1
|
Dalisay DS, Tenebro CP, Sabido EM, Suarez AFL, Paderog MJV, Reyes-Salarda R, Saludes JP. Marine-Derived Anticancer Agents Targeting Apoptotic Pathways: Exploring the Depths for Novel Cancer Therapies. Mar Drugs 2024; 22:114. [PMID: 38535455 PMCID: PMC10972102 DOI: 10.3390/md22030114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 04/13/2024] Open
Abstract
Extensive research has been conducted on the isolation and study of bioactive compounds derived from marine sources. Several natural products have demonstrated potential as inducers of apoptosis and are currently under investigation in clinical trials. These marine-derived compounds selectively interact with extrinsic and intrinsic apoptotic pathways using a variety of molecular mechanisms, resulting in cell shrinkage, chromatin condensation, cytoplasmic blebs, apoptotic bodies, and phagocytosis by adjacent parenchymal cells, neoplastic cells, or macrophages. Numerous marine-derived compounds are currently undergoing rigorous examination for their potential application in cancer therapy. This review examines a total of 21 marine-derived compounds, along with their synthetic derivatives, sourced from marine organisms such as sponges, corals, tunicates, mollusks, ascidians, algae, cyanobacteria, fungi, and actinobacteria. These compounds are currently undergoing preclinical and clinical trials to evaluate their potential as apoptosis inducers for the treatment of different types of cancer. This review further examined the compound's properties and mode of action, preclinical investigations, clinical trial studies on single or combination therapy, and the prospective development of marine-derived anticancer therapies.
Collapse
Affiliation(s)
- Doralyn S. Dalisay
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
| | - Chuckcris P. Tenebro
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Edna M. Sabido
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Angelica Faith L. Suarez
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
| | - Melissa June V. Paderog
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Pharmacy, University of San Agustin, Iloilo City 5000, Philippines
| | - Rikka Reyes-Salarda
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
| | - Jonel P. Saludes
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
- Department of Chemistry, University of San Agustin, Iloilo City 5000, Philippines
| |
Collapse
|
2
|
Liao Y, Xiong S, Ur Rehman Z, He X, Peng H, Liu J, Sun S. The Research Advances of Aptamers in Hematologic Malignancies. Cancers (Basel) 2023; 15:300. [PMID: 36612296 PMCID: PMC9818631 DOI: 10.3390/cancers15010300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Currently, research for hematological malignancies is very intensive, with many breakthroughs. Among them, aptamer-based targeted therapies could be counted. Aptamer is a targeting tool with many unique advantages (easy synthesis, low toxicity, easy modification, low immunogenicity, nano size, long stability, etc.), therefore many experts screened corresponding aptamers in various hematological malignancies for diagnosis and treatment. In this review, we try to summarize and provide the recent progress of aptamer research in the diagnosis and treatment of hematologic malignancies. Until now, 29 aptamer studies were reported in hematologic malignancies, of which 12 aptamers were tested in vivo and the remaining 17 aptamers were only tested in vitro. In this case, 11 aptamers were combined with chemotherapeutic drugs for the treatment of hematologic malignancies, 4 aptamers were used in combination with nanomaterials for the diagnosis and treatment of hematologic malignancies, and some studies used aptamers for the targeted transportation of siRNA and miRNA for targeted therapeutic effects. Their research provides multiple approaches to achieve more targeted goals. These findings show promising and encouraging future for both hematological malignancies basic and clinical trials research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuming Sun
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| |
Collapse
|
3
|
Küçükdiler AHE, Yavaşoğlu İ, Selim C, Mutlu CA, Karakuş A, Koyuncu MB, Bilgir O, Ayyıldız O, Tiftik EN, Bolaman AZ. Use of gemtuzumab ozogamicin in relapsed refractory acute myeloid leukemia: Multi-center real life data from Turkey. Leuk Res Rep 2021; 16:100280. [PMID: 34849337 PMCID: PMC8608612 DOI: 10.1016/j.lrr.2021.100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/31/2021] [Accepted: 11/08/2021] [Indexed: 11/07/2022] Open
Abstract
We retrospectively evaluated the use of gemtuzumab ozogamicin (GO) in relapsed refractory (R/R) acute myeloid leukemia (AML) patients. Twenty-one CD33 positive R/R AML patients who received GO as a single agent in 4 hematology centers were included in this study. The median age was 59, and the median ECOG performance score was 2. According to cytogenetic analysis, 1 patient had favorable risk, 12 patients with intermediate, and 8 patients with adverse risk. The overall response rate was 52.3%. Partial response was achieved in 3 of 8 patients with adverse risk. 33.3% of patients developed grade 3 anemia. Grade 4 neutropenia and thrombocytopenia were observed in 80% of the patients. One of the patients died due to sinusoidal obstruction syndrome / veno-occlusive disease (SOS / VOD) due to GO side effects. GO may be considered as a good option for salvage therapy in R/R AML patients.
Collapse
Affiliation(s)
| | - İrfan Yavaşoğlu
- Aydin Adnan Menderes University Faculty of Medicine, Department of Hematology, Turkey
| | - Cem Selim
- Aydin Adnan Menderes University Faculty of Medicine, Department of Hematology, Turkey
| | - Cansu Atmaca Mutlu
- Izmir Bozyaka Training and Research Hospital, Department of Adult Hematology, Turkey
| | - Abdullah Karakuş
- Dicle University Faculty of Medicine, Department of Adult Hematology, Turkey
| | | | - Oktay Bilgir
- Izmir Bozyaka Training and Research Hospital, Department of Adult Hematology, Turkey
| | - Orhan Ayyıldız
- Dicle University Faculty of Medicine, Department of Adult Hematology, Turkey
| | - Eyüp Naci Tiftik
- Mersin University Faculty of Medicine, Department of Adult Hematology, Turkey
| | - Ali Zahit Bolaman
- Aydin Adnan Menderes University Faculty of Medicine, Department of Hematology, Turkey
| |
Collapse
|
4
|
Alteraciones moleculares en leucemia mieloide aguda y sus implicaciones clínicas y terapéuticas. Med Clin (Barc) 2018; 151:362-367. [DOI: 10.1016/j.medcli.2018.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/04/2018] [Indexed: 11/18/2022]
|
5
|
Hu W, Huang XS, Wu JF, Yang L, Zheng YT, Shen YM, Li ZY, Li X. Discovery of Novel Topoisomerase II Inhibitors by Medicinal Chemistry Approaches. J Med Chem 2018; 61:8947-8980. [PMID: 29870668 DOI: 10.1021/acs.jmedchem.7b01202] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Hu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, 27 South Shanda Road, 250100 Ji’nan, Shandong, P. R. China
| | - Xu-Sheng Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Science and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ji-Feng Wu
- Institute of Criminal Science and Technology, Ji’nan Public Security Bureau, 21 South QiliShan Road, 250000 Ji’nan, Shandong, P. R. China
| | - Liang Yang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji’nan, Shandong, P. R. China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Science and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yue-Mao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji’nan, Shandong, P. R. China
| | - Zhi-Yu Li
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Philadelphia, Pennsylvania 19104, United States
| | - Xun Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji’nan, Shandong, P. R. China
| |
Collapse
|
6
|
Wu H, Wang M, Dai B, Zhang Y, Yang Y, Li Q, Duan M, Zhang X, Wang X, Li A, Zhang L. Novel CD123-aptamer-originated targeted drug trains for selectively delivering cytotoxic agent to tumor cells in acute myeloid leukemia theranostics. Drug Deliv 2017; 24:1216-1229. [PMID: 28845698 PMCID: PMC8241133 DOI: 10.1080/10717544.2017.1367976] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022] Open
Abstract
Since conventional chemotherapy for acute myeloid leukemia (AML) has its limitations, a theranostic platform with targeted and efficient drug transport is in demand. In this study, we developed the first CD123 (AML tumor marker) aptamers and designed a novel CD123-aptamer-mediated targeted drug train (TDT) with effective, economical, biocompatible and high drug-loading capacity. These two CD123 aptamers (termed as ZW25 and CY30, respectively) can bind to a CD123 peptide epitope and CD123 + AML cells with high specificities and KD of 29.41 nM and 15.38 nM, respectively, while has minimal cross reactivities to albumin, IgG and trypsin. Further, TDT is self-assembled from two short primers by ligand-modified ZW25 that acted as initiation position for elongation, while intercalated by doxorubicin (Dox). TDT is capable of transporting high capacity of Dox to CD123 + cells and retains the efficacy of Dox, while significantly reducing drug uptake and eased toxicity to CD123- cells in vitro (p < .01). Moreover, TDT can ease Dox cytoxicity to normal tissues, prolong survivals and inhibit tumor growth of mouse xenograft tumor model in vivo. These suggest that CD123 aptamer and CD123 aptamer-mediated targeted drug delivery system may have potential applications for selective delivery cytotoxic agents to CD123-expressing tumors in AML theranostics.
Collapse
Affiliation(s)
- Haibin Wu
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, Shaanxi, People’s Republic of China
- Key laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, People’s Republic of China
| | - Meng Wang
- Department of Orthopedics, The No.11 Hospital of PLA, YiNing, XinJiang, People’s Republic of China
| | - Bo Dai
- Shaanxi Center for Stem Cell Application Engineering Research, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Yanmin Zhang
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Ying Yang
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Qiao Li
- Clinical Laboratory, Xi’an Children’s Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Mingyue Duan
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Xi Zhang
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Xiaomei Wang
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Anmao Li
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Liyu Zhang
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, Shaanxi, People’s Republic of China
- Key laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|