1
|
La Malva P, Di Crosta A, Prete G, Ceccato I, Gatti M, D'Intino E, Tommasi L, Mammarella N, Palumbo R, Di Domenico A. The effects of prefrontal tDCS and hf-tRNS on the processing of positive and negative emotions evoked by video clips in first- and third-person. Sci Rep 2024; 14:8064. [PMID: 38580697 PMCID: PMC10997595 DOI: 10.1038/s41598-024-58702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024] Open
Abstract
The causal role of the cerebral hemispheres in positive and negative emotion processing remains uncertain. The Right Hemisphere Hypothesis proposes right hemispheric superiority for all emotions, while the Valence Hypothesis suggests the left/right hemisphere's primary involvement in positive/negative emotions, respectively. To address this, emotional video clips were presented during dorsolateral prefrontal cortex (DLPFC) electrical stimulation, incorporating a comparison of tDCS and high frequency tRNS stimulation techniques and manipulating perspective-taking (first-person vs third-person Point of View, POV). Four stimulation conditions were applied while participants were asked to rate emotional video valence: anodal/cathodal tDCS to the left/right DLPFC, reverse configuration (anodal/cathodal on the right/left DLPFC), bilateral hf-tRNS, and sham (control condition). Results revealed significant interactions between stimulation setup, emotional valence, and POV, implicating the DLPFC in emotions and perspective-taking. The right hemisphere played a crucial role in both positive and negative valence, supporting the Right Hemisphere Hypothesis. However, the complex interactions between the brain hemispheres and valence also supported the Valence Hypothesis. Both stimulation techniques (tDCS and tRNS) significantly modulated results. These findings support both hypotheses regarding hemispheric involvement in emotions, underscore the utility of video stimuli, and emphasize the importance of perspective-taking in this field, which is often overlooked.
Collapse
Affiliation(s)
- Pasquale La Malva
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via dei Vestini, 66100, Chieti, Italy
| | - Adolfo Di Crosta
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via dei Vestini, 66100, Chieti, Italy
| | - Giulia Prete
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via dei Vestini, 66100, Chieti, Italy.
| | - Irene Ceccato
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via dei Vestini, 66100, Chieti, Italy
| | - Matteo Gatti
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via dei Vestini, 66100, Chieti, Italy
| | - Eleonora D'Intino
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via dei Vestini, 66100, Chieti, Italy
| | - Luca Tommasi
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via dei Vestini, 66100, Chieti, Italy
| | - Nicola Mammarella
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via dei Vestini, 66100, Chieti, Italy
| | - Rocco Palumbo
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via dei Vestini, 66100, Chieti, Italy
| | - Alberto Di Domenico
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via dei Vestini, 66100, Chieti, Italy
| |
Collapse
|
2
|
Malatesta G, D'Anselmo A, Prete G, Lucafò C, Faieta L, Tommasi L. The Predictive Role of the Posterior Cerebellum in the Processing of Dynamic Emotions. CEREBELLUM (LONDON, ENGLAND) 2024; 23:545-553. [PMID: 37285048 PMCID: PMC10951036 DOI: 10.1007/s12311-023-01574-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 06/08/2023]
Abstract
Recent studies have bolstered the important role of the cerebellum in high-level socio-affective functions. In particular, neuroscientific evidence shows that the posterior cerebellum is involved in social cognition and emotion processing, presumably through its involvement in temporal processing and in predicting the outcomes of social sequences. We used cerebellar transcranial random noise stimulation (ctRNS) targeting the posterior cerebellum to affect the performance of 32 healthy participants during an emotion discrimination task, including both static and dynamic facial expressions (i.e., transitioning from a static neutral image to a happy/sad emotion). ctRNS, compared to the sham condition, significantly reduced the participants' accuracy to discriminate static sad facial expressions, but it increased participants' accuracy to discriminate dynamic sad facial expressions. No effects emerged with happy faces. These findings may suggest the existence of two different circuits in the posterior cerebellum for the processing of negative emotional stimuli: a first-time-independent mechanism which can be selectively disrupted by ctRNS, and a second time-dependent mechanism of predictive "sequence detection" which can be selectively enhanced by ctRNS. This latter mechanism might be included among the cerebellar operational models constantly engaged in the rapid adjustment of social predictions based on dynamic behavioral information inherent to others' actions. We speculate that it might be one of the basic principles underlying the understanding of other individuals' social and emotional behaviors during interactions.
Collapse
Affiliation(s)
- Gianluca Malatesta
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| | - Anita D'Anselmo
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giulia Prete
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Chiara Lucafò
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Letizia Faieta
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Luca Tommasi
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
3
|
Prete G, Ceccato I, Bartolini E, Di Crosta A, La Malva P, Palumbo R, Laeng B, Tommasi L, Mammarella N, Di Domenico A. Detecting implicit and explicit facial emotions at different ages. Eur J Ageing 2024; 21:8. [PMID: 38499844 PMCID: PMC10948669 DOI: 10.1007/s10433-024-00805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 03/20/2024] Open
Abstract
Emotions are processed in the brain through a cortical route, responsible for detailed-conscious recognition and mainly based on image High Spatial Frequencies (HSF), and a subcortical route, responsible for coarse-unconscious processing and based on Low SF (LSF). However, little is known about possible changes in the functioning of the two routes in ageing. In the present go/no-go online task, 112 younger adults and 111 older adults were asked to press a button when a happy or angry face appeared (go) and to inhibit responses for neutral faces (no-go). Facial stimuli were presented unfiltered (broadband image), filtered at HSF and LSF, and hybrids (LSF of an emotional expression superimposed to the HSF of the same face with a neutral expression). All stimuli were also presented rotated on the vertical axis (upside-down) to investigate the global analysis of faces in ageing. Results showed an overall better performance of younger compared to older participants for all conditions except for hybrid stimuli. The expected face-inversion effect was confirmed in both age groups. We conclude that, besides an overall worsening of the perceptual skill with ageing, no specific impairment in the functioning of both the cortical and the subcortical route emerged.
Collapse
Affiliation(s)
- Giulia Prete
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via Dei Vestini, 66013, Chieti, Italy
| | - Irene Ceccato
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via Dei Vestini, 66013, Chieti, Italy.
| | - Emanuela Bartolini
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Adolfo Di Crosta
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Pasquale La Malva
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via Dei Vestini, 66013, Chieti, Italy
| | - Rocco Palumbo
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via Dei Vestini, 66013, Chieti, Italy
| | - Bruno Laeng
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Luca Tommasi
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via Dei Vestini, 66013, Chieti, Italy
| | - Nicola Mammarella
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via Dei Vestini, 66013, Chieti, Italy
| | - Alberto Di Domenico
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via Dei Vestini, 66013, Chieti, Italy
| |
Collapse
|
4
|
La Malva P, Prete G, Di Crosta A, Ceccato I, Mammarella N, Palumbo R, Di Domenico A. The effect of aging and emotions on time processing. Aging Clin Exp Res 2023; 35:2783-2795. [PMID: 37740891 PMCID: PMC10627919 DOI: 10.1007/s40520-023-02563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Time perception is an automatic process that can be influenced by intrinsic and extrinsic factors. AIMS This study aimed to investigate the effect of age and emotions on the ability to keep track of short suprasecond intervals. METHODS Younger adults (N = 108, age range: 18-35) and older adults (N = 51, age range: 65-87) were asked to reproduce, bisect, or double the duration of facial stimuli randomly presented for 1500, 3000, and 4500 ms. The experiment included facial stimuli with positive, negative, or neutral expressions. RESULTS The participants across age correctly reproduced intervals but overestimated and underestimated them when asked to bisect and double the intervals, respectively. Overall, when faces were presented with a positive or negative expression, an overestimation of time intervals emerged compared to faces with neutral expressions. Emotions had a greater effect on older adults, who showed a greater overestimation of positive facial expressions and an underestimation of sad, but not angry, facial expressions. DISCUSSION The results provide evidence that time perception is influenced by age and emotions, with older adults showing a greater effect of emotions on time processing. CONCLUSION The study suggests an interaction among time processing, age, and emotions, highlighting an automatic relationship among these domains, often considered independent.
Collapse
Affiliation(s)
- Pasquale La Malva
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via Dei Vestini, 66100, Chieti, Italy
| | - Giulia Prete
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via Dei Vestini, 66100, Chieti, Italy
| | - Adolfo Di Crosta
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via Dei Vestini, 66100, Chieti, Italy.
| | - Irene Ceccato
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via Dei Vestini, 66100, Chieti, Italy
| | - Nicola Mammarella
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via Dei Vestini, 66100, Chieti, Italy
| | - Rocco Palumbo
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via Dei Vestini, 66100, Chieti, Italy
| | - Alberto Di Domenico
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via Dei Vestini, 66100, Chieti, Italy
| |
Collapse
|
5
|
Törnqvist H, Höller H, Vsetecka K, Hoehl S, Kujala MV. Matters of development and experience: Evaluation of dog and human emotional expressions by children and adults. PLoS One 2023; 18:e0288137. [PMID: 37494304 PMCID: PMC10370749 DOI: 10.1371/journal.pone.0288137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/20/2023] [Indexed: 07/28/2023] Open
Abstract
Emotional facial expressions are an important part of across species social communication, yet the factors affecting human recognition of dog emotions have received limited attention. Here, we characterize the recognition and evaluation of dog and human emotional facial expressions by 4-and 6-year-old children and adult participants, as well as the effect of dog experience in emotion recognition. Participants rated the happiness, anger, valence, and arousal from happy, aggressive, and neutral facial images of dogs and humans. Both respondent age and experience influenced the dog emotion recognition and ratings. Aggressive dog faces were rated more often correctly by adults than 4-year-olds regardless of dog experience, whereas the 6-year-olds' and adults' performances did not differ. Happy human and dog expressions were recognized equally by all groups. Children rated aggressive dogs as more positive and lower in arousal than adults, and participants without dog experience rated aggressive dogs as more positive than those with dog experience. Children also rated aggressive dogs as more positive and lower in arousal than aggressive humans. The results confirm that recognition of dog emotions, especially aggression, increases with age, which can be related to general dog experience and brain structure maturation involved in facial emotion recognition.
Collapse
Affiliation(s)
- Heini Törnqvist
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Hanna Höller
- Department of Developmental and Educational Psychology, University of Vienna, Vienna, Austria
| | - Kerstin Vsetecka
- Department of Developmental and Educational Psychology, University of Vienna, Vienna, Austria
| | - Stefanie Hoehl
- Department of Developmental and Educational Psychology, University of Vienna, Vienna, Austria
| | - Miiamaaria V Kujala
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
- Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
6
|
Maltezou-Papastylianou C, Russo R, Wallace D, Harmsworth C, Paulmann S. Different stages of emotional prosody processing in healthy ageing–evidence from behavioural responses, ERPs, tDCS, and tRNS. PLoS One 2022; 17:e0270934. [PMID: 35862317 PMCID: PMC9302842 DOI: 10.1371/journal.pone.0270934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022] Open
Abstract
Past research suggests that the ability to recognise the emotional intent of a speaker decreases as a function of age. Yet, few studies have looked at the underlying cause for this effect in a systematic way. This paper builds on the view that emotional prosody perception is a multi-stage process and explores which step of the recognition processing line is impaired in healthy ageing using time-sensitive event-related brain potentials (ERPs). Results suggest that early processes linked to salience detection as reflected in the P200 component and initial build-up of emotional representation as linked to a subsequent negative ERP component are largely unaffected in healthy ageing. The two groups show, however, emotional prosody recognition differences: older participants recognise emotional intentions of speakers less well than younger participants do. These findings were followed up by two neuro-stimulation studies specifically targeting the inferior frontal cortex to test if recognition improves during active stimulation relative to sham. Overall, results suggests that neither tDCS nor high-frequency tRNS stimulation at 2mA for 30 minutes facilitates emotional prosody recognition rates in healthy older adults.
Collapse
Affiliation(s)
| | - Riccardo Russo
- Department of Psychology and Centre for Brain Science, University of Essex, Colchester, United Kingdom
- Department of Brain and Behavioural Sciences, Universita’ di Pavia, Pavia, Italy
| | - Denise Wallace
- Department of Psychology and Centre for Brain Science, University of Essex, Colchester, United Kingdom
| | - Chelsea Harmsworth
- Department of Psychology and Centre for Brain Science, University of Essex, Colchester, United Kingdom
| | - Silke Paulmann
- Department of Psychology and Centre for Brain Science, University of Essex, Colchester, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Abstract
Although the population-level preference for the use of the right hand is the clearest example of behavioral lateralization, it represents only the best-known instance of a variety of functional asymmetries observable in humans. What is interesting is that many of such asymmetries emerge during the processing of social stimuli, as often occurs in the case of human bodies, faces and voices. In the present paper, after reviewing previous literature about human functional asymmetries for social and emotional stimuli, we suggest some possible links among them and stress the necessity of a comprehensive account (in both ontogenetic and phylogenetic terms) for these not yet fully explained phenomena. In particular, we propose that the advantages of lateralization for emotion processing should be considered in light of previous suggestions that (i) functional hemispheric specialization enhances cognitive capacity and efficiency, and (ii) the alignment (at the population level) of the direction of behavioral asymmetries emerges, under social pressures, as an evolutionary stable strategy.
Collapse
|
8
|
Burgund ED. Left Hemisphere Dominance for Negative Facial Expressions: The Influence of Task. Front Hum Neurosci 2021; 15:742018. [PMID: 34602999 PMCID: PMC8484516 DOI: 10.3389/fnhum.2021.742018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/30/2021] [Indexed: 11/28/2022] Open
Abstract
Major theories of hemisphere asymmetries in facial expression processing predict right hemisphere dominance for negative facial expressions of disgust, fear, and sadness, however, some studies observe left hemisphere dominance for one or more of these expressions. Research suggests that tasks requiring the identification of six basic emotional facial expressions (angry, disgusted, fearful, happy, sad, and surprised) are more likely to produce left hemisphere involvement than tasks that do not require expression identification. The present research investigated this possibility in two experiments that presented six basic emotional facial expressions to the right or left hemisphere using a divided-visual field paradigm. In Experiment 1, participants identified emotional expressions by pushing a key corresponding to one of six labels. In Experiment 2, participants detected emotional expressions by pushing a key corresponding to whether an expression was emotional or not. In line with predictions, fearful facial expressions exhibited a left hemisphere advantage during the identification task but not during the detection task. In contrast to predictions, sad expressions exhibited a left hemisphere advantage during both identification and detection tasks. In addition, happy facial expressions exhibited a left hemisphere advantage during the detection task but not during the identification task. Only angry facial expressions exhibited a right hemisphere advantage, and this was only observed when data from both experiments were combined. Together, results highlight the influence of task demands on hemisphere asymmetries in facial expression processing and suggest a greater role for the left hemisphere in negative expressions than predicted by previous theories.
Collapse
Affiliation(s)
- E. Darcy Burgund
- Department of Psychology, Macalester College, Saint Paul, MN, United States
| |
Collapse
|
9
|
Schecklmann M, Nejati V, Poeppl TB, Peytard J, Rupprecht R, Wetter TC, Langguth B, Kreuzer PM. Bifrontal high-frequency transcranial random noise stimulation is not effective as an add-on treatment in depression. J Psychiatr Res 2021; 132:116-122. [PMID: 33086145 DOI: 10.1016/j.jpsychires.2020.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Depressive disorders are linked to dysfunction in prefrontal cortical areas. Hence, non-invasive neurostimulation of the prefrontal cortex has demonstrated antidepressant efficacy. In the present study, we investigated the efficacy of high frequency transcranial random noise stimulation (hf-tRNS) as an add-on treatment for depression in a sham-controlled randomized trial. METHODS Forty in-patients with depression were randomized and treated with real or sham hf-tRNS (100-650 Hz) with 0 mA offset. The electrodes were mounted over the left and right dorsolateral prefrontal cortex. The Hamilton Depression Rating Scale (primary outcome), the Major Depression Inventory, the Clinical Global Impression scale and the Global Assessment of Functioning scale were used for assessment at baseline, after 3 weeks of intervention (end of treatment), and 9 weeks after intervention. Safety parameters included cognitive functioning and reported side-effects. RESULTS Comparison of real and sham treatment at the planned interim analysis showed an amelioration of symptoms in both groups for all outcomes with numeric but not statistically significant superiority of the sham arm for the primary outcome. Thus, the study was terminated prematurely after an interim analysis. There were no systematic differences with respect to safety parameters. LIMITATIONS The negative finding might be related to the specific stimulation parameters used in this study. CONCLUSIONS Our study suggests that prefrontal hf-tRNS is safe but not effective as an add-on treatment of depression. The challenge for future studies employing transcranial electric stimulation remains to identify effective stimulation parameters for the treatment of depression.
Collapse
Affiliation(s)
- Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany.
| | - Vahid Nejati
- Department of Psychology, Shahid Beheshti University, Iran
| | - Timm B Poeppl
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Germany
| | - Juliette Peytard
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany
| | - Thomas C Wetter
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany
| | - Peter M Kreuzer
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany
| |
Collapse
|
10
|
Stanković M. A conceptual critique of brain lateralization models in emotional face perception: Toward a hemispheric functional-equivalence (HFE) model. Int J Psychophysiol 2020; 160:57-70. [PMID: 33186657 DOI: 10.1016/j.ijpsycho.2020.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/15/2020] [Accepted: 11/04/2020] [Indexed: 01/21/2023]
Abstract
The present review proposes a novel dynamic model of brain lateralization of emotional (happy, surprised, fearful, sad, angry, and disgusted) and neutral face perception. Evidence to date suggests that emotional face perception is lateralized in the brain. At least five prominent hypotheses of the lateralization of emotional face perception have been previously proposed; the right-hemisphere hypothesis; the valence-specific hypothesis; the modified valence-specific hypothesis; the motivational hypothesis; and behavioral activation/inhibition system hypothesis. However, a growing number of recent replication studies exploring those hypotheses frequently provide inconsistent or even contradictory results. The latest neuroimaging and behavioral studies strongly demonstrate the functional capacity of both hemispheres to process emotions relatively successfully. Moreover, the flexibility of emotional brain-networks in both hemispheres is functionally high even to the extent of a possible reversed asymmetry of the left and the right hemisphere performance under altered neurophysiological and psychological conditions. The present review aims to a) provide a critical conceptual analysis of prior and current hypotheses of brain lateralization of emotional and neutral face perception; b) propose an integrative introduction of a novel hemispheric functional-equivalence (HFE) model in emotional and neutral face perception based on the evaluation of theoretical considerations, behavioral and neuroimaging studies: the brain is initially right-biased in emotional and neutral face perception by default; however, altered psychophysiological conditions (e.g., acute stress, a demanding emotional task) activate a distributed brain-network of both hemispheres toward functional equivalence that results in relatively equalized behavioral performance in emotional and neutral face perception. The proposed novel model may provide a practical tool in further experimental investigation of brain lateralization of emotional face perception.
Collapse
Affiliation(s)
- Miloš Stanković
- General and Experimental Psychology, Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
11
|
Kihara K, Takeda Y. The Role of Low-Spatial Frequency Components in the Processing of Deceptive Faces: A Study Using Artificial Face Models. Front Psychol 2019; 10:1468. [PMID: 31297078 PMCID: PMC6607955 DOI: 10.3389/fpsyg.2019.01468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 06/11/2019] [Indexed: 11/13/2022] Open
Abstract
Interpreting another's true emotion is important for social communication, even in the face of deceptive facial cues. Because spatial frequency components provide important clues for recognizing facial expressions, we investigated how we use spatial frequency information from deceptive faces to interpret true emotion. We conducted two different tasks: a face-generating experiment in which participants were asked to generate deceptive and genuine faces by tuning the intensity of happy and angry expressions (Experiment 1) and a face-classification task in which participants had to classify presented faces as either deceptive or genuine (Experiment 2). Low- and high-spatial frequency (LSF and HSF) components were varied independently. The results showed that deceptive happiness (i.e., anger is the hidden expression) involved different intensities for LSF and HSF. These results suggest that we can identify hidden anger by perceiving unbalanced intensities of emotional expression between LSF and HSF information contained in deceptive faces.
Collapse
Affiliation(s)
- Ken Kihara
- Automotive Human Factors Research Center, National Institute of Advanced Industrial, Science and Technology (AIST), Tsukuba, Japan
| | - Yuji Takeda
- Automotive Human Factors Research Center, National Institute of Advanced Industrial, Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|