1
|
Freitas L, Bezerra A, Boppre G, Amorim T, Fernandes RJ, Fonseca H. Does Swimming Exercise Impair Bone Health? A Systematic Review and Meta-Analysis Comparing the Evidence in Humans and Rodent Models. Sports Med 2024; 54:2373-2394. [PMID: 38900358 DOI: 10.1007/s40279-024-02052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND The effect of swimming on bone health remains unclear, namely due to discrepant findings between studies in humans and animal models. OBJECTIVE The aim of this systematic review and meta-analysis is to identify the available evidence on the effects of swimming on bone mass, geometry and microarchitecture at the lumbar spine, femur and tibia in both humans and rodent animal models. METHODS The study followed PRISMA guidelines and was registered at PROSPERO (CRD4202236347 and CRD42022363714 for human and animal studies). Two different systematic literature searches were conducted in PubMed, Scopus and Web of Science, retrieving 36 and 16 reports for humans and animal models, respectively. RESULTS In humans, areal bone mineral density (aBMD) was similar between swimmers and non-athletic controls at the lumbar spine, hip and femoral neck. Swimmers' tibia diaphysis showed a higher cross-sectional area but lower cortical thickness. Inconsistent findings at the femoral neck cortical thickness were found. Due to the small number of studies, trabecular microarchitecture in human swimmers was not assessed. In rodent models, aBMD was found to be lower at the tibia, but similar at the femur. Inconsistent findings in femur diaphysis cross-sectional area were observed. No differences in femur and tibia trabecular microarchitecture were found. CONCLUSION Swimming seems to affect bone health differently according to anatomical region. Studies in both humans and rodent models suggest that tibia cortical bone is negatively affected by swimming. There was no evidence of a negative effect of swimming on other bone regions, both in humans and animal models.
Collapse
Affiliation(s)
- Laura Freitas
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Rua Dr. Plácido Costa 91, 4200-450, Porto, Portugal.
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal.
| | - Andrea Bezerra
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Rua Dr. Plácido Costa 91, 4200-450, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Giorjines Boppre
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Rua Dr. Plácido Costa 91, 4200-450, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Nucleus of Research in Human Movement Science, Universidad Adventista de Chile, Chillán, Chile
| | - Tânia Amorim
- Fame Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Ricardo J Fernandes
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, Porto, Portugal
- Porto Biomechanics Laboratory (LABIOMEP), University of Porto, Porto, Portugal
| | - Hélder Fonseca
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Rua Dr. Plácido Costa 91, 4200-450, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| |
Collapse
|
2
|
Florence GE, Oosthuyse T, Bosch AN. Skeletal site-specific effects of jump training on bone mineral density in adults: a systematic review and meta-analysis. J Sports Sci 2023; 41:2063-2076. [PMID: 38305252 DOI: 10.1080/02640414.2024.2312052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/19/2024] [Indexed: 02/03/2024]
Abstract
Preserving or preventing declines in bone mineral density (BMD) is imperative. As jumping is a high-impact bone-loading action, this meta-analysis evaluated the efficacy of jump training to improve BMD and bone turnover relative to non-jumping controls in men and women > 18 years, following Preferred Reported Items for Systematic Reviews and Meta-Analysis guidelines. PubMed and COCHRANE Library databases were searched until February 2022. Fifteen articles (19 jumping-trials) met the predetermined search criteria. Eighteen trials were included for BMD data (n = 666 participants). There was a significant small-moderate effect of jumping on femoral neck BMD (%mean difference: 95%CI, +1.50%: 0.83%; 2.17%, p < 0.0001), that remained significant after sub-analysis by age for both younger (+1.81%: 0.98%; 2.65%) and older adults (+1.03%: 0.02%; 2.03%). BMD of total hip (+1.26%: 0.56%; 1.96% vs + 0.06%: -0.96%; 1.08%), and trochanter (+0.84%: 0.20%; 1.48% vs -0.16%: -1.08%; 0.76%) increased significantly with jump training only in younger adults and non-significantly at the lumbar spine (+0.84%: -0.02%; 1.7% vs -0.09%: -0.96%; 0.77%) only in younger but not older adults, respectively. The BMD response to jump training appears to be site-specific, with the highest sensitivity at the femoral neck. No dose-response effect suggests moderate certainty of a gain in femoral neck BMD when performing the median jump-load of 50 jumps four times weekly.
Collapse
Affiliation(s)
- Gabriella E Florence
- Institute of Sport and Exercise Medicine, Division of Orthopaedic Surgery, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Tanja Oosthuyse
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Health through Physical Activity, Lifestyle and Sport Research Centre, Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Andrew N Bosch
- Health through Physical Activity, Lifestyle and Sport Research Centre, Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Nikolaidis PT, Valero D, Weiss K, Villiger E, Thuany M, Sousa CV, Andrade M, Knechtle B. Predicting overall performance in Ironman 70.3 age group triathletes through split disciplines. Sci Rep 2023; 13:11492. [PMID: 37460563 DOI: 10.1038/s41598-023-38181-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
Knowing which discipline contributes most to a triathlon performance is important to plan race pacing properly. To date, we know that the running split is the most decisive discipline in the Olympic distance triathlon, and the cycling split is the most important discipline in the full-distance Ironman® triathlon. However, we have no knowledge of the Ironman® 70.3. This study intended to determine the most crucial discipline in age group athletes competing from 2004 to 2020 in a total of 787 Ironman® 70.3 races. A total of 823,459 athletes (198,066 women and 625,393 men) from 240 different countries were analyzed and recorded in 5-year age groups, from 18 to 75 + years. Correlation analysis, multiple linear regression, and two-way ANOVA were applied, considering p < 0.05. No differences in the regression analysis between the contributions of the swimming, cycling, and running splits could be found for all age groups. However, the correlation analysis showed stronger associations of the cycling and running split times than the swimming split times with overall race times and a smaller difference in swimming performance between males and females in age groups 50 years and older. For age group triathletes competing in Ironman® 70.3, running and cycling were more predictive than swimming for overall race performance. There was a progressive reduction in the performance gap between men and women aged 50 years and older. This information may aid triathletes and coaches in planning their race tactics in an Ironman® 70.3 race.
Collapse
Affiliation(s)
| | - David Valero
- Ultra Sports Science Foundation, Pierre-Benite, France
| | - Katja Weiss
- Institute of Primary Care, University Hospital Zurich, Zürich, Switzerland
| | - Elias Villiger
- Klinik Für Allgemeine Innere Medizin, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Mabliny Thuany
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, Porto, Portugal
| | - Caio Victor Sousa
- Department of Health and Human Sciences, Loyola Marymount University, Los Angeles, CA, 90045, USA
| | - Marilia Andrade
- Departamento de Fisiologia, Disciplina de Neurofisiologia e Fisiologia do Exercício, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Beat Knechtle
- Institute of Primary Care, University Hospital Zurich, Zürich, Switzerland.
- Medbase St. Gallen Am Vadianplatz, Vadianstrasse 26, 9001, St. Gallen, Switzerland.
| |
Collapse
|
4
|
Chen Z, Sherk VD, Sharma-Ghimire P, Bemben MG, Bemben DA. Site-Specific Bone Differences and Energy Status in Male Competitive Runners and Road Cyclists. J Clin Densitom 2022; 25:150-159. [PMID: 34952789 DOI: 10.1016/j.jocd.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022]
Abstract
The interaction between mechanical loading and energy availability on bone health in male endurance athletes merits further investigation. The purpose of this study was to compare bone status in male competitive runners and road cyclists and to investigate the influence of energy availability (EA) on bone mineral density (BMD). 18 competitive runners and 19 road cyclists (20-50 years) participated in this study. Areal BMD and body composition were assessed by dual energy x-ray absorptiometry. Volumetric bone variables at the 4% and 66% tibia sites were assessed by peripheral quantitative computed tomography. Energy availability (EA, 7-day dietary and exercise logs) and resting metabolic rate (RMR, open circuit spirometry) were measured as indicators of energy status. Bone loading history, calcium intake, and training history were assessed by questionnaires. After adjusting for age, runners had significantly greater (p < 0.05) areal BMD (femoral neck, left total hip), Z-scores (total body, hips sites), total bone mineral content and trabecular variables (bone mineral content, volumetric BMD, bone strength index) at tibia 4% site, and total volumetric BMD at tibia 66% site than the cyclists (p ≤ 0.05). At the tibia 66% site, cyclists had significantly greater (p < 0.05) total area, periosteal circumference, endosteal circumference, and strength-strain index than runners. Energy variables were similar for runners and cyclists; however, RMR and RMR ratio (measured RMR/predicted RMR) were significantly lower in cyclists (p < 0.001). In conclusion, there were site-specific differences in hip and tibia bone characteristics between runners and cyclists. RMR was associated with several bone outcomes; however, EA was not related to bone health in runners or to dual energy x-ray absorptiometry bone variables in cyclists.
Collapse
Affiliation(s)
- Zhaojing Chen
- Department of Kinesiology, California State University, San Bernardino, CA, USA.
| | - Vanessa D Sherk
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Pragya Sharma-Ghimire
- Department of Physical Education and Exercise Science, Lander University, Greenwood, SC, USA
| | - Michael G Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| | - Debra A Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
5
|
Wang HS, Tsai YS, Chen YC, Chao HH, Lin HS, Chiang YP, Chen HY. Effects of backhand stroke styles on bone mineral content and density in postmenopausal recreational tennis players: a cross-sectional pilot investigation. BMC WOMENS HEALTH 2021; 21:275. [PMID: 34325678 PMCID: PMC8320033 DOI: 10.1186/s12905-021-01416-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 07/17/2021] [Indexed: 11/15/2022]
Abstract
Background One-handed backhand (OB) and two-handed backhand (TB) styles are commonly used in tennis, but only TB generates loadings on the non-dominant arm and a greater extension torque on the rear leg, leading to a greater axial torque involving rotation of the hip and trunk. The current study investigated whether those effects can further affect bone area (BA), bone mineral content (BMC) and density (BMD) in postmenopausal recreational tennis players. Methods BA, BMC and BMD of the lumbar spine, hip and distal radius were assessed using dual-energy X-ray absorptiometry in TB, OB, and swimmers’ group as a control (SG) (all participants self-reported for at least 5 years of exercise history, n = 14 per group). Muscular strength was assessed with a hand dynamometer. Among these three groups, the BA, BMC and BMD of distal radius and muscle strength were assessed using one-way ANOVA, and those of the lumbar region and the hip joint were tested by one-way ANCOVA. Results TB showed higher BMC and BMD for both lumbar spine and femoral neck than SG (all, p < 0.05). Both OB and TB showed greater BMD inter-trochanter than SG (both, p < 0.05). OB demonstrated greater inter-arm differences in the distal radius, which involved 1/3 distal for BMC and mid-distal radius for BMD compared to the TB and SG (all, p < 0.05). In addition, greater inter-arm asymmetry of grip strength was found in OB compared to TB and SG (both, p < 0.05). Conclusion For postmenopausal women, performing two-handed backhand strokes, leads to higher BMC and BMD in the non-dominant arm, the lumbar region, and hips, indicating potential benefit to maintain bone health and strength. Whether this result leads to reducing the risk of osteoporosis needs to be investigated in further research.
Collapse
Affiliation(s)
- Ho-Seng Wang
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, No. 162, Section 1, Heping East Road, Taipei City, 106, Taiwan
| | - Yi-Shan Tsai
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, No. 162, Section 1, Heping East Road, Taipei City, 106, Taiwan
| | - Yung-Chih Chen
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, No. 162, Section 1, Heping East Road, Taipei City, 106, Taiwan
| | - Hsiao-Han Chao
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, No. 162, Section 1, Heping East Road, Taipei City, 106, Taiwan.,Department of Athletics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City, 10617, Taiwan
| | - Hsin-Shih Lin
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, No. 162, Section 1, Heping East Road, Taipei City, 106, Taiwan.,Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, No. 1, University Road, Tainan City, 701, Taiwan
| | - Yi-Pin Chiang
- Department of Rehabilitation Medicine, Mackay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Road, Taipei City, 10449, Taiwan
| | - Hou-Yu Chen
- Education Center for Humanities and Social Sciences (ECHSS), National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei City, 112, Taiwan.
| |
Collapse
|
6
|
Oosthuyse T, Bosch AN, Kariem N, Millen AME. Mountain Bike Racing Stimulates Osteogenic Bone Signaling and Ingesting Carbohydrate-Protein Compared With Carbohydrate-Only Prevents Acute Recovery Bone Resorption Dominance. J Strength Cond Res 2021; 35:292-299. [PMID: 33337693 DOI: 10.1519/jsc.0000000000003928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Oosthuyse, T, Bosch, AN, Kariem, N, and Millen, AME. Mountain bike racing stimulates osteogenic bone signaling and ingesting carbohydrate-protein compared with carbohydrate-only prevents acute recovery bone resorption dominance. J Strength Cond Res 35(2): 292-299, 2021-Mountain biking, unlike road cycling, includes vibrational accelerations but whether it stimulates osteogenic signaling remains unknown. Furthermore, exercise nutrition influences bone turnover, and the effect of ingesting protein during multiday racing was investigated. We measured plasma bone turnover markers, C-terminal telopeptide of type1-collagen (β-CTX) and N-terminal propeptides of type1-procollagen (P1NP), and osteocyte mechanosensory signaling factor, sclerostin (SOST), corrected for plasma volume change, before (pre-day 1) and 20-60 minutes after (post-day 3) a multiday mountain bike race in 18 male cyclists randomly assigned to ingest carbohydrate-only (CHO-only) or carbohydrate-with-casein protein hydrolysate (CHO-PRO) during racing. Fourteen cyclists (n = 7 per group) completed the race, and data were analyzed with p < 0.05 accepted as significant. Plasma SOST decreased similarly in both groups (mean ± SD, CHO-only: 877 ± 451 to 628 ± 473 pg·ml-1, p = 0.004; CHO-PRO: 888 ± 411 to 650 ± 443 pg·ml-1, p = 0.003), suggesting that osteocytes sense mountain biking as mechanical loading. However, the bone formation marker, P1NP, remained unchanged in both groups, whereas the bone resorption marker, β-CTX, increased in CHO-only (0.19 ± 0.034 to 0.31 ± 0.074 ng·ml-1, p = 0.0036) but remained unchanged in CHO-PRO (0.25 ± 0.079 to 0.26 ± 0.074 ng·ml-1, p = 0.95). Mountain bike racing does stimulate osteogenic bone signaling but bone formation is not increased acutely after multiday mountain biking; investigation for a delayed effect is warranted. The acute recovery increase in bone resorption with CHO-only is prevented by ingesting CHO-PRO during racing.
Collapse
Affiliation(s)
- Tanja Oosthuyse
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Medical School, Johannesburg, South Africa ; and
| | - Andrew N Bosch
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Neezaam Kariem
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Aletta M E Millen
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Medical School, Johannesburg, South Africa ; and
| |
Collapse
|
7
|
Miller RH, Krupenevich RL. Medial knee cartilage is unlikely to withstand a lifetime of running without positive adaptation: a theoretical biomechanical model of failure phenomena. PeerJ 2020; 8:e9676. [PMID: 32844066 PMCID: PMC7414768 DOI: 10.7717/peerj.9676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/16/2020] [Indexed: 01/24/2023] Open
Abstract
Runners on average do not have a high risk of developing knee osteoarthritis, even though running places very high loads on the knee joint. Here we used gait analysis, musculoskeletal modeling, and a discrete-element model of knee contact mechanics to estimate strains of the medial knee cartilage in walking and running in 22 young adults (age 23 ± 3 years). A phenomenological model of cartilage damage, repair, and adaptation in response to these strains then estimated the failure probability of the medial knee cartilage over an adult lifespan (age 23-83 years) for 6 km/day of walking vs. walking and running 3 km/day each. With no running, by age 55 the cumulative probability of medial knee cartilage failure averaged 36% without repair and 13% with repair, similar to reports on incidence of knee osteoarthritis in non-obese adults with no knee injuries, but the probability for running was very high without repair or adaptation (98%) and remained high after including repair (95%). Adaptation of the cartilage compressive modulus, cartilage thickness, and the tibiofemoral bone congruence in response to running (+1.15 standard deviations of their baseline values) was necessary for the failure probability of walking and running 3 km/day each to equal the failure probability of walking 6 km/day. The model results suggest two conclusions for further testing: (i) unlike previous findings on the load per unit distance, damage per unit distance on the medial knee cartilage is greater in running vs. walking, refuting the "cumulative load" hypothesis for long-term joint health; (ii) medial knee cartilage is unlikely to withstand a lifetime of mechanical loading from running without a natural adaptation process, supporting the "cartilage conditioning" hypothesis for long-term joint health.
Collapse
Affiliation(s)
- Ross H Miller
- Department of Kinesiology, University of Maryland, College Park, MD, United States of America.,Neuroscience & Cognitive Science Program, University of Maryland, College Park, MD, United States of America
| | - Rebecca L Krupenevich
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, United States of America
| |
Collapse
|
8
|
Yingling VR, Webb SL, Inouye C, O J, Sherwood JJ. Muscle Power Predicts Bone Strength in Division II Athletes. J Strength Cond Res 2020; 34:1657-1665. [DOI: 10.1519/jsc.0000000000002222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|