1
|
Zeytün E, Altıntop MD, Sever B, Özdemir A, Ellakwa DE, Ocak Z, Ciftci HI, Otsuka M, Fujita M, Radwan MO. A New Series of Antileukemic Agents: Design, Synthesis, In Vitro and In Silico Evaluation of Thiazole-Based ABL1 Kinase Inhibitors. Anticancer Agents Med Chem 2021; 21:1099-1109. [PMID: 32838725 DOI: 10.2174/1871520620666200824100408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/09/2020] [Accepted: 07/31/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND After the approval of imatinib, more than 25 antitumor agents targeting kinases have been approved, and several promising candidates are at various stages of clinical evaluation. OBJECTIVES Due to the importance of the thiazole scaffold in targeted anticancer drug discovery, the goal of this work is to identify new thiazolyl hydrazones as potent ABL1 kinase inhibitors for the management of Chronic Myeloid Leukemia (CML). METHODS New thiazolyl hydrazones (2a-p) were synthesized and investigated for their cytotoxic effects on the K562 CML cell line. Compounds 2h, 2j and 2l showed potent anticancer activity against K562 cell line. The cytotoxic effects of these compounds on other leukemia (HL-60, MT-2 and Jurkat) and HeLa human cervical carcinoma cell lines were also investigated. Furthermore, their cytotoxic effects on Mitogen-Activated Peripheral Blood Mononuclear Cells (MA-PBMCs) were evaluated to determine their selectivity. Due to its selective and potent anticancer activity, compound 2j was benchmarked for its apoptosis-inducing potential on K562 cell line and inhibitory effects on eight different Tyrosine Kinases (TKs), including ABL1 kinase. In order to investigate the binding mode of compound 2j into the ATP binding site of ABL1 kinase (PDB: 1IEP), a molecular docking study was conducted using MOE 2018.01 program. The QikProp module of Schrödinger's Molecular modelling package was used to predict the pharmacokinetic properties of compounds 2a-p. RESULTS 4-(4-(Methylsulfonyl)phenyl)-2-[2-((1,3-benzodioxol-4-yl)methylene)hydrazinyl]thiazole (2j) showed antiproliferative activity against K562 cell line with an IC50 value of 8.87±1.93 μM similar to imatinib (IC50= 6.84±1.11μM). Compound 2j was found to be more effective than imatinib on HL-60, Jurkat and MT-2 cells. Compound 2j also showed cytotoxic activity against HeLa cell line similar to imatinib. The higher selectivity index value of compound 2j than imatinib indicated that its antiproliferative activity was selective. Compound 2j also induced apoptosis in K562 cell line more than imatinib. Among eight TKs, compound 2j showed the strongest inhibitory activity against ABL1 kinase enzyme (IC50= 5.37±1.17μM). According to molecular docking studies, compound 2j exhibited high affinity to the ATP binding site of ABL1 kinase, forming significant intermolecular interactions. On the basis of in silico studies, this compound did not violate Lipinski's rule of five and Jorgensen's rule of three. CONCLUSION Compound 2j stands out as a potential orally bioavailable ABL1 kinase inhibitor for the treatment of CML.
Collapse
Affiliation(s)
- Ebru Zeytün
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Mehlika D Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Doha E Ellakwa
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Zeynep Ocak
- Department of Microbiology, Kocaeli State Hospital, Kocaeli 41300, Turkey
| | - Halil I Ciftci
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto 8620973, Japan
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto 8620973, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto 8620973, Japan
| | - Mohamed O Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto 8620973, Japan
| |
Collapse
|
2
|
Suttorp M, Metzler M, Millot F. Horn of plenty: Value of the international registry for pediatric chronic myeloid leukemia. World J Clin Oncol 2020; 11:308-319. [PMID: 32874947 PMCID: PMC7450816 DOI: 10.5306/wjco.v11.i6.308] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/18/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic myeloid leukemia (CML) in minors is a rare disease which can be effectively treated by tyrosine kinase inhibitors (TKIs) since the year 2000. A majority of pediatricians will encounter one or two CML patients in the course of their careers and will typically have to rely on written information along with their own intuition to provide care. Knowledge of response to TKIs and of age-specific side effects has an impact on the design of pediatric CML trials in many ways aiming to contribute toward greater predictability of clinical improvements. Information from a registry on a rare disease like CML offers the enormous benefit of enabling treating physicians to interact and share their collective experience. The International Registry on Pediatric CML (IR-PCML) was founded at Poitiers/France almost 10 years ago. Since then, the number of collaboration centers and in parallel of registered patients continuously increased (> 550 patients as of December 2019). Ideally, from a given treatment center in a country data are transferred to a national coordinator who interacts with the IR-PCML. In the sense of quality assurance, the registry can offer dissemination of knowledge on state-of-the-art diagnostics (including reference appraisal), optimal treatment approaches, and follow-up procedures within a network that is exerting its strength via participation. With continuous growth during the recent years, very rare subgroups of patients could be identified (e.g., CML diagnosed at age < 3 years, children presenting with specific problems at diagnosis or during course of treatment) which had not been described before. Publications coming from the IR-PCML disseminated this useful information derived from patients who robustly participate and share information about their disease, among themselves and with their caregivers and clinicians. Patient input driving the collection of data on this rare leukemia is the basis for the considerable success of bringing new therapeutics into clinical use.
Collapse
Affiliation(s)
- Meinolf Suttorp
- Pediatric Hemato-Oncology, Medical Faculty, Technical University Dresden, Dresden D-01307, Germany
| | - Markus Metzler
- Pediatric Oncology and Hematology, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen D-9105, Germany
| | - Frédéric Millot
- Inserm CIC 1402, University Hospital Poitiers, Poitiers F-86000, France
| |
Collapse
|
3
|
Huang L, Wei Z, Chang X, Zheng X, Yan J, Huang J, Zhang J, Sheng L. eIF3b regulates the cell proliferation and apoptosis processes in chronic myelogenous leukemia cell lines via regulating the expression of C3G. Biotechnol Lett 2020; 42:1275-1286. [PMID: 32236758 DOI: 10.1007/s10529-020-02878-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/27/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To investigate the functions of eIF3b in chronic myelogenous leukemia (CML). METHODS The expression of eIF3b was inhibited by transfecting aspecifically designed shRNA into the CML cell lines of TK-6 and K562. The CCK8 assay was conducted to determine cell viability, and flow cytometry was used to examine the change in the cell cycle and cell apoptosis. RNAsequencing was applied to screen the candidate targets of eIF3b to identify the underlying mechanisms of eIF3b.An in vivo tumour xenograft mouse model was established by injecting shRNA transfected cells into the NCG mice. The tumour size and body weight of mice were monitored every other day. The mice were sacrificed 2 weeks after the tumour cell injection. The expression of eIF3b and target genes in the tumour tissues were determined by immunohistochemical staining and Western blotting. RESULTS The group with inhibited expression of eIF3b led to about 50% lower cell viability compared with that of the control group (P < 0.05). Flow cytometry suggested that the percentage of increase in apoptotic cells was eight times higher than those in control group for TK-6 and K562 cells (P < 0.05). However, the difference between the cell amounts in the S phase for the experiment and control groups was not significant. After RNAsequencing and further validation via qPCR, C3G was screened as the potential target of eIF3b involved in the cell proliferation and apoptosis of CML cell lines. Subsequent in vivo analysis proved that the inhibition of eIF3b suppressed tumour formation and decreased C3G expression, thereby indicating that C3G was the potential target of eIF3b. CONCLUSION eIF3b is correlated with the cell proliferation and cell apoptosis of CML. Moreover, eIF3b regulation most probably occurs via regulating the expression of C3G.
Collapse
Affiliation(s)
- Laiquan Huang
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu City, 241001, Anhui Province, China
| | - Zhongling Wei
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu City, 241001, Anhui Province, China
| | - Xiangxiang Chang
- Wannan Medical College, Wuhu City, 241001, Anhui Province, China
| | - Xinyuan Zheng
- Wannan Medical College, Wuhu City, 241001, Anhui Province, China
| | - Jiawei Yan
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu City, 241001, Anhui Province, China
| | - Jun Huang
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu City, 241001, Anhui Province, China
| | - Jun Zhang
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu City, 241001, Anhui Province, China
| | - Lili Sheng
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 Zheshan West Road, Wuhu City, 241001, Anhui Province, China.
| |
Collapse
|
4
|
Tolomeo M, Meli M, Grimaudo S. STAT5 and STAT5 Inhibitors in Hematological Malignancies. Anticancer Agents Med Chem 2019; 19:2036-2046. [PMID: 31490767 DOI: 10.2174/1871520619666190906160848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/09/2019] [Accepted: 07/18/2019] [Indexed: 11/22/2022]
Abstract
The JAK-STAT pathway is an important physiologic regulator of different cellular functions including proliferation, apoptosis, differentiation, and immunological responses. Out of six different STAT proteins, STAT5 plays its main role in hematopoiesis and constitutive STAT5 activation seems to be a key event in the pathogenesis of several hematological malignancies. This has led many researchers to develop compounds capable of inhibiting STAT5 activation or interfering with its functions. Several anti-STAT5 molecules have shown potent STAT5 inhibitory activity in vitro. However, compared to the large amount of clinical studies with JAK inhibitors that are currently widely used in the clinics to treat myeloproliferative disorders, the clinical trials with STAT5 inhibitors are very limited. At present, a few STAT5 inhibitors are in phase I or II clinical trials for the treatment of leukemias and graft vs host disease. These studies seem to indicate that such compounds could be well tolerated and useful in reducing the occurrence of resistance to tyrosine kinase inhibitors in chronic myeloid leukemia. Of interest, STAT5 seems to play an important role in the regulation of hematopoietic stem cell self-renewal suggesting that combination therapies including STAT5 inhibitors can erode the cancer stem cell pool and possibly open the way for the complete cancer eradication. In this review, we discuss the implication of STAT5 in hematological malignancies and the results obtained with the novel STAT5 inhibitors.
Collapse
Affiliation(s)
- Manlio Tolomeo
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Maria Meli
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Stefania Grimaudo
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| |
Collapse
|
5
|
Ma Y, Zhang Q, Kong P, Xiong J, Zhang X, Zhang C. Treatment Selection for Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia in the Era of Tyrosine Kinase Inhibitors. Chemotherapy 2019; 64:81-93. [PMID: 31390613 DOI: 10.1159/000501061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/18/2019] [Indexed: 12/20/2022]
Abstract
With the advent of tyrosine kinase inhibitors (TKIs), the treatment of Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) has entered a new era. The efficacy of TKIs compared with other ALL treatment options is emphasized by a rapid increase in the number of TKI clinical trials. Subsequently, the use of traditional approaches, such as combined chemotherapy and even allogeneic hematopoietic stem cell transplantation (allo-HSCT), for the treatment of ALL is being challenged in the clinic. In light of the increased use of TKIs in the clinic, several questions have been raised. First, is it necessary to use intensive chemotherapy during the induction course of therapy to achieve a minimal residual disease (MRD)-negative status? Must a patient reach a complete molecular response/major molecular response before receiving allo-HSCT? Does MRD status affect long-term survival after allo-HSCT? Is auto-HSCT an appropriate alternative for allo-HSCT in those Ph+ ALL patients who lack suitable donors? Here, we review the recent literature in an attempt to summarize the current status of TKI usage in the clinic, including several new therapeutic approaches, provide answers for the above questions, and speculate on the future direction of TKI utilization for the treatment of Ph+ ALL patients.
Collapse
Affiliation(s)
- Yingying Ma
- Hematology Department, State Key Laboratory of Trauma, Burns and Combined Injury, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Quanchao Zhang
- Shigatse Branch, Xinqiao Hospital, Army Medical University (Third Military Medical University), Shigatse, China
| | - Peiyan Kong
- Hematology Department, State Key Laboratory of Trauma, Burns and Combined Injury, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Jingkang Xiong
- Hematology Department, State Key Laboratory of Trauma, Burns and Combined Injury, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Xi Zhang
- Hematology Department, State Key Laboratory of Trauma, Burns and Combined Injury, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Cheng Zhang
- Hematology Department, State Key Laboratory of Trauma, Burns and Combined Injury, Xinqiao Hospital of Army Medical University, Chongqing, China,
| |
Collapse
|
6
|
Molecular dynamics investigation on the Asciminib resistance mechanism of I502L and V468F mutations in BCR-ABL. J Mol Graph Model 2019; 89:242-249. [PMID: 30927708 DOI: 10.1016/j.jmgm.2019.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/23/2019] [Accepted: 03/18/2019] [Indexed: 01/29/2023]
Abstract
Asciminib, a highly selective non-ATP competitive inhibitor of BCR-ABL, has demonstrated to be a promising drug for patients with chronic myeloid leukemia. It is a pity that two resistant mutations (I502L and V468F) have been found during the clinical trial, which is a challenge for the curative effect of Asciminib. In this study, molecular dynamics simulations and molecular mechanics generalized Born surface area (MM-GB/SA) calculations were performed to investigate the molecular mechanism of Asciminib resistance induced by the two mutants. The obtained results indicate that the mutations have adversely influence on the binding of Asciminib to BCR-ABL, as the nonpolar contributions decline in the two mutants. In addition, I502L mutation causes α-helix I' (αI') to shift away from the helical bundle composed of αE, αF, and αH, making the distance between αI' and Asciminib increased. For V468F mutant, the side chain of Phe468 occupies the bottom of the myristoyl pocket (MP), which drives Asciminib to shift toward the outside of MP. Our results provide the molecular insights of Asciminib resistance mechanism in BCR-ABL mutants, which may help the design of novel inhibitors.
Collapse
|
7
|
Menssen HD, Quinlan M, Kemp C, Tian X. Relative Bioavailability and Food Effect Evaluation for 2 Tablet Formulations of Asciminib in a 2-Arm, Crossover, Randomized, Open-Label Study in Healthy Volunteers. Clin Pharmacol Drug Dev 2018; 8:385-394. [PMID: 30059193 DOI: 10.1002/cpdd.602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/18/2018] [Indexed: 12/27/2022]
Abstract
Asciminib (ABL001) is an orally administered allosteric inhibitor of the BCR-ABL tyrosine kinase. The current study evaluated the relative bioavailability of its 2 tablet variants, AAA and NXA, compared with the capsule CSF and assessed the impact of food in healthy participants in a 2-arm, randomized, open-label, 4-way crossover design. The primary pharmacokinetic parameters analyzed were area under the plasma concentration-time curve (AUC) from time 0 to the time of last measurable concentration (AUClast ), AUC from time 0 to infinity (AUCinf ), and peak concentration (Cmax ). Forty-five healthy volunteers were enrolled, 22 in the AAA arm and 23 in the NXA arm. Under fasting conditions, the AUCinf , AUClast , and Cmax of the AAA tablet were similar to those of the capsule, but slightly higher (∼20%) for NXA and decreased with a high-fat meal (∼65%) and a low-fat meal (∼30%) for both tablet formulations. Overall, 20 participants (9 in the AAA arm; 11 in the NXA arm) experienced at least 1 adverse event, the most common in both arms being headache. The study showed that under fasting conditions, tablet AAA had bioavailability similar to that in the capsule CSF. The bioavailability of both tablet formulations decreased with food, with a more pronounced effect observed with a high-fat meal.
Collapse
Affiliation(s)
| | | | - Charisse Kemp
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Xianbin Tian
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| |
Collapse
|