1
|
Zhou S, Yang Y, Jing Y, Zhu X. Generating advanced CAR-based therapy for hematological malignancies in clinical practice: targets to cell sources to combinational strategies. Front Immunol 2024; 15:1435635. [PMID: 39372412 PMCID: PMC11449748 DOI: 10.3389/fimmu.2024.1435635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has been a milestone breakthrough in the treatment of hematological malignancies, offering an effective therapeutic option for multi-line therapy-refractory patients. So far, abundant CAR-T products have been approved by the United States Food and Drug Administration or China National Medical Products Administration to treat relapsed or refractory hematological malignancies and exhibited unprecedented clinical efficiency. However, there were still several significant unmet needs to be progressed, such as the life-threatening toxicities, the high cost, the labor-intensive manufacturing process and the poor long-term therapeutic efficacy. According to the demands, many researches, relating to notable technical progress and the replenishment of alternative targets or cells, have been performed with promising results. In this review, we will summarize the current research progress in CAR-T eras from the "targets" to "alternative cells", to "combinational drugs" in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Shu Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yuhang Yang
- The First Clinical Medical College, Wuhan University, Wuhan, China
| | - Yulu Jing
- The Second Clinical Medical College, Wuhan University, Wuhan, China
| | - Xiaoying Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Qi WX, Zhang WL, Jing HM. [The impact of immune cells selection on the therapeutic efficacy of CAR-T cell therapy]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:699-704. [PMID: 39231778 PMCID: PMC11388120 DOI: 10.3760/cma.j.cn121090-20240321-00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Indexed: 09/06/2024]
Abstract
Here we summarized novel Chimeric antigen receptor T-cell immunotherapy (CAR-T) based on the immune material aspect. Young healthy donor T cells, stem cell-like memory T cells, human induced pluripotent stem cells and umbilical cord blood T cells are all potential candidates to enhance CAR-T cell therapy depending on their anti-tumor efficacy. Besides, due to less restricted major histocompatibility complex (MHC) mismatch effect, viral specific T cells, γδT cells, invariant natural killer T cells and macrophages also become idealized T cell sources in terms of Universal CAR-T (UCAR-T) cell therapeutics. In addition, studies demonstrated that more balanced CD4(+)/CD8(+) T cell ratio and eliminating monocytes during leukapheresis have a positive influence on CAR-T cell functioning, whereas T cells with higher exhaustion markers expression hampers anti-tumor ability of CAR-T cells after infusion. To avoid application of such T cells or mitigate the impact using immune checkpoint inhibitors is of great importance.
Collapse
Affiliation(s)
- W X Qi
- Department of Hematology, Peking University Third Hospital, Beijing 100191, China
| | - W L Zhang
- Department of Hematology, Peking University Third Hospital, Beijing 100191, China
| | - H M Jing
- Department of Hematology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
3
|
García-García L, G. Sánchez E, Ivanova M, Pastora K, Alcántara-Sánchez C, García-Martínez J, Martín-Antonio B, Ramírez M, González-Murillo Á. Choosing T-cell sources determines CAR-T cell activity in neuroblastoma. Front Immunol 2024; 15:1375833. [PMID: 38601159 PMCID: PMC11004344 DOI: 10.3389/fimmu.2024.1375833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction The clinical success of chimeric antigen receptor-modified T cells (CAR-T cells) for hematological malignancies has not been reproduced for solid tumors, partly due to the lack of cancer-type specific antigens. In this work, we used a novel combinatorial approach consisting of a versatile anti-FITC CAR-T effector cells plus an FITC-conjugated neuroblastoma (NB)-targeting linker, an FITC-conjugated monoclonal antibody (Dinutuximab) that recognizes GD2. Methods We compared cord blood (CB), and CD45RA-enriched peripheral blood leukapheresis product (45RA) as allogeneic sources of T cells, using peripheral blood (PB) as a control to choose the best condition for anti-FITC CAR-T production. Cells were manufactured under two cytokine conditions (IL-2 versus IL-7+IL-15+IL-21) with or without CD3/CD28 stimulation. Immune phenotype, vector copy number, and genomic integrity of the final products were determined for cell characterization and quality control assessment. Functionality and antitumor capacity of CB/45RA-derived anti-FITC CAR-T cells were analyzed in co-culture with different anti-GD2-FITC labeled NB cell lines. Results The IL-7+IL-15+IL-21 cocktail, in addition to co-stimulation signals, resulted in a favorable cell proliferation rate and maintained less differentiated immune phenotypes in both CB and 45RA T cells. Therefore, it was used for CAR-T cell manufacturing and further characterization. CB and CD45RA-derived anti-FITC CAR-T cells cultured with IL-7+IL-15+IL-21 retained a predominantly naïve phenotype compared with controls. In the presence of the NB-FITC targeting, CD4+ CB-derived anti-FITC CAR-T cells showed the highest values of co-stimulatory receptors OX40 and 4-1BB, and CD8+ CAR-T cells exhibited high levels of PD-1 and 4-1BB and low levels of TIM3 and OX40, compared with CAR-T cells form the other sources studied. CB-derived anti-FITC CAR-T cells released the highest amounts of cytokines (IFN-γ and TNF-α) into co-culture supernatants. The viability of NB target cells decreased to 30% when co-cultured with CB-derived CAR-T cells during 48h. Conclusion CB and 45RA-derived T cells may be used as allogeneic sources of T cells to produce CAR-T cells. Moreover, ex vivo culture with IL-7+IL-15+IL-21 could favor CAR-T products with a longer persistence in the host. Our strategy may complement the current use of Dinutuximab in treating NB through its combination with a targeted CAR-T cell approach.
Collapse
Affiliation(s)
- Lorena García-García
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Elena G. Sánchez
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Mariya Ivanova
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Keren Pastora
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Cristina Alcántara-Sánchez
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Jorge García-Martínez
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Progenitor and Cell Therapy Research Group, La Princesa Institute of Health Research, Madrid, Spain
| | - Beatriz Martín-Antonio
- Department of Experimental Hematology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
| | - Manuel Ramírez
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Progenitor and Cell Therapy Research Group, La Princesa Institute of Health Research, Madrid, Spain
| | - África González-Murillo
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Progenitor and Cell Therapy Research Group, La Princesa Institute of Health Research, Madrid, Spain
| |
Collapse
|
4
|
Yu T, Luo C, Zhang H, Tan Y, Yu L. Cord blood-derived CD19-specific chimeric antigen receptor T cells: an off-the-shelf promising therapeutic option for treatment of diffuse large B-cell lymphoma. Front Immunol 2023; 14:1139482. [PMID: 37449207 PMCID: PMC10338183 DOI: 10.3389/fimmu.2023.1139482] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/26/2023] [Indexed: 07/18/2023] Open
Abstract
Purpose Autologous chimeric antigen receptor (CAR) T cell therapy is one of the most significant breakthroughs in hematological malignancies. However, a three-week manufacturing cycle and ineffective T cell dysfunction in some patients hinder the widespread application of auto-CAR T cell therapy. Studies suggest that cord blood (CB), with its unique biological properties, could be an optimal source for CAR T cells, providing a product with 'off-the-shelf' availability. Therefore, exploring the potential of CB as an immunotherapeutic agent is essential for understanding and promoting the further use of CAR T cell therapy. Experimental design We used CB to generate CB-derived CD19-targeting CAR T (CB CD19-CAR T) cells. We assessed the anti-tumor capacity of CB CD19-CAR T cells to kill diffuse large B cell lymphoma (DLBCL) in vitro and in vivo. Results CB CD19-CAR T cells showed the target-specific killing of CD19+ T cell lymphoma cell line BV173 and CD19+ DLBCL cell line SUDHL-4, activated various effector functions, and inhibited tumor progression in a mouse (BALB/c nude) model. However, some exhaustion-associated genes were involved in off-tumor cytotoxicity towards activated lymphocytes. Gene expression profiles confirmed increased chemokines/chemokine receptors and exhaustion genes in CB CD19-CAR T cells upon tumor stimulation compared to CB T cells. They indicated inherent changes in the associated signaling pathways in the constructed CB CAR T cells and targeted tumor processes. Conclusion CB CD19-CAR T cells represent a promising therapeutic strategy for treating DLBCL. The unique biological properties and high availability of CB CD19-CAR T cells make this approach feasible.
Collapse
Affiliation(s)
- Tiantian Yu
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Division of Hematopathology and Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Cancan Luo
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Huihui Zhang
- R&D Department, Qilu Cell Therapy Technology Co., Ltd., Jinan, Shandong, China
| | - Yi Tan
- R&D Department, Qilu Cell Therapy Technology Co., Ltd., Jinan, Shandong, China
| | - Li Yu
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Caël B, Galaine J, Bardey I, Marton C, Fredon M, Biichle S, Poussard M, Godet Y, Angelot-Delettre F, Barisien C, Bésiers C, Adotevi O, Pouthier F, Garnache-Ottou F, Bôle-Richard E. Umbilical Cord Blood as a Source of Less Differentiated T Cells to Produce CD123 CAR-T Cells. Cancers (Basel) 2022; 14:cancers14133168. [PMID: 35804941 PMCID: PMC9264759 DOI: 10.3390/cancers14133168] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/19/2022] Open
Abstract
Simple Summary We used fresh or thawed Umbilical Cord Blood (UCB) to produce CAR-T cells directed against CD123, and we compared their functionality to Peripheral Blood (PB) CAR-T cells. T cells expressing CD123 CAR, derived from UCB, was exhibited through a high transduction rate, activation status, and cytotoxic potential in vitro as PB derived CAR-T cells. Moreover, we obtained T cells that had a less differentiated profile than the PB-derived T cells. UCB derived CAR-T can significantly control tumor progression in mice models. CAR-T obtained from thawed or fresh UCB gives the same results. Abstract Chimeric Antigen Receptor (CAR) therapy has led to great successes in patients with leukemia and lymphoma. Umbilical Cord Blood (UCB), stored in UCB banks, is an attractive source of T cells for CAR-T production. We used a third generation CD123 CAR-T (CD28/4-1BB), which was previously developed using an adult’s Peripheral Blood (PB), to test the ability of obtaining CD123 CAR-T from fresh or cryopreserved UCB. We obtained a cell product with a high and stable transduction efficacy, and a poorly differentiated phenotype of CAR-T cells, while retaining high cytotoxic functions in vitro and in vivo. Moreover, CAR-T produced from cryopreserved UCB are as functional as CAR-T produced from fresh UCB. Overall, these data pave the way for the clinical development of UCB-derived CAR-T. UCB CAR-T could be transferred in an autologous manner (after an UCB transplant) to reduce post-transplant relapses, or in an allogeneic setting, thanks to fewer HLA restrictions which ease the requirements for a match between the donor and recipient.
Collapse
Affiliation(s)
- Blandine Caël
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
| | - Jeanne Galaine
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
| | - Isabelle Bardey
- Activité d’Ingénierie Cellulaire et Tissulaire, Etablissement Français du Sang Bourgogne/Franche-Comté, F-25000 Besançon, France; (I.B.); (F.P.)
| | - Chrystel Marton
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
- Allogenic Stem Cell Transplantation Unit, Department of Hematology, CHU Lille, F-59000 Lille, France
| | - Maxime Fredon
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
| | - Sabeha Biichle
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
| | - Margaux Poussard
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
| | - Yann Godet
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
| | - Fanny Angelot-Delettre
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
- EFS Bourgogne/Franche-Comté, F-25000 Besançon, France;
| | - Christophe Barisien
- Département Collecte et Production de PSL, Etablissement Français du Sang Bourgogne Franche-Comté, F-25000 Besançon, France;
| | | | - Olivier Adotevi
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
- Service Oncologie Médicale, CHU Besançon, F-25000 Besançon, France
| | - Fabienne Pouthier
- Activité d’Ingénierie Cellulaire et Tissulaire, Etablissement Français du Sang Bourgogne/Franche-Comté, F-25000 Besançon, France; (I.B.); (F.P.)
| | - Francine Garnache-Ottou
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
| | - Elodie Bôle-Richard
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
- Correspondence:
| |
Collapse
|
6
|
Lo Presti V, Cornel AM, Plantinga M, Dünnebach E, Kuball J, Boelens JJ, Nierkens S, van Til NP. Efficient lentiviral transduction method to gene modify cord blood CD8 + T cells for cancer therapy applications. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:357-368. [PMID: 33898633 PMCID: PMC8056177 DOI: 10.1016/j.omtm.2021.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/17/2021] [Indexed: 01/01/2023]
Abstract
Adoptive T cell therapy utilizing tumor-specific autologous T cells has shown promising results for cancer treatment. However, the limited numbers of autologous tumor-associated antigen (TAA)-specific T cells and the functional aberrancies, due to disease progression or treatment, remain factors that may significantly limit the success of the therapy. The use of allogeneic T cells, such as umbilical cord blood (CB) derived, overcomes these issues but requires gene modification to induce a robust and specific anti-tumor effect. CB T cells are readily available in CB banks and show low toxicity, high proliferation rates, and increased anti-leukemic effect upon transfer. However, the combination of anti-tumor gene modification and preservation of advantageous immunological traits of CB T cells represent major challenges for the harmonized production of T cell therapy products. In this manuscript, we optimized a protocol for expansion and lentiviral vector (LV) transduction of CB CD8+ T cells, achieving a transduction efficiency up to 83%. Timing of LV treatment, selection of culture media, and the use of different promoters were optimized in the transduction protocol. LentiBOOST was confirmed as a non-toxic transduction enhancer of CB CD8+ T cells, with minor effects on the proliferation capacity and cell viability of the T cells. Positively, the use of LentiBOOST does not affect the functionality of the cells, in the context of tumor cell recognition. Finally, CB CD8+ T cells were more amenable to LV transduction than peripheral blood (PB) CD8+ T cells and maintained a more naive phenotype. In conclusion, we show an efficient method to genetically modify CB CD8+ T cells using LV, which is especially useful for off-the-shelf adoptive cell therapy products for cancer treatment.
Collapse
Affiliation(s)
- Vania Lo Presti
- Center for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Annelisa M Cornel
- Center for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Maud Plantinga
- Center for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Ester Dünnebach
- Center for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jurgen Kuball
- Center for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands.,Department of Hematology, UMC Utrecht, Utrecht, the Netherlands
| | - Jaap Jan Boelens
- Stem Cell Transplant and Cellular Therapies, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stefan Nierkens
- Center for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Niek P van Til
- Center for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands.,AVROBIO, Inc., Cambridge, MA, USA.,Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Cellular therapy approaches harnessing the power of the immune system for personalized cancer treatment. Semin Immunol 2019; 42:101306. [DOI: 10.1016/j.smim.2019.101306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022]
|