1
|
Quartuccio N, Militano V, Pappalardo M, Filippi L, Bagni O, Moreci AM, Ialuna S. The Objective Response and Disease Control Rates in Patients with Liver Metastastic Breast Cancer Receiving Transarterial Radioembolization: A Meta-Analysis. Curr Oncol 2024; 31:6879-6890. [PMID: 39590139 PMCID: PMC11592458 DOI: 10.3390/curroncol31110508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
AIM To meta-analyze the utility of transarterial radioembolization (TARE) in patients with liver metastatic breast cancer (BC), based on the objective response rate (ORR) and disease control rate (DCR). METHODS A literature search was performed retrieving studies with (1) at least 10 patients with liver metastatic BC treated with TARE and (2) adequate information to derive ORR and DCR. The ORR is the ratio between patients with liver lesions showing complete response (CR) or partial response (PR) over the total number of patients treated with TARE; the DCR is the ratio between patients with CR, PR, or stable disease (SD) over the total number of patients treated with TARE. RESULTS Eighteen studies (650 patients) were eligible; the ORR of TARE resulted 50.71% (95% C.I.: 40.04-61.36) and the DCR resulted 88.37% (95% C.I.: 81.89-93.57). Taking into account resin spheres (395 patients), the ORR was 60.35% (95% C.I.: 46.55-73.36) and the DCR was 92.73% (95% C.I.: 87.17-96.80%). Considering glass spheres (144 patients), the ORR was 32.38% (95% C.I.: 18.43-48.16) and the DCR was 82.69% (95% C.I.: 59.29-97.26). CONCLUSIONS This meta-analysis favors the use of TARE in patients with liver metastatic BC either with resin or glass spheres.
Collapse
Affiliation(s)
- Natale Quartuccio
- Nuclear Medicine Unit, Ospedali Riuniti Villa Sofia-Cervello, 90146 Palermo, Italy; (N.Q.)
| | - Vincenzo Militano
- Nuclear Medicine Unit, Azienda Ospedaliera “Pugliese-Ciaccio”, 88100 Catanzaro, Italy
| | - Marco Pappalardo
- Division of Plastic Surgery, Università degli Studi di Modena e Reggio Emilia, 41121 Modena, Italy;
| | - Luca Filippi
- Nuclear Medicine Unit, Department of Oncohaematology, Fondazione PTV Policlinico Tor Vergata University Hospital, 00133 Roma, Italy;
| | - Oreste Bagni
- Department of Nuclear Medicine, “Santa Maria Goretti” Hospital, 04100 Latina, Italy
| | - Antonino Maria Moreci
- Nuclear Medicine Unit, Ospedali Riuniti Villa Sofia-Cervello, 90146 Palermo, Italy; (N.Q.)
| | - Salvatore Ialuna
- Nuclear Medicine Unit, Ospedali Riuniti Villa Sofia-Cervello, 90146 Palermo, Italy; (N.Q.)
| |
Collapse
|
2
|
Jaksic N, Modesto A, Meillan N, Bordron A, Michalet M, Riou O, Lisbona A, Huguet F. Stereotactic body radiation therapy for liver metastases in oligometastatic disease. Cancer Radiother 2024; 28:75-82. [PMID: 37865603 DOI: 10.1016/j.canrad.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 10/23/2023]
Abstract
Oligometastatic cancers designate cancers in which the number of metastases is less than five, corresponding to a particular biological entity whose prognosis is situated between a localized and metastatic disease. The liver is one of the main sites of metastases. When patients are not suitable for surgery, stereotactic body radiotherapy provides high local control rate, although these data come mainly from retrospective studies, with no phase III study results. The need for a high therapeutic dose (biologically effective dose greater than 100Gy) while respecting the constraints on the organs at risk, and the management of respiratory movements require expertise and sufficient technical prerequisites. The emergence of new techniques such as MRI-guided radiotherapy could further increase the effectiveness of stereotactic radiotherapy of liver metastases, and thus improve the prognosis of these oligometastatic cancers.
Collapse
Affiliation(s)
- N Jaksic
- Institut de cancérologie et radiothérapie Brétillien, 35400 Saint-Malo, France.
| | - A Modesto
- Département de radiothérapie, institut régional du cancer, 31100 Toulouse, France
| | - N Meillan
- Département de radiothérapie, centre hospitalier d'Argenteuil, 95107 Argenteuil, France
| | - A Bordron
- Département de radiothérapie, centre hospitalier universitaire de Brest, 29200 Brest, France
| | - M Michalet
- Département de radiothérapie, institut régional du cancer, 34000 Montpellier, France
| | - O Riou
- Département de radiothérapie, institut régional du cancer, 34000 Montpellier, France
| | - A Lisbona
- Département de radiothérapie, institut régional du cancer, 44800 Saint-Herblain, France
| | - F Huguet
- Service d'oncologie radiothérapie, hôpital Tenon, hôpitaux universitaires Est Parisien, Sorbonne université, 75020 Paris, France
| |
Collapse
|
3
|
Singal AG, Llovet JM, Yarchoan M, Mehta N, Heimbach JK, Dawson LA, Jou JH, Kulik LM, Agopian VG, Marrero JA, Mendiratta-Lala M, Brown DB, Rilling WS, Goyal L, Wei AC, Taddei TH. AASLD Practice Guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma. Hepatology 2023; 78:1922-1965. [PMID: 37199193 PMCID: PMC10663390 DOI: 10.1097/hep.0000000000000466] [Citation(s) in RCA: 593] [Impact Index Per Article: 296.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/01/2023] [Indexed: 05/19/2023]
Affiliation(s)
- Amit G. Singal
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Josep M. Llovet
- Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA
- Translational Research in Hepatic Oncology, Liver Unit, August Pi i Sunyer Biomedical Research Institute, Hospital Clinic, University of Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| | - Mark Yarchoan
- Department of Medical Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Neil Mehta
- University of California, San Francisco, San Francisco, California, USA
| | | | - Laura A. Dawson
- Radiation Medicine Program/University Health Network, Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Janice H. Jou
- Division of Gastroenterology and Hepatology, Oregon Health and Science University, Portland, Oregon, USA
| | - Laura M. Kulik
- Northwestern Medical Faculty Foundation, Chicago, Illinois, USA
| | - Vatche G. Agopian
- The Dumont–University of California, Los Angeles, Transplant Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Jorge A. Marrero
- Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mishal Mendiratta-Lala
- Department of Radiology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Daniel B. Brown
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William S. Rilling
- Division of Interventional Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Lipika Goyal
- Department of Medicine, Stanford School of Medicine, Palo Alto, California, USA
| | - Alice C. Wei
- Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Tamar H. Taddei
- Department of Medicine (Digestive Diseases), Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
4
|
Lee SL, Bassetti MF, Rusthoven CG. The Role of Stereotactic Body Radiation Therapy in the Management of Liver Metastases. Semin Radiat Oncol 2023; 33:181-192. [PMID: 36990635 DOI: 10.1016/j.semradonc.2022.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The liver is a common site for metastatic spread for various primary tumor histologies. Stereotactic body radiation therapy (SBRT) is a non-invasive treatment technique with broad patient candidacy for the ablation of tumors in the liver and other organs. SBRT involves focused, high-dose radiation therapy delivered in one to several treatments, resulting in high rates of local control. Use of SBRT for ablation of oligometastatic disease has increased in recent years and emerging prospective data have demonstrated improvements in progression free and overall survival in some settings. When delivering SBRT to liver metastases, clinicians must balance the priorities of delivering ablative tumor dosing while respecting dose constraints to surrounding organs at risk (OARs). Motion management techniques are crucial for meeting dose constraints, ensuring low rates of toxicity, maintaining quality of life, and can allow for dose escalation. Advanced radiotherapy delivery approaches including proton therapy, robotic radiotherapy, and real-time MR-guided radiotherapy may further improve the accuracy of liver SBRT. In this article, we review the rationale for oligometastases ablation, the clinical outcomes with liver SBRT, tumor dose and OAR considerations, and evolving strategies to improve liver SBRT delivery.
Collapse
Affiliation(s)
- Sangjune Laurence Lee
- Division of Radiation Oncology, University of Calgary, Tom Baker Cancer Centre, Calgary, AB, Canada.
| | - Michael F Bassetti
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, WI
| | - Chad G Rusthoven
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
5
|
Chen Y, Zhou P, Deng Y, Cai X, Sun M, Sun Y, Wu D. ALKBH5-mediated m 6 A demethylation of TIRAP mRNA promotes radiation-induced liver fibrosis and decreases radiosensitivity of hepatocellular carcinoma. Clin Transl Med 2023; 13:e1198. [PMID: 36792369 PMCID: PMC9931500 DOI: 10.1002/ctm2.1198] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Radiation-induced hepatic stellate cell (HSC) activation promotes radiation-induced liver fibrosis (RILF), a complication for hepatocellular carcinoma (HCC) radiotherapy. The demethylase alpha-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5) decreases N6-methyladenylate methylation (m6 A) modification of RNA, while its role in regulating RILF pathogenesis and HCC radiosensitivity remains unknown. METHODS Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA-sequencing (RNA-seq) were used to screen target genes regulated by ALKBH5. HSC with altered ALKBH5 expression was used to assess irradiation-induced HSC activation and the effect of HSC on recruitment and polarisation of monocytes. Key cytokines in medium from irradiated HSC-educated monocytes were identified by cytokine array detection. The effects of blocking ALKBH5 and key cytokines on RILF and HCC radiosensitivity were also evaluated. RESULTS Radiation-induced ALKBH5 expression in HSC mediated m6 A demethylation of toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) mRNA and activated its downstream NF-κB and JNK/Smad2 pathways to promote HSC activation. Additionally, ALKBH5 regulated CCL5 secretion by irradiated HSC to promote monocyte recruitment and M2 macrophage polarisation. Notably, polarised monocytes secreted CCL20 to up-regulate ALKBH5 expression in HSC, and reduce HCC radiosensitivity by activating ALKBH5/TIRAP axis in HCC cells. ALKBH5 knockdown-combined CCR6 (CCL20 receptor) inhibitor significantly alleviated RILF and improved HCC radiosensitivity in mice. HCC patients with high ALKBH5 and TIRAP expression were prone to radiation-induced liver injury and poor tumour response to radiotherapy. CONCLUSIONS Collectively, irradiation up-regulates ALKBH5 in HSC to mediate monocyte recruitment and M2 polarisation and form positive feedback to promote RILF and reduce HCC radiosensitivity. The dual roles of ALKBH5 as a microenvironmental regulator and radiosensitisation target provide new ideas for RILF prevention and radiosensitisation of HCC.
Collapse
Affiliation(s)
- Yuhan Chen
- Department of Radiation OncologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Peitao Zhou
- Department of Radiation OncologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Yixun Deng
- The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Xinni Cai
- The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Mingrui Sun
- The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Yining Sun
- Department of Radiation OncologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Dehua Wu
- Department of Radiation OncologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
| |
Collapse
|
6
|
Liu C, Tadros G, Smith Q, Martinez L, Jeffries J, Yu Z, Yu Q. Selective internal radiation therapy of metastatic breast cancer to the liver: A meta-analysis. Front Oncol 2022; 12:887653. [PMID: 36505832 PMCID: PMC9729947 DOI: 10.3389/fonc.2022.887653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction The aim of this study is to conduct a meta-analysis to assess the efficacy of yttrium-90 selective internal radiation therapy (SIRT) in treating patients with breast cancer with hepatic metastasis. Method PubMed and The Cochrane Library were queried from establishment to January 2021. The following keywords were implemented: "breast", "yttrium", and "radioembolization". The following variables and outcomes were collected: publication year, region, sample size, study design, presence of extrahepatic disease, tumor burden, infused radioactivity, breast cancer subtype, previous treatment, median survival time (MST), length of follow-up, adverse events, and radiographical response such as Response Evaluation Criteria in Solid Tumors (RECIST), modified RECIST (mRECIST), and Positron Emission Tomography Response Criteria in Solid Tumors (PERCIST). Results A total of 24 studies from 14 institutions were included in the present meta-analysis. On the basis of the data from 412 patients, post-embolization MST was 9.8 [95% confidence interval (CI): 9.0-11.6] months. Patients with additional extrahepatic metastasis had a poorer survival rate compared with those with localized hepatic metastasis only (MST: 5.3 vs. 15 months, p < 0.0001). Patients with <25% liver tumor burden exhibited more promising survival than those with >25% (MST: 10.5 vs. 6.8 months, p < 0.0139). On the basis of RECIST, mRECIST, and PERCIST criteria, tumor response rate was 36% (95% CI: 26%-47%), 49% (95% CI: 34%-65%), and 47% (95% CI: 17%-78%), respectively, whereas tumor control rate was 85% (95% CI: 76%-93%), 73% (95% CI: 59%-85%), and 97% (95% CI: 91%-100%), respectively. Conclusion On the basis of the available published evidence, SIRT is feasible and effective in treating patients with breast cancer with liver metastasis. Patients with lower hepatic tumor burden and without extrahepatic metastasis demonstrated more survival benefit. Future randomized controlled trials are warranted.
Collapse
Affiliation(s)
- Chenyu Liu
- School of Medicine, George Washington University, Washington DC, United States
| | - George Tadros
- Department of Surgery, Cleveland Clinic Florida, Weston, FL, United States
| | - Quinn Smith
- Kansas City University, College of Osteopathic Medicine, Kansas City, MO, United States
| | - Linda Martinez
- School of Medicine, Ross University, Miramar, FL, United States
| | - James Jeffries
- Interventional Radiology, University of Chicago, Chicago, IL, United States
| | - Zhiyong Yu
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qian Yu
- Interventional Radiology, University of Chicago, Chicago, IL, United States,*Correspondence: Qian Yu,
| |
Collapse
|
7
|
De la Pinta C. Toward Personalized Medicine in Radiotherapy of Hepatocellular Carcinoma: Emerging Radiomic Biomarker Candidates of Response and Toxicity. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:537-544. [PMID: 34448625 DOI: 10.1089/omi.2021.0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Radiology and radiotherapy are currently undergoing radical transformation with use of biomarkers and digital technologies such as artificial intelligence. These current and upcoming changes in radiology speak of an overarching new vision for personalized medicine. This is particularly evident in the case of radiotherapy of cancers, and of liver cancer in particular. The development of modern radiotherapy with stereotactic body radiotherapy allows targeted treatments to be delivered to the tumor site, limiting the dose to surrounding healthy organs, thus becoming a new therapeutic alternative for hepatocellular carcinoma and other liver tumors. However, not all patients have the same response to radiotherapy or display the same side-effect profile. Biomarkers of response and toxicity in liver radiotherapy would facilitate the vision and practice of personalized medicine. This expert review examines the available molecular, radiomic, and radiogenomic biomarker candidates for acute liver toxicity with potential use for prediction of radiotherapy-induced liver toxicity. To this end, I highlight for oncologists and life scientists that radiomics allows diagnostic images to be analyzed using computer algorithms to extract information imperceptible to the human eye and of relevance to forecasting clinical outcomes. This article underscores particularly (1) the microRNA-based biomarker candidates as among the most promising predictors of radiation-induced liver toxicity and (2) the texture features in radiomic analyses for response prediction. Radiotherapy of hepatocellular carcinoma is edging toward personalized medicine with emerging radiomic biomarker candidates. Future large-scale biomarker studies are called for to enable personalized medicine in liver cancers.
Collapse
Affiliation(s)
- Carolina De la Pinta
- Radiation Oncology Department, Ramon y Cajal University Hospital, IRYCIS, Madrid, Spain
| |
Collapse
|