1
|
Bao X, Chen Y, Chang J, Du J, Yang C, Wu Y, Sha Y, Li M, Chen S, Yang M, Liu SB. Machine learning-based bulk RNA analysis reveals a prognostic signature of 13 cell death patterns and potential therapeutic target of SMAD3 in acute myeloid leukemia. BMC Cancer 2025; 25:273. [PMID: 39955536 PMCID: PMC11830216 DOI: 10.1186/s12885-025-13658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Dysregulation or abnormality of the programmed cell death (PCD) pathway is closely related to the occurrence and development of many tumors, including acute myeloid leukemia (AML). Studying the abnormal characteristics of PCD pathway-related molecular markers can provide a basis for prognosis prediction and targeted drug design in AML patients. METHODS A total of 1394 genes representing 13 different PCD pathways were examined in AML patients and healthy donors. The upregulated genes were analyzed for their ability to predict overall survival (OS) individually, and these prognostic genes were subsequently combined to construct a PCD-related prognostic signature via an integrated approach consisting of 101 models based on ten machine learning algorithms. RNA transcriptome and clinical data from multiple AML cohorts (TCGA-AML, GSE106291, GSE146173 and Beat AML) were obtained to develop and validate the AML prognostic model. RESULTS A total of 214 upregulated PCD-related genes were identified in AML patients, 39 of which were proven to be prognostic genes in the training cohort. On the basis of the average C-index and number of model genes identified from the machine learning combinations, a PCD index was developed and validated for predicting AML OS. A prognostic nomogram was then generated and validated on the basis of the PCD index, age and ELN risk stratification in the Beat AML cohort and the GSE146173 cohort, revealing satisfactory predictive power (AUC values ≥ 0.7). With different mutation patterns, a higher PCD index was associated with a worse OS. The PCD index was significantly related to higher scores for immunosuppressive cells and mature leukemia cell subtypes. As the gene most closely related to the PCD index, the expression of SMAD3 was further validated in vitro. AML cells harboring KMT2A rearrangements were more sensitive to the SMAD3 inhibitor SIS3, and the expression of the autophagy-related molecular marker LC3 was increased in KMT2A-rearranged cell lines after SIS3 monotherapy and combined treatment. CONCLUSION The PCD index and SMAD3 gene expression levels have potential prognostic value and can be used in targeted therapy for AML, and these findings can lead to the development of effective strategies for the combined treatment of high-risk AML patients.
Collapse
Affiliation(s)
- Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yao Chen
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China
| | - Jie Chang
- School of Public Health, Medical College of Soochow University, Suzhou, 215123, China
| | - Jiahui Du
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China
| | - Chen Yang
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China
| | - Yijie Wu
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China
| | - Yu Sha
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China
| | - Ming Li
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Minfeng Yang
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong, 226019, China.
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| | - Song-Bai Liu
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China.
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China.
| |
Collapse
|
2
|
Bruserud Ø, Selheim F, Hernandez-Valladares M, Reikvam H. Monocytic Differentiation in Acute Myeloid Leukemia Cells: Diagnostic Criteria, Biological Heterogeneity, Mitochondrial Metabolism, Resistance to and Induction by Targeted Therapies. Int J Mol Sci 2024; 25:6356. [PMID: 38928061 PMCID: PMC11203697 DOI: 10.3390/ijms25126356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
We review the importance of monocytic differentiation and differentiation induction in non-APL (acute promyelocytic leukemia) variants of acute myeloid leukemia (AML), a malignancy characterized by proliferation of immature myeloid cells. Even though the cellular differentiation block is a fundamental characteristic, the AML cells can show limited signs of differentiation. According to the French-American-British (FAB-M4/M5 subset) and the World Health Organization (WHO) 2016 classifications, monocytic differentiation is characterized by morphological signs and the expression of specific molecular markers involved in cellular communication and adhesion. Furthermore, monocytic FAB-M4/M5 patients are heterogeneous with regards to cytogenetic and molecular genetic abnormalities, and monocytic differentiation does not have any major prognostic impact for these patients when receiving conventional intensive cytotoxic therapy. In contrast, FAB-M4/M5 patients have decreased susceptibility to the Bcl-2 inhibitor venetoclax, and this seems to be due to common molecular characteristics involving mitochondrial regulation of the cellular metabolism and survival, including decreased dependency on Bcl-2 compared to other AML patients. Thus, the susceptibility to Bcl-2 inhibition does not only depend on general resistance/susceptibility mechanisms known from conventional AML therapy but also specific mechanisms involving the molecular target itself or the molecular context of the target. AML cell differentiation status is also associated with susceptibility to other targeted therapies (e.g., CDK2/4/6 and bromodomain inhibition), and differentiation induction seems to be a part of the antileukemic effect for several targeted anti-AML therapies. Differentiation-associated molecular mechanisms may thus become important in the future implementation of targeted therapies in human AML.
Collapse
MESH Headings
- Humans
- Cell Differentiation
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Mitochondria/metabolism
- Monocytes/metabolism
- Monocytes/pathology
- Drug Resistance, Neoplasm/genetics
- Molecular Targeted Therapy
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
- Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway; (M.H.-V.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Frode Selheim
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway;
| | - Maria Hernandez-Valladares
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway; (M.H.-V.); (H.R.)
- Department of Physical Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Håkon Reikvam
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway; (M.H.-V.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| |
Collapse
|
3
|
Bartaula-Brevik S, Leitch C, Hernandez-Valladares M, Aasebø E, Berven FS, Selheim F, Brenner AK, Rye KP, Hagen M, Reikvam H, McCormack E, Bruserud Ø, Tvedt THA. Vacuolar ATPase Is a Possible Therapeutic Target in Acute Myeloid Leukemia: Focus on Patient Heterogeneity and Treatment Toxicity. J Clin Med 2023; 12:5546. [PMID: 37685612 PMCID: PMC10488188 DOI: 10.3390/jcm12175546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Vacuolar ATPase (V-ATPase) is regarded as a possible target in cancer treatment. It is expressed in primary acute myeloid leukemia cells (AML), but the expression varies between patients and is highest for patients with a favorable prognosis after intensive chemotherapy. We therefore investigated the functional effects of two V-ATPase inhibitors (bafilomycin A1, concanamycin A) for primary AML cells derived from 80 consecutive patients. The V-ATPase inhibitors showed dose-dependent antiproliferative and proapoptotic effects that varied considerably between patients. A proteomic comparison of primary AML cells showing weak versus strong antiproliferative effects of V-ATPase inhibition showed a differential expression of proteins involved in intracellular transport/cytoskeleton functions, and an equivalent phosphoproteomic comparison showed a differential expression of proteins that regulate RNA processing/function together with increased activity of casein kinase 2. Patients with secondary AML, i.e., a heterogeneous subset with generally adverse prognosis and previous cytotoxic therapy, myeloproliferative neoplasia or myelodysplastic syndrome, were characterized by a strong antiproliferative effect of V-ATPase inhibition and also by a specific mRNA expression profile of V-ATPase interactome proteins. Furthermore, the V-ATPase inhibition altered the constitutive extracellular release of several soluble mediators (e.g., chemokines, interleukins, proteases, protease inhibitors), and increased mediator levels in the presence of AML-supporting bone marrow mesenchymal stem cells was then observed, especially for patients with secondary AML. Finally, animal studies suggested that the V-ATPase inhibitor bafilomycin had limited toxicity, even when combined with cytarabine. To conclude, V-ATPase inhibition has antileukemic effects in AML, but this effect varies between patients.
Collapse
Affiliation(s)
- Sushma Bartaula-Brevik
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (S.B.-B.); (M.H.-V.); (E.A.); (A.K.B.); (K.P.R.); (M.H.); (H.R.); (T.H.A.T.)
| | - Calum Leitch
- Department of Clinical Science, Centre for Pharmacy, University of Bergen, 5015 Bergen, Norway; (C.L.); (E.M.)
| | - Maria Hernandez-Valladares
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (S.B.-B.); (M.H.-V.); (E.A.); (A.K.B.); (K.P.R.); (M.H.); (H.R.); (T.H.A.T.)
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (F.S.B.); (F.S.)
- The Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- Department of Physical Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Elise Aasebø
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (S.B.-B.); (M.H.-V.); (E.A.); (A.K.B.); (K.P.R.); (M.H.); (H.R.); (T.H.A.T.)
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (F.S.B.); (F.S.)
- The Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Frode S. Berven
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (F.S.B.); (F.S.)
- The Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Frode Selheim
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (F.S.B.); (F.S.)
- The Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Annette K. Brenner
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (S.B.-B.); (M.H.-V.); (E.A.); (A.K.B.); (K.P.R.); (M.H.); (H.R.); (T.H.A.T.)
| | - Kristin Paulsen Rye
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (S.B.-B.); (M.H.-V.); (E.A.); (A.K.B.); (K.P.R.); (M.H.); (H.R.); (T.H.A.T.)
| | - Marie Hagen
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (S.B.-B.); (M.H.-V.); (E.A.); (A.K.B.); (K.P.R.); (M.H.); (H.R.); (T.H.A.T.)
| | - Håkon Reikvam
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (S.B.-B.); (M.H.-V.); (E.A.); (A.K.B.); (K.P.R.); (M.H.); (H.R.); (T.H.A.T.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Emmet McCormack
- Department of Clinical Science, Centre for Pharmacy, University of Bergen, 5015 Bergen, Norway; (C.L.); (E.M.)
| | - Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (S.B.-B.); (M.H.-V.); (E.A.); (A.K.B.); (K.P.R.); (M.H.); (H.R.); (T.H.A.T.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Tor Henrik Anderson Tvedt
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (S.B.-B.); (M.H.-V.); (E.A.); (A.K.B.); (K.P.R.); (M.H.); (H.R.); (T.H.A.T.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
4
|
Carbó JM, Cornet-Masana JM, Cuesta-Casanovas L, Delgado-Martínez J, Banús-Mulet A, Clément-Demange L, Serra C, Catena J, Llebaria A, Esteve J, Risueño RM. A Novel Family of Lysosomotropic Tetracyclic Compounds for Treating Leukemia. Cancers (Basel) 2023; 15:1912. [PMID: 36980800 PMCID: PMC10047683 DOI: 10.3390/cancers15061912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematological cancer characterized by poor prognosis and frequent relapses. Aside from specific mutation-related changes, in AML, the overall function of lysosomes and mitochondria is drastically altered to fulfill the elevated biomass and bioenergetic demands. On the basis of previous results, in silico drug discovery screening was used to identify a new family of lysosome-/mitochondria-targeting compounds. These novel tetracyclic hits, with a cationic amphiphilic structure, specifically eradicate leukemic cells by inducing both mitochondrial damage and apoptosis, and simultaneous lysosomal membrane leakiness. Lysosomal leakiness does not only elicit canonical lysosome-dependent cell death, but also activates the terminal differentiation of AML cells through the Ca2+-TFEB-MYC signaling axis. In addition to being an effective monotherapy, its combination with the chemotherapeutic arsenic trioxide (ATO) used in other types of leukemia is highly synergistic in AML cells, widening the therapeutic window of the treatment. Moreover, the compounds are effective in a wide panel of cancer cell lines and possess adequate pharmacological properties rendering them promising drug candidates for the treatment of AML and other neoplasias.
Collapse
Affiliation(s)
- José M. Carbó
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain
- Leukos Biotech, 08021 Barcelona, Spain
| | | | - Laia Cuesta-Casanovas
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain
- Faculty of Biosciences, Autonomous University of Barcelona, 08193 Barcelona, Spain
| | - Jennifer Delgado-Martínez
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain
- Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | | | | | - Carme Serra
- MCS, Laboratory of Medicinal Chemistry and Synthesis, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- SIMChem, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Juanlo Catena
- MCS, Laboratory of Medicinal Chemistry and Synthesis, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- SIMChem, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry and Synthesis, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Jordi Esteve
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain
- Department of Hematology, Hospital Clínic, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Ruth M. Risueño
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain
| |
Collapse
|
5
|
Cuesta-Casanovas L, Delgado-Martínez J, Cornet-Masana JM, Carbó JM, Clément-Demange L, Risueño RM. Lysosome-mediated chemoresistance in acute myeloid leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:233-244. [PMID: 35582535 PMCID: PMC8992599 DOI: 10.20517/cdr.2021.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Despite the outstanding advances in understanding the biology underlying the pathophysiology of acute myeloid leukemia (AML) and the promising preclinical data published lastly, AML treatment still relies on a classic chemotherapy regimen largely unchanged for the past five decades. Recently, new drugs have been approved for AML, but the real clinical benefit is still under evaluation. Nevertheless, primary refractory and relapse AML continue to represent the main clinical challenge, as the majority of AML patients will succumb to the disease despite achieving a complete remission during the induction phase. As such, treatments for chemoresistant AML represent an unmet need in this disease. Although great efforts have been made to decipher the biological basis for leukemogenesis, the mechanism by which AML cells become resistant to chemotherapy is largely unknown. The identification of the signaling pathways involved in resistance may lead to new combinatory therapies or new therapeutic approaches suitable for this subset of patients. Several mechanisms of chemoresistance have been identified, including drug transporters, key secondary messengers, and metabolic regulators. However, no therapeutic approach targeting chemoresistance has succeeded in clinical trials, especially due to broad secondary effects in healthy cells. Recent research has highlighted the importance of lysosomes in this phenomenon. Lysosomes' key role in resistance to chemotherapy includes the potential to sequester drugs, central metabolic signaling role, and gene expression regulation. These results provide further evidence to support the development of new therapeutic approaches that target lysosomes in AML.
Collapse
Affiliation(s)
- Laia Cuesta-Casanovas
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona 08916, Spain
- Faculty of Biosciences, Autonomous University of Barcelona, Bellaterra (Cerdanyola del Vallès) 08193, Spain
| | - Jennifer Delgado-Martínez
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona 08916, Spain
- Faculty of Pharmacy, University of Barcelona, Barcelona 08028, Spain
| | | | - José M. Carbó
- Leukos Biotech, Muntaner, 383, Barcelona 08036, Spain
| | | | - Ruth M. Risueño
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona 08916, Spain
| |
Collapse
|
6
|
Aasebø E, Brenner AK, Hernandez-Valladares M, Birkeland E, Mjaavatten O, Reikvam H, Selheim F, Berven FS, Bruserud Ø. Patient Heterogeneity in Acute Myeloid Leukemia: Leukemic Cell Communication by Release of Soluble Mediators and Its Effects on Mesenchymal Stem Cells. Diseases 2021; 9:diseases9040074. [PMID: 34698165 PMCID: PMC8544451 DOI: 10.3390/diseases9040074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/01/2023] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive bone marrow malignancy, and non-leukemic stromal cells (including mesenchymal stem cells, MSCs) are involved in leukemogenesis and show AML-supporting effects. We investigated how constitutive extracellular mediator release by primary human AML cells alters proteomic profiles of normal bone marrow MSCs. An average of 6814 proteins (range 6493−6918 proteins) were quantified for 41 MSC cultures supplemented with AML-cell conditioned medium, whereas an average of 6715 proteins (range 6703−6722) were quantified for untreated control MSCs. The AML effect on global MSC proteomic profiles varied between patients. Hierarchical clustering analysis identified 10 patients (5/10 secondary AML) showing more extensive AML-effects on the MSC proteome, whereas the other 31 patients clustered together with the untreated control MSCs and showed less extensive AML-induced effects. These two patient subsets differed especially with regard to MSC levels of extracellular matrix and mitochondrial/metabolic regulatory proteins. Less than 10% of MSC proteins were significantly altered by the exposure to AML-conditioned media; 301 proteins could only be quantified after exposure to conditioned medium and 201 additional proteins were significantly altered compared with the levels in control samples (153 increased, 48 decreased). The AML-modulated MSC proteins formed several interacting networks mainly reflecting intracellular organellar structure/trafficking but also extracellular matrix/cytokine signaling, and a single small network reflecting altered DNA replication. Our results suggest that targeting of intracellular trafficking and/or intercellular communication is a possible therapeutic strategy in AML.
Collapse
Affiliation(s)
- Elise Aasebø
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway; (E.A.); (A.K.B.); (H.R.)
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5020 Bergen, Norway; (M.H.-V.); (E.B.); (O.M.); (F.S.); (F.S.B.)
| | - Annette K. Brenner
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway; (E.A.); (A.K.B.); (H.R.)
| | - Maria Hernandez-Valladares
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5020 Bergen, Norway; (M.H.-V.); (E.B.); (O.M.); (F.S.); (F.S.B.)
| | - Even Birkeland
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5020 Bergen, Norway; (M.H.-V.); (E.B.); (O.M.); (F.S.); (F.S.B.)
| | - Olav Mjaavatten
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5020 Bergen, Norway; (M.H.-V.); (E.B.); (O.M.); (F.S.); (F.S.B.)
| | - Håkon Reikvam
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway; (E.A.); (A.K.B.); (H.R.)
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Frode Selheim
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5020 Bergen, Norway; (M.H.-V.); (E.B.); (O.M.); (F.S.); (F.S.B.)
| | - Frode S. Berven
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5020 Bergen, Norway; (M.H.-V.); (E.B.); (O.M.); (F.S.); (F.S.B.)
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway; (E.A.); (A.K.B.); (H.R.)
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence:
| |
Collapse
|
7
|
Grønningsæter IS, Reikvam H, Aasebø E, Bartaula-Brevik S, Hernandez-Valladares M, Selheim F, Berven FS, Tvedt TH, Bruserud Ø, Hatfield KJ. Effects of the Autophagy-Inhibiting Agent Chloroquine on Acute Myeloid Leukemia Cells; Characterization of Patient Heterogeneity. J Pers Med 2021; 11:jpm11080779. [PMID: 34442423 PMCID: PMC8399694 DOI: 10.3390/jpm11080779] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a highly conserved cellular degradation process that prevents cell damage and promotes cell survival, and clinical efforts have exploited autophagy inhibition as a therapeutic strategy in cancer. Chloroquine is a well-known antimalarial agent that inhibits late-stage autophagy. We evaluated the effects of chloroquine on cell viability and proliferation of acute myeloid leukemia acute myeloid leukemia (AML) cells derived from 81 AML patients. Our results show that chloroquine decreased AML cell viability and proliferation for the majority of patients. Furthermore, a subgroup of AML patients showed a greater susceptibility to chloroquine, and using hierarchical cluster analysis, we identified 99 genes upregulated in this patient subgroup, including several genes related to leukemogenesis. The combination of chloroquine with low-dose cytarabine had an additive inhibitory effect on AML cell proliferation. Finally, a minority of patients showed increased extracellular constitutive mediator release in the presence of chloroquine, which was associated with strong antiproliferative effects of chloroquine as well as cytarabine. We conclude that chloroquine has antileukemic activity and should be further explored as a therapeutic drug against AML in combination with other cytotoxic or metabolic drugs; however, due to the patient heterogeneity, chloroquine therapy will probably be effective only for selected patients.
Collapse
Affiliation(s)
- Ida Sofie Grønningsæter
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (I.S.G.); (H.R.); (E.A.); (S.B.-B.)
- Department of Medicine, Akershus University Hospital, N-1478 Lørenskog, Norway
| | - Håkon Reikvam
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (I.S.G.); (H.R.); (E.A.); (S.B.-B.)
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway;
| | - Elise Aasebø
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (I.S.G.); (H.R.); (E.A.); (S.B.-B.)
- The Proteomics Facility of the University of Bergen (PROBE), Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway; (M.H.-V.); (F.S.); (F.S.B.)
| | - Sushma Bartaula-Brevik
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (I.S.G.); (H.R.); (E.A.); (S.B.-B.)
| | - Maria Hernandez-Valladares
- The Proteomics Facility of the University of Bergen (PROBE), Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway; (M.H.-V.); (F.S.); (F.S.B.)
- The Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | - Frode Selheim
- The Proteomics Facility of the University of Bergen (PROBE), Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway; (M.H.-V.); (F.S.); (F.S.B.)
- The Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | - Frode S. Berven
- The Proteomics Facility of the University of Bergen (PROBE), Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway; (M.H.-V.); (F.S.); (F.S.B.)
- The Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | - Tor Henrik Tvedt
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway;
- Department of Hematology, Oslo University Hospital—The National Hospital, N-0372 Oslo, Norway
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (I.S.G.); (H.R.); (E.A.); (S.B.-B.)
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway;
- Correspondence: (Ø.B.); (K.J.H.)
| | - Kimberley Joanne Hatfield
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (I.S.G.); (H.R.); (E.A.); (S.B.-B.)
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, N-5009 Bergen, Norway
- Correspondence: (Ø.B.); (K.J.H.)
| |
Collapse
|
8
|
Aasebø E, Berven FS, Bartaula-Brevik S, Stokowy T, Hovland R, Vaudel M, Døskeland SO, McCormack E, Batth TS, Olsen JV, Bruserud Ø, Selheim F, Hernandez-Valladares M. Proteome and Phosphoproteome Changes Associated with Prognosis in Acute Myeloid Leukemia. Cancers (Basel) 2020; 12:cancers12030709. [PMID: 32192169 PMCID: PMC7140113 DOI: 10.3390/cancers12030709] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/05/2020] [Accepted: 03/13/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematological cancer that mainly affects the elderly. Although complete remission (CR) is achieved for the majority of the patients after induction and consolidation therapies, nearly two-thirds relapse within a short interval. Understanding biological factors that determine relapse has become of major clinical interest in AML. We utilized liquid chromatography tandem mass spectrometry (LC-MS/MS) to identify the protein changes and protein phosphorylation events associated with AML relapse in primary cells from 41 AML patients at time of diagnosis. Patients were defined as relapse-free if they had not relapsed within a five-year clinical follow-up after AML diagnosis. Relapse was associated with increased expression of RNA processing proteins and decreased expression of V-ATPase proteins. We also observed an increase in phosphorylation events catalyzed by cyclin-dependent kinases (CDKs) and casein kinase 2 (CSK2). The biological relevance of the proteome findings was supported by cell proliferation assays using inhibitors of V-ATPase (bafilomycin), CSK2 (CX-4945), CDK4/6 (abemaciclib) and CDK2/7/9 (SNS-032). While bafilomycin preferentially inhibited the cells from relapse patients, the kinase inhibitors were less efficient in these cells. This suggests that therapy against the upregulated kinases could also target the factors inducing their upregulation rather than their activity. This study, therefore, presents markers that could help predict AML relapse and direct therapeutic strategies.
Collapse
Affiliation(s)
- Elise Aasebø
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (E.A.); (S.B.-B.); (T.S.); (M.V.); (Ø.B.)
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (F.S.B.); (F.S.)
| | - Frode S. Berven
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (F.S.B.); (F.S.)
- The Department of Biomedicine, University of Bergen, 5009 Bergen, Norway;
| | - Sushma Bartaula-Brevik
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (E.A.); (S.B.-B.); (T.S.); (M.V.); (Ø.B.)
| | - Tomasz Stokowy
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (E.A.); (S.B.-B.); (T.S.); (M.V.); (Ø.B.)
- Department for Medical Genetics, Haukeland University Hospital, 5021 Bergen, Norway;
| | - Randi Hovland
- Department for Medical Genetics, Haukeland University Hospital, 5021 Bergen, Norway;
- Department of Biological Sciences, University of Bergen, 5006 Bergen, Norway
| | - Marc Vaudel
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (E.A.); (S.B.-B.); (T.S.); (M.V.); (Ø.B.)
| | | | - Emmet McCormack
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway;
| | - Tanveer S. Batth
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark; (T.S.B.); (J.V.O.)
| | - Jesper V. Olsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark; (T.S.B.); (J.V.O.)
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (E.A.); (S.B.-B.); (T.S.); (M.V.); (Ø.B.)
| | - Frode Selheim
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (F.S.B.); (F.S.)
- The Department of Biomedicine, University of Bergen, 5009 Bergen, Norway;
| | - Maria Hernandez-Valladares
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (E.A.); (S.B.-B.); (T.S.); (M.V.); (Ø.B.)
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (F.S.B.); (F.S.)
- Correspondence: ; Tel.: +47-5558-6368
| |
Collapse
|