBP1, GATA4, GSK3β, G6PC, Gys2, HMGA1, HMGB1, LDLR, LIPC, IL-1β, IL-6, JAG2, KCNJ2, MALT1, β-MHC, NF-κB, PCK1, PLCβ1, PYGL, RUNX2, SCD1, SMAD1/4/5/7, SREBF1, TAB3, TAK1, TCF7L2, and TNF-α expression. Many agents targeting these genes, such as the ACC1/2 inhibitors GS-0976, PF-05221304, and MK-4074; the DGAT2 inhibitors IONIS-DGAT2Rx, PF-06427878, PF-0685571, and PF-07202954; the COL1A1 inhibitor HT-100; the stimulants 68Ga-CBP8 and RCT-01; the CPT1A inhibitors etomoxir, perhexiline, and teglicar; the FBP1 inhibitors CS-917 and MB07803; and the SMAD7 inhibitor mongersen, have been investigated in clinical trials. Interestingly, miR-26 better reduced intima-media thickness (IMT) than PCSK9 or CT-1 knockout. Many PCSK9 inhibitors, including alirocumab, evolocumab, inclisiran, AZD8233, Civi-007, MK-0616, and LIB003, have been investigated in clinical trials. Recombinant CT-1 was also investigated in clinical trials. Therefore, miR-26 is a promising target for agent development. miR-26 promotes foam cell formation by reducing ABCA1 and ARL4C expression. Multiple materials can be used to deliver miR-26, but it is unclear which material is most suitable for mass production and clinical applications. This review focuses on the potential use of miR-26 in treating atherosclerosis to support the development of agents targeting it.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Xiaolin Wu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Jianxia Hu
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiaolei Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Zhu Guo
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Jianfeng Wu
- Department of Cardiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, Hengyang, 421001, Hunan, China
| | - Yingchun Shao
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Minglu Hao
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Shuangshuang Zhang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Weichao Hu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266000, Shandong, China
| | - Yanhong Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Miao Zhang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Meng Zhu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, Shandong, China
| | - Chao Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Yudong Wu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Jie Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Dongming Xing
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
4
|
Grøndahl MFG, Lund A, Bagger JI, Petersen TS, Wewer Albrechtsen NJ, Holst JJ, Vilsbøll T, Christensen MB, Knop FK. Glucagon Clearance is Preserved in Type 2 Diabetes. Diabetes 2021; 71:db210024. [PMID: 34957488 DOI: 10.2337/db21-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022]
Abstract
Hyperglucagonemia is a common observation in both obesity and type 2 diabetes, and the etiology is primarily thought to be hypersecretion of glucagon. We investigated whether altered elimination kinetics of glucagon could contribute to the hyperglucagonemia in type 2 diabetes and obesity. Individuals with type 2 diabetes and preserved kidney function (8 with and 8 without obesity) and matched control individuals (8 with and 8 without obesity) were recruited. Each participant underwent a 1-hour glucagon infusion (4 ng/kg/min), achieving steady-state plasma glucagon concentrations, followed by a 1-hour wash-out period. Plasma levels, the metabolic clearance rate (MCR), half-life (T½) and volume of distribution of glucagon were evaluated and a pharmacokinetic model was constructed. Glucagon MCR and volume of distribution were significantly higher in the type 2 diabetes group compared to the control group, while no significant differences between the groups were found in glucagon T½. Individuals with obesity had neither a significantly decreased MCR, T½, nor volume of distribution of glucagon. In our pharmacokinetic model, glucagon MCR associated positively with fasting plasma glucose and negatively with body weight. In conclusion, our results suggest that impaired glucagon clearance is not a fundamental part of the hyperglucagonemia observed in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Magnus F G Grøndahl
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
| | - Asger Lund
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
| | - Jonatan I Bagger
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
| | - Tonny S Petersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg University Hospital, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
5
|
Grøndahl MFG, Johannesen J, Kristensen K, Knop FK. Treatment of type 2 diabetes in children: what are the specific considerations? Expert Opin Pharmacother 2021; 22:2127-2141. [PMID: 34420454 DOI: 10.1080/14656566.2021.1954160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: The number of individuals under 18 years of age with type 2 diabetes is increasing at an alarming rate worldwide. These patients are often characterized by obesity and they often experience a more rapid disease progression than adults with type 2 diabetes. Thus, focus on prevention and management of complications and comorbidities is imperative. With emphasis on weight loss and optimal glycemic control, treatment includes lifestyle changes and pharmacotherapy, which in this patient group is limited to metformin, liraglutide and insulin. In selected cases, bariatric surgery is indicated.Areas covered: This perspective article provides an overview of the literature covering pathophysiology, diagnosis, characteristics and treatment of pediatric type 2 diabetes, and outlines the gaps in our knowledge where further research is needed. The paper draws on both mechanistic studies, large scale intervention trials, epidemiological studies and international consensus statements.Expert opinion: Type 2 diabetes in pediatric patients is an increasing health care problem, and the current treatment strategies do not successfully meet the many challenges and obstacles in this patient group. Treatments must be early, intensive, multifaceted and durable. Also, prevention of obesity and type 2 diabetes in at-risk children should be addressed and prioritized on all levels.
Collapse
Affiliation(s)
- Magnus F G Grøndahl
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Johannesen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Pediatrics, Copenhagen University Hospital, Herlev and Gentofte, Denmark
| | - Kurt Kristensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Steno Diabetes Center Aarhus - Children and Adolescence, Aarhus University, Aarhus, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Steno Diabetes Center Copenhagen, Gentofte, Denmark.,Novo Nordisk Foundation for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Jepsen MM, Christensen MB. Emerging glucagon-like peptide 1 receptor agonists for the treatment of obesity. Expert Opin Emerg Drugs 2021; 26:231-243. [PMID: 34176426 DOI: 10.1080/14728214.2021.1947240] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Introduction: Obesity is a growing threat to public health, increasing risks of numerous diseases and mortality, and impairing quality of life. If current trends continue, more than 1.1 billion individuals will have obesity in 2030, corresponding to almost 2.5 times the number of adults currently living with diabetes. There is a strong interest in developing obesity treatments based on glucagon-like peptide-1 (GLP-1) agonism, which have proved to limit morbidity and mortality in type 2 diabetes.Areas covered: This review provides an overview of current compounds containing GLP-1 receptor agonism in clinical development for obesity, with mono-activity at the GLP-1 receptor (PF-0688296, glutazumab, semaglutide) or engaging one or more other endogenous hormonal systems involved in energy balance and metabolism, including glucagon, oxyntomodulin, glucose-dependent inhibitory peptide and amylin (CT-868, CT-388, AMG 133, tirzepatide, NNC9204-1177, JNJ-54,728,518, SAR425899, pegapamodutide, MK8521, cotadutide, efinopegdutide, BI-456,906, cagrilintide + semaglutide 2,4 mg, HM15211, NNC9204-1706).Expert opinion: Many novel compounds employing GLP-1 receptor agonism are in clinical development. Semaglutide is farthest in clinical development and will presumably become a benchmark for this class of novel anti-obesity compounds.
Collapse
Affiliation(s)
- Mathies M Jepsen
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel B Christensen
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Copenhagen Center for Translational Research, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Theilade S, Christensen MB, Vilsbøll T, Knop FK. An overview of obesity mechanisms in humans: Endocrine regulation of food intake, eating behaviour and common determinants of body weight. Diabetes Obes Metab 2021; 23 Suppl 1:17-35. [PMID: 33621414 DOI: 10.1111/dom.14270] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Obesity is one of the biggest health challenges of the 21st century, already affecting close to 700 million people worldwide, debilitating and shortening lives and costing billions of pounds in healthcare costs and loss of workability. Body weight homeostasis relies on complex biological mechanisms and the development of obesity occurs on a background of genetic susceptibility and an environment promoting increased caloric intake and reduced physical activity. The pathophysiology of common obesity links neuro-endocrine and metabolic disturbances with behavioural changes, genetics, epigenetics and cultural habits. Also, specific causes of obesity exist, including monogenetic diseases and iatrogenic causes. In this review, we provide an overview of obesity mechanisms in humans with a focus on energy homeostasis, endocrine regulation of food intake and eating behavior, as well as the most common specific causes of obesity.
Collapse
Affiliation(s)
- Simone Theilade
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Herlev-Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Herlev-Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Chen MB, Wang H, Zheng QH, Xu HL, Cui WY. Effect of sodium-dependent glucose transporter inhibitors on glycated hemoglobin A1c after 24 weeks in patients with diabetes mellitus: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e24101. [PMID: 33429775 PMCID: PMC7793358 DOI: 10.1097/md.0000000000024101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/08/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND To evaluate dapagliflozin, canagliflozin, empagliflozin, ertugliflozin, and sotagliflozin according to their effect on the glycated hemoglobin A1c (HbA1c) level in patients with type 2 diabetes mellitus. METHODS The Web of Science, PubMed, Cochrane Library, EMBASE, and Clinical Trials databases were electronically searched to collect randomized controlled trials of patients with type 2 diabetes mellitus through June 2020. Two researchers independently screened and evaluated the obtained studies and extracted the outcome indexes. RevMan 5.3 software was used to perform the meta-analysis and to create plots. RESULTS Finally, 27 studies were selected and included in this study. The meta-analysis results showed that sodium-dependent glucose transporter (SGLT) inhibitors significantly reduced the HbA1c level in patients with type 2 diabetes mellitus. However, these results were highly heterogeneous, so we conducted a subgroup analysis. The results of the subgroup analysis suggested that by dividing populations into different subgroups, the heterogeneity of each group could be reduced. CONCLUSIONS SGLT inhibitors had a good effect on the HbA1c level in patients with type 2 diabetes mellitus, but there might be differences in the efficacy of SGLT inhibitors in different populations. It is hoped that more studies will be conducted to evaluate the efficacy and safety of SGLT inhibitors in different populations. REGISTRATION NUMBER CRD42020185025.
Collapse
Affiliation(s)
| | - Hua Wang
- ICU Department, Wujin People's Hospital Affiliated with Jiangsu University and Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, P. R. China
| | | | - Hua-Lan Xu
- ICU Department, Wujin People's Hospital Affiliated with Jiangsu University and Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, P. R. China
| | - Wei-Yan Cui
- ICU Department, Wujin People's Hospital Affiliated with Jiangsu University and Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, P. R. China
| |
Collapse
|