1
|
Ko DK, Lee H, Lee H, Kang N. Bilateral ankle dorsiflexion force control impairments in older adults. PLoS One 2025; 20:e0319578. [PMID: 40112015 PMCID: PMC11925285 DOI: 10.1371/journal.pone.0319578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/04/2025] [Indexed: 03/22/2025] Open
Abstract
Age-related impairments in ankle dorsiflexion force modulation are associated with gait and balance control deficits and greater fall risk in older adults. This study aimed to investigate age-related changes in bilateral ankle dorsiflexion force control capabilities compared with those for younger adults. The study enrolled 25 older and 25 younger adults. They performed bilateral ankle dorsiflexion force control at 10% and 40% of maximum voluntary contraction (MVC), for vision and no-vision conditions, respectively. Bilateral force control performances were evaluated by calculating force accuracy, variability, and complexity. To estimate bilateral force coordination between feet, vector coding and uncontrolled manifold variables were quantified. Additional correlation analyses were performed to determine potential relationships between age and force control variables in older adults. Older adults demonstrated significantly lower force accuracy with greater overshooting at 10% of MVC than those for younger adults. At 10% and 40% of MVC, older adults significantly showed more variable and less complex force outputs, and these patterns appeared in both vision and no-vision conditions. Moreover, older adults revealed significantly less anti-phase force coordination patterns and lower bilateral motor synergies with increased bad variability than younger adults. The correlation analyses found that lower complexity of bilateral forces was significantly related to increased age. These findings suggest that aging may impair sensorimotor control capabilities in the lower extremities. Considering the importance of ankle dorsiflexion for executing many activities of daily living, future studies may focus on developing training programs for advancing bilateral ankle dorsiflexion force control capabilities.
Collapse
Affiliation(s)
- Do-Kyung Ko
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Hanall Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Hajun Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
- Division of Sport Science, Sport Science Institute and Health Promotion Center, Incheon National University, Incheon, South Korea
| |
Collapse
|
2
|
Buccilli B. Pediatric stroke: We need to look for it. J Neurol Sci 2024; 467:123276. [PMID: 39510868 DOI: 10.1016/j.jns.2024.123276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/28/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024]
Abstract
PURPOSE This review provides a comprehensive overview of the characteristics and diagnosis of pediatric stroke, emphasizing the importance of early recognition and accurate assessment. Pediatric stroke is a complex condition with diverse etiologies, and its timely diagnosis is critical for initiating appropriate interventions and improving clinical outcomes. RECENT FINDINGS Recent advances in neuroimaging techniques, including magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA), have significantly enhanced the diagnostic capabilities for pediatric stroke. Additionally, a better understanding of its underlying etiologies in specific cases, and of the importance of differential diagnosis have improved the outcome and prevention strategies in this vulnerable population. Despite these improvements, though, research still has a long way to go to optimize the management of this condition. SUMMARY Timely and accurate diagnosis of pediatric stroke remains a challenge due to its rarity and variability in clinical presentation, and to the presence of many mimic conditions. The integration of clinical evaluation, neuroimaging, and comorbidities analysis is crucial for achieving a precise diagnosis and guiding tailored treatment strategies for affected children.
Collapse
Affiliation(s)
- Barbara Buccilli
- Icahn School of Medicine at Mount Sinai, Department of Neurosurgery, 1 Gustave L. Levy Place, New York, NY 10029-6574, United States of America
| |
Collapse
|
3
|
Chen B, Zhu Y, Lin M, Zhang Y, Li Y, Ouyang X, Ge S, Lin J, Pan Y, Xu Y, Ding Y, Ge S, Chen F, Song Z, Jiang S, Sun J, Luo L, Ling J, Chen Z, Yue L, Zhou X, Yan F. Expert consensus on the diagnosis and therapy of endo-periodontal lesions. Int J Oral Sci 2024; 16:55. [PMID: 39217161 PMCID: PMC11365950 DOI: 10.1038/s41368-024-00320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 09/04/2024] Open
Abstract
Endo-periodontal lesions (EPLs) involve both the periodontium and pulp tissue and have complicated etiologies and pathogenic mechanisms, including unique anatomical and microbiological characteristics and multiple contributing factors. This etiological complexity leads to difficulties in determining patient prognosis, posing great challenges in clinical practice. Furthermore, EPL-affected teeth require multidisciplinary therapy, including periodontal therapy, endodontic therapy and others, but there is still much debate about the appropriate timing of periodontal therapy and root canal therapy. By compiling the most recent findings on the etiology, pathogenesis, clinical characteristics, diagnosis, therapy, and prognosis of EPL-affected teeth, this consensus sought to support clinicians in making the best possible treatment decisions based on both biological and clinical evidence.
Collapse
Affiliation(s)
- Bin Chen
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yanan Zhu
- Department of Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Minkui Lin
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province & Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yangheng Zhang
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yanfen Li
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Xiangying Ouyang
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Song Ge
- School and Hospital of Stomatology, Zunyi Medical University, Zunyi, China
| | - Jiang Lin
- Department of Stomatology, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Yaping Pan
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yan Xu
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases Jinan, Jinan, China
| | - Faming Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Zhongchen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shaoyun Jiang
- Department of Periodontology, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jiang Sun
- Dalian Stomatological Hospital, Dalian, China
| | - Lijun Luo
- Department of Periodontology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Junqi Ling
- Department of Operative Dentistry and Endodontics, the Affiliated Stomatological Hospital of the Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lin Yue
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Peking University, Beijing, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Fuhua Yan
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Liu X, Pan F, Wang Q, Wang S, Zhang J. Traditional Chinese Rehabilitation Exercise (TCRE) for Myofascial Pain: Current Evidence and Further Challenges. J Pain Res 2024; 17:2801-2810. [PMID: 39220224 PMCID: PMC11366241 DOI: 10.2147/jpr.s482424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Myofascial as a holistic structure emphasizes a holistic approach to intervention and treatment of fascial-related disorders such as neck pain (NP), low back pain (LBP), and knee pain. There are currently adverse effects of medication for diseases related to myofascial. Traditional Chinese rehabilitation exercise (TCRE) is a practical approach to traditional Chinese medicine and is a valuable option for intervening in myofascial-related pain. This article found some research evidence for Baduanjin, Wuqinxi, and Yijinjing in clinical studies of myofascial chain-related pain. The article summarizes the current evidence and finds that TCRE can enhance limb movement function through breathing and slow movements, increase joint movement and flexibility, and reduce joint pathology and stress-induced pain. As for future directions, focus on TCRE in improving the health of older adults and treating long-COVID syndrome, and integrate robotic and TCRE training to frame safe and effective exercise models. Relevant studies have already been registered in the Clinical Trials Registry, and some clinical study protocols have been published. TCRE can be an alternative nonpharmacological rehabilitation therapy to alleviate chronic rheumatic pain symptoms and augment public health management.
Collapse
Affiliation(s)
- Xueen Liu
- Department of Nursing, Beijing Hepingli Hospital, Beijing, People’s Republic of China
| | - Fang Pan
- Department of Nursing, Beijing Hepingli Hospital, Beijing, People’s Republic of China
| | - Qingmei Wang
- Department of Nursing, Beijing Hepingli Hospital, Beijing, People’s Republic of China
| | - Shuai Wang
- Department of Nursing, Beijing Hepingli Hospital, Beijing, People’s Republic of China
| | - Jiale Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Buccilli B. Exploring new horizons: Emerging therapeutic strategies for pediatric stroke. Exp Neurol 2024; 374:114701. [PMID: 38278205 DOI: 10.1016/j.expneurol.2024.114701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/31/2023] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Pediatric stroke presents unique challenges, and optimizing treatment strategies is essential for improving outcomes in this vulnerable population. This review aims to provide an overview of new, innovative, and potential treatments for pediatric stroke, with a primary objective to stimulate further research in this field. Our review highlights several promising approaches in the realm of pediatric stroke management, including but not limited to stem cell therapy and robotic rehabilitation. These innovative interventions offer new avenues for enhancing functional recovery, reducing long-term disability, and tailoring treatments to individual patient needs. The findings of this review underscore the importance of ongoing research and development of innovative treatments in pediatric stroke. These advancements hold significant clinical relevance, offering the potential to improve the lives of children affected by stroke by enhancing the precision, efficacy, and accessibility of therapeutic interventions. Embracing these innovations is essential in our pursuit of better outcomes and a brighter future for pediatric stroke care.
Collapse
Affiliation(s)
- Barbara Buccilli
- Icahn School of Medicine at Mount Sinai, Department of Neurosurgery, 1 Gustave L. Levy Pl, New York, NY 10029, United States of America.
| |
Collapse
|
6
|
Vaish A, Migliorini F, Vaishya R. Artificial intelligence in foot and ankle surgery: current concepts. ORTHOPADIE (HEIDELBERG, GERMANY) 2023; 52:1011-1016. [PMID: 37626240 PMCID: PMC10692015 DOI: 10.1007/s00132-023-04426-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 08/27/2023]
Abstract
The twenty-first century has proven that data are the new gold. Artificial intelligence (AI) driven technologies might potentially change the clinical practice in all medical specialities, including orthopedic surgery. AI has a broad spectrum of subcomponents, including machine learning, which consists of a subdivision called deep learning. AI has the potential to increase healthcare delivery, improve indications and interventions, and minimize errors. In orthopedic surgery. AI supports the surgeon in the evaluation of radiological images, training of surgical residents, and excellent performance of machine-assisted surgery. The AI algorithms improve the administrative and management processes of hospitals and clinics, electronic healthcare databases, monitoring the outcomes, and safety controls. AI models are being developed in nearly all orthopedic subspecialties, including arthroscopy, arthroplasty, tumor, spinal and pediatric surgery. The present study discusses current applications, limitations, and future prospective of AI in foot and ankle surgery.
Collapse
Affiliation(s)
- Abhishek Vaish
- Department of Orthopaedics and Joint Replacement Surgery, Indraprastha Apollo Hospital, Sarita Vihar, 110076, New Delhi, India
| | - Filippo Migliorini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Medical Centre of Aachen, Pauwelsstraße 30, 52064, Aachen, Germany.
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), 39100 Bolzano, Italy.
| | - Raju Vaishya
- Department of Orthopaedics and Joint Replacement Surgery, Indraprastha Apollo Hospital, Sarita Vihar, 110076, New Delhi, India
| |
Collapse
|
7
|
Alhamad R, Seth N, Abdullah HA. Initial Testing of Robotic Exoskeleton Hand Device for Stroke Rehabilitation. SENSORS (BASEL, SWITZERLAND) 2023; 23:6339. [PMID: 37514633 PMCID: PMC10385738 DOI: 10.3390/s23146339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
The preliminary test results of a novel robotic hand rehabilitation device aimed at treatment for the loss of motor abilities in the fingers and thumb due to stroke are presented. This device has been developed in collaboration with physiotherapists who regularly treat individuals who have suffered from a stroke. The device was tested on healthy adults to ensure comfort, user accessibility, and repeatability for various hand sizes in preparation for obtaining permission from regulatory bodies and implementing the design in a full clinical trial. Trials were conducted with 52 healthy individuals ranging in age from 19 to 93 with an average age of 58. A comfort survey and force data ANOVA were performed to measure hand motions and ensure the repeatability and accessibility of the system. Readings from the force sensor (p < 0.05) showed no significant difference between repetitions for each participant. All subjects considered the device comfortable. The device scored a mean comfort value of 8.5/10 on all comfort surveys and received the approval of all physiotherapists involved. The device has satisfied all design specifications, and the positive results of the participants suggest that it can be considered safe and reliable. It can therefore be moved forward for clinical trials with post-stroke users.
Collapse
Affiliation(s)
- Rami Alhamad
- School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Nitin Seth
- School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
8
|
Marconi G, Gopalai AA, Chauhan S. Effects of powered ankle-foot orthoses mass distribution on lower limb muscle forces-a simulation study. Med Biol Eng Comput 2023; 61:1167-1182. [PMID: 36689083 PMCID: PMC10083162 DOI: 10.1007/s11517-023-02778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023]
Abstract
This simulation study aimed to explore the effects of mass and mass distribution of powered ankle-foot orthoses, on net joint moments and individual muscle forces throughout the lower limb. Using OpenSim inverse kinematics, dynamics, and static optimization tools, the gait cycles of ten subjects were analyzed. The biomechanical models of these subjects were appended with ideal powered ankle-foot orthoses of different masses and actuator positions, as to determine the effect that these design factors had on the subject's kinetics during normal walking. It was found that when the mass of the device was distributed more distally and posteriorly on the leg, both the net joint moments and overall lower limb muscle forces were more negatively impacted. However, individual muscle forces were found to have varying results which were attributed to the flow-on effect of the orthosis, the antagonistic pairing of muscles, and how the activity of individual muscles affect each other. It was found that mass and mass distribution of powered ankle-foot orthoses could be optimized as to more accurately mimic natural kinetics, reducing net joint moments and overall muscle forces of the lower limb, and must consider individual muscles as to reduce potentially detrimental muscle fatigue or muscular disuse. OpenSim modelling method to explore the effect of mass and mass distribution on muscle forces and joint moments, showing potential mass positioning and the effects of these positions, mass, and actuation on the muscle force integral.
Collapse
Affiliation(s)
- Grace Marconi
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Australia.
| | | | - Sunita Chauhan
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Australia
| |
Collapse
|
9
|
Stauffer TP, Kim BI, Grant C, Adams SB, Anastasio AT. Robotic Technology in Foot and Ankle Surgery: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:686. [PMID: 36679483 PMCID: PMC9864483 DOI: 10.3390/s23020686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/11/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Recent developments in robotic technologies in the field of orthopaedic surgery have largely been focused on higher volume arthroplasty procedures, with a paucity of attention paid to robotic potential for foot and ankle surgery. The aim of this paper is to summarize past and present developments foot and ankle robotics and describe outcomes associated with these interventions, with specific emphasis on the following topics: translational and preclinical utilization of robotics, deep learning and artificial intelligence modeling in foot and ankle, current applications for robotics in foot and ankle surgery, and therapeutic and orthotic-related utilizations of robotics related to the foot and ankle. Herein, we describe numerous recent robotic advancements across foot and ankle surgery, geared towards optimizing intra-operative performance, improving detection of foot and ankle pathology, understanding ankle kinematics, and rehabilitating post-surgically. Future research should work to incorporate robotics specifically into surgical procedures as other specialties within orthopaedics have done, and to further individualize machinery to patients, with the ultimate goal to improve perioperative and post-operative outcomes.
Collapse
Affiliation(s)
| | - Billy I. Kim
- School of Medicine, Duke University, Durham, NC 27710, USA
| | - Caitlin Grant
- School of Medicine, Duke University, Durham, NC 27710, USA
| | - Samuel B. Adams
- Departmen of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA
| | | |
Collapse
|
10
|
Zhang Q, Wang Y, Zhou M, Li D, Yan J, Liu Q, Wang C, Duan L, Hou D, Long J. Ankle rehabilitation robot training for stroke patients with foot drop: Optimizing intensity and frequency. NeuroRehabilitation 2023; 53:567-576. [PMID: 37927286 PMCID: PMC10789316 DOI: 10.3233/nre-230173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Robotic solutions for ankle joint physical therapy have extensively been researched. The optimal frequency and intensity of training for patients when using the ankle robot is not known which can affect rehabilitation outcome. OBJECTIVE To explore the optimal ankle robot training protocol on foot drop in stroke subjects. METHODS Subjects were randomly divided into four groups, with 9 in each group. The subjects received different intensities (low or high intensity) with frequencies (1 session/day or 2 sessions/day) of robot combination training. Each session lasted 20 minutes and all subjects were trained 5 days a week for 3 weeks. RESULTS After 3 weeks of treatment, all groups showed an improvement in passive and active ankle dorsiflexion range of motion (PROM and AROM) and Fugl-Meyer Assessment for lower extremity (FMA-LE) compared to pre-treatment. When training at the same level of intensity, patients who received 2 sessions/day of training had better improvement in ankle dorsiflexion PROM than those who received 1 session/day. In terms of the improvement in dorsiflexion AROM and FMA-LE, patients who received 2 sessions/day with high intensity training improved better than other protocols. CONCLUSION High frequency and high intensity robot training can be more effective in improving ankle dysfunction.
Collapse
Affiliation(s)
- Qingfang Zhang
- Department of Rehabilitation, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yulong Wang
- Department of Rehabilitation, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Mingchao Zhou
- Department of Rehabilitation, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Dongxia Li
- Department of Rehabilitation, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jie Yan
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Quanquan Liu
- Department of Rehabilitation, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Chunbao Wang
- Department of Research and Development, Guangdong Mingkai Medical Robot Co., Ltd., Zhuhai, China
- School of Mechanical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Lihong Duan
- Department of Rehabilitation, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Dianrui Hou
- Department of Rehabilitation, Nan’ao People’s Hospital of Shenzhen, Shenzhen, China
| | - Jianjun Long
- Department of Rehabilitation, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
11
|
Dostalova K, Tomasek R, Kalova M, Janura M, Rosicky J, Schnitzer M, Demel J. Review of ankle rehabilitation devices for treatment of equinus contracture. Expert Rev Med Devices 2022; 19:721-731. [PMID: 36225151 DOI: 10.1080/17434440.2022.2136029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Equinus contracture is a serious disability and attention should be paid to proper and effective treatment. Most attention is given to neurologically impaired patients, but the incidence of equinus contracture is much higher, for example, in post-traumatic patients. In addition to conventional physical therapy, robotic rehabilitation treatment is one of the promising procedures to precede severe contraction cases and the need for surgery. AREAS COVERED This study aims to cover the description of different types of stationary and wearable ankle rehabilitation devices suitable for the treatment of equinus contracture and point to deficiency in research, clinical trials, and launch of the market. EXPERT OPINION This review provides insight into ankle rehabilitation devices with a focus on equinus contracture. Due to the fact that robotic devices successfully restore the condition of patients, attention should not be paid only to those with neurological impairments. This paper points that future research should be effectively linked to clinical practice with the aim of covering a wider range of disabilities and make an effort to successfully introduce devices from development into the practice.
Collapse
Affiliation(s)
- Kamila Dostalova
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, CZ
| | - Radek Tomasek
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, CZ
| | - Martina Kalova
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, CZ
| | | | | | - Marek Schnitzer
- Department of Biomedical Engineering and Measurement, Technical University of Kosice, SK
| | - Jiri Demel
- Institute of Emergency Medicine, University of Ostrava, CZ.,Trauma Center, Faculty Hospital of Ostrava, CZ
| |
Collapse
|
12
|
Zou Y, Zhang A, Zhang Q, Zhang B, Wu X, Qin T. Design and Experimental Research of 3-RRS Parallel Ankle Rehabilitation Robot. MICROMACHINES 2022; 13:mi13060950. [PMID: 35744564 PMCID: PMC9228808 DOI: 10.3390/mi13060950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022]
Abstract
The ankle is a crucial joint that supports the human body weight. An ankle sprain will adversely affect the patient’s daily life, so it is of great significance to ensure its strength. To help patients with ankle dysfunction to carry out effective rehabilitation training, the bone structure and motion mechanism of the ankle were analyzed in this paper. Referring to the configuration of the lower-mobility parallel mechanism, a 3-RRS (R and S denote revolute and spherical joint respectively) parallel ankle rehabilitation robot (PARR) was proposed. The robot can realize both single and compound ankle rehabilitation training. The structure of the robot was introduced, and the kinematics model was established. The freedom of movement of the robot was analyzed using the screw theory, and the robot kinematics were analyzed using spherical analytics theory. A circular composite rehabilitation trajectory was planned, and the accuracy of the kinematics model was verified by virtual prototype simulation. The Multibody simulation results show that the trajectory of the target point is basically the same as the expected trajectory. The maximum trajectory error is about 2.5 mm in the simulation process, which is within the controllable range. The experimental results of the virtual prototype simulation show that the maximum angular deflection error of the three motors is 2° when running a circular trajectory, which meets the experimental requirements. Finally, a control strategy for passive rehabilitation training was designed, and the effectiveness of this control strategy was verified by a prototype experiment.
Collapse
Affiliation(s)
- Yupeng Zou
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China; (Y.Z.); (A.Z.); (Q.Z.); (B.Z.); (X.W.)
- Xiangyang Key Laboratory of Rehabilitation Medicine and Rehabilitation Engineering Technology, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Andong Zhang
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China; (Y.Z.); (A.Z.); (Q.Z.); (B.Z.); (X.W.)
| | - Qiang Zhang
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China; (Y.Z.); (A.Z.); (Q.Z.); (B.Z.); (X.W.)
| | - Baolong Zhang
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China; (Y.Z.); (A.Z.); (Q.Z.); (B.Z.); (X.W.)
| | - Xiangshu Wu
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China; (Y.Z.); (A.Z.); (Q.Z.); (B.Z.); (X.W.)
| | - Tao Qin
- Xiangyang Key Laboratory of Rehabilitation Medicine and Rehabilitation Engineering Technology, Hubei University of Arts and Science, Xiangyang 441053, China
- School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China
- Correspondence: ; Tel.: +86-186-7107-6897
| |
Collapse
|
13
|
Coley C, Kovelman S, Belschner J, Cleary K, Schladen M, Evans SH, Salvador T, Monfaredi R, Fooladi Talari H, Slagle J, Rana MS. PedBotHome: A Video Game-Based Robotic Ankle Device Created for Home Exercise in Children With Neurological Impairments. Pediatr Phys Ther 2022; 34:212-219. [PMID: 35385456 PMCID: PMC9009250 DOI: 10.1097/pep.0000000000000881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE This pilot study assesses the feasibility of using PedBotHome to promote adherence to a home exercise program, the ability of the device to withstand frequent use, and changes in participant ankle mobility.PedBotHome is a robotic ankle device with integrated video game software designed to improve ankle mobility in children with cerebral palsy. METHODS Eight participants enrolled in a 28-day trial of PedBotHome. Ankle strength, range of motion, and plantar flexor spasticity were measured pre- and posttrial. Performance was monitored remotely, and game settings were modified weekly by physical therapists. RESULTS Four participants met the study goal of 20 days of use. There were statistically significant improvements in ankle strength, spasticity, and range of motion. CONCLUSIONS PedBotHome is a feasible device to engage children with static neurological injuries in ankle home exercise. This pilot study expands the paradigm for future innovative home-based robotic rehabilitation.
Collapse
Affiliation(s)
- Catherine Coley
- Physical Therapy (Drs Coley, Kovelman, and Belschner), Children's National Hospital, Washington, District of Columbia; Sheikh Zayed Research Institute (Drs Cleary and Monfaredi and Messrs Salvador, Fooladi Talari, Slagle, and Rana), Children's National Hospital, Washington, District of Columbia; Georgetown University (Dr Schladen), Washington, District of Columbia; Physical Medicine and Rehabilitation (Dr Evans), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Center for Surgical Care (Mr Rana), Children's National Hospital, Washington, District of Columbia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Payedimarri AB, Ratti M, Rescinito R, Vanhaecht K, Panella M. Effectiveness of Platform-Based Robot-Assisted Rehabilitation for Musculoskeletal or Neurologic Injuries: A Systematic Review. Bioengineering (Basel) 2022; 9:129. [PMID: 35447689 PMCID: PMC9029074 DOI: 10.3390/bioengineering9040129] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/18/2022] Open
Abstract
During the last ten years the use of robotic-assisted rehabilitation has increased significantly. Compared with traditional care, robotic rehabilitation has several potential advantages. Platform-based robotic rehabilitation can help patients recover from musculoskeletal and neurological conditions. Evidence on how platform-based robotic technologies can positively impact on disability recovery is still lacking, and it is unclear which intervention is most effective in individual cases. This systematic review aims to evaluate the effectiveness of platform-based robotic rehabilitation for individuals with musculoskeletal or neurological injuries. Thirty-eight studies met the inclusion criteria and evaluated the efficacy of platform-based rehabilitation robots. Our findings showed that rehabilitation with platform-based robots produced some encouraging results. Among the platform-based robots studied, the VR-based Rutgers Ankle and the Hunova were found to be the most effective robots for the rehabilitation of patients with neurological conditions (stroke, spinal cord injury, Parkinson's disease) and various musculoskeletal ankle injuries. Our results were drawn mainly from studies with low-level evidence, and we think that our conclusions should be taken with caution to some extent and that further studies are needed to better evaluate the effectiveness of platform-based robotic rehabilitation devices.
Collapse
Affiliation(s)
- Anil Babu Payedimarri
- Department of Translational Medicine (DIMET), Università del Piemonte Orientale, 28100 Novara, Italy; (M.R.); (R.R.); (M.P.)
| | - Matteo Ratti
- Department of Translational Medicine (DIMET), Università del Piemonte Orientale, 28100 Novara, Italy; (M.R.); (R.R.); (M.P.)
| | - Riccardo Rescinito
- Department of Translational Medicine (DIMET), Università del Piemonte Orientale, 28100 Novara, Italy; (M.R.); (R.R.); (M.P.)
| | - Kris Vanhaecht
- Department of Public Health and Primary Care, Leuven Institute for Healthcare Policy, KU Leuven, 3000 Leuven, Belgium;
- Department of Quality Management, University Hospitals Leuven, University of Leuven, 3000 Leuven, Belgium
| | - Massimiliano Panella
- Department of Translational Medicine (DIMET), Università del Piemonte Orientale, 28100 Novara, Italy; (M.R.); (R.R.); (M.P.)
| |
Collapse
|
15
|
Application of Wearable Sensors in Actuation and Control of Powered Ankle Exoskeletons: A Comprehensive Review. SENSORS 2022; 22:s22062244. [PMID: 35336413 PMCID: PMC8954890 DOI: 10.3390/s22062244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023]
Abstract
Powered ankle exoskeletons (PAEs) are robotic devices developed for gait assistance, rehabilitation, and augmentation. To fulfil their purposes, PAEs vastly rely heavily on their sensor systems. Human–machine interface sensors collect the biomechanical signals from the human user to inform the higher level of the control hierarchy about the user’s locomotion intention and requirement, whereas machine–machine interface sensors monitor the output of the actuation unit to ensure precise tracking of the high-level control commands via the low-level control scheme. The current article aims to provide a comprehensive review of how wearable sensor technology has contributed to the actuation and control of the PAEs developed over the past two decades. The control schemes and actuation principles employed in the reviewed PAEs, as well as their interaction with the integrated sensor systems, are investigated in this review. Further, the role of wearable sensors in overcoming the main challenges in developing fully autonomous portable PAEs is discussed. Finally, a brief discussion on how the recent technology advancements in wearable sensors, including environment—machine interface sensors, could promote the future generation of fully autonomous portable PAEs is provided.
Collapse
|
16
|
Control Design for CABLEankle, a Cable Driven Manipulator for Ankle Motion Assistance. ACTUATORS 2022. [DOI: 10.3390/act11020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A control design is presented for a cable driven parallel manipulator for performing a controlled motion assistance of a human ankle. Requirements are discussed for a portable, comfortable, and light-weight solution of a wearable device with an overall design with low-cost features and user-oriented operation. The control system utilizes various operational and monitoring sensors to drive the system and also obtain continuous feedback during motion to ensure an effective recovery. This control system for CABLEankle device is designed for both active and passive rehabilitation to facilitate the improvement in both joint mobility and surrounding muscle strength.
Collapse
|
17
|
Gonzalez A, Garcia L, Kilby J, McNair P. Robotic devices for paediatric rehabilitation: a review of design features. Biomed Eng Online 2021; 20:89. [PMID: 34488777 PMCID: PMC8420060 DOI: 10.1186/s12938-021-00920-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/06/2021] [Indexed: 01/11/2023] Open
Abstract
Children with physical disabilities often have limited performance in daily activities, hindering their physical development, social development and mental health. Therefore, rehabilitation is essential to mitigate the adverse effects of the different causes of physical disabilities and improve independence and quality of life. In the last decade, robotic rehabilitation has shown the potential to augment traditional physical rehabilitation. However, to date, most robotic rehabilitation devices are designed for adult patients who differ in their needs compared to paediatric patients, limiting the devices' potential because the paediatric patients' needs are not adequately considered. With this in mind, the current work reviews the existing literature on robotic rehabilitation for children with physical disabilities, intending to summarise how the rehabilitation robots could fulfil children's needs and inspire researchers to develop new devices. A literature search was conducted utilising the Web of Science, PubMed and Scopus databases. Based on the inclusion-exclusion criteria, 206 publications were included, and 58 robotic devices used by children with a physical disability were identified. Different design factors and the treated conditions using robotic technology were compared. Through the analyses, it was identified that weight, safety, operability and motivation were crucial factors to the successful design of devices for children. The majority of the current devices were used for lower limb rehabilitation. Neurological disorders, in particular cerebral palsy, were the most common conditions for which devices were designed. By far, the most common actuator was the electric motor. Usually, the devices present more than one training strategy being the assistive strategy the most used. The admittance/impedance method is the most popular to interface the robot with the children. Currently, there is a trend on developing exoskeletons, as they can assist children with daily life activities outside of the rehabilitation setting, propitiating a wider adoption of the technology. With this shift in focus, it appears likely that new technologies to actuate the system (e.g. serial elastic actuators) and to detect the intention (e.g. physiological signals) of children as they go about their daily activities will be required.
Collapse
Affiliation(s)
- Alberto Gonzalez
- BioDesign Lab, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Lorenzo Garcia
- BioDesign Lab, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand.
| | - Jeff Kilby
- BioDesign Lab, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Peter McNair
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
18
|
Dong M, Zhou Y, Li J, Rong X, Fan W, Zhou X, Kong Y. State of the art in parallel ankle rehabilitation robot: a systematic review. J Neuroeng Rehabil 2021; 18:52. [PMID: 33743757 PMCID: PMC7981854 DOI: 10.1186/s12984-021-00845-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background The ankle joint complex (AJC) is of fundamental importance for balance, support, and propulsion. However, it is particularly susceptible to musculoskeletal and neurological injuries, especially neurological injuries such as drop foot following stroke. An important factor in ankle dysfunction is damage to the central nervous system (CNS). Correspondingly, the fundamental goal of rehabilitation training is to stimulate the reorganization and compensation of the CNS, and to promote the recovery of the motor system’s motor perception function. Therefore, an increasing number of ankle rehabilitation robots have been developed to provide long-term accurate and uniform rehabilitation training of the AJC, among which the parallel ankle rehabilitation robot (PARR) is the most studied. The aim of this study is to provide a systematic review of the state of the art in PARR technology, with consideration of the mechanism configurations, actuator types with different trajectory tracking control techniques, and rehabilitation training methods, thus facilitating the development of new and improved PARRs as a next step towards obtaining clinical proof of their rehabilitation benefits. Methods A literature search was conducted on PubMed, Scopus, IEEE Xplore, and Web of Science for articles related to the design and improvement of PARRs for ankle rehabilitation from each site’s respective inception from January 1999 to September 2020 using the keywords “ parallel”, “ ankle”, and “ robot”. Appropriate syntax using Boolean operators and wildcard symbols was utilized for each database to include a wider range of articles that may have used alternate spellings or synonyms, and the references listed in relevant publications were further screened according to the inclusion criteria and exclusion criteria. Results and discussion Ultimately, 65 articles representing 16 unique PARRs were selected for review, all of which have developed the prototypes with experiments designed to verify their usability and feasibility. From the comparison among these PARRs, we found that there are three main considerations for the mechanical design and mechanism optimization of PARRs, the choice of two actuator types including pneumatic and electrically driven control, the covering of the AJC’s motion space, and the optimization of the kinematic design, actuation design and structural design. The trajectory tracking accuracy and interactive control performance also need to be guaranteed to improve the effect of rehabilitation training and stimulate a patient’s active participation. In addition, the parameters of the reviewed 16 PARRs are summarized in detail with their differences compared by using figures and tables in the order they appeared, showing their differences in the two main actuator types, four exercise modes, fifteen control strategies, etc., which revealed the future research trends related to the improvement of the PARRs. Conclusion The selected studies showed the rapid development of PARRs in terms of their mechanical designs, control strategies, and rehabilitation training methods over the last two decades. However, the existing PARRs all have their own pros and cons, and few of the developed devices have been subjected to clinical trials. Designing a PARR with three degrees of freedom (DOFs) and whereby the mechanism’s rotation center coincides with the AJC rotation center is of vital importance in the mechanism design and optimization of PARRs. In addition, the design of actuators combining the advantages of the pneumatic-driven and electrically driven ones, as well as some new other actuators, will be a research hotspot for the development of PARRs. For the control strategy, compliance control with variable parameters should be further studied, with sEMG signal included to improve the real-time performance. Multimode rehabilitation training methods with multimodal motion intention recognition, real-time online detection and evaluation system should also be further developed to meet the needs of different ankle disability and rehabilitation stages. In addition, the clinical trials are in urgent need to help the PARRs be implementable as an intervention in clinical practice.
Collapse
Affiliation(s)
- Mingjie Dong
- Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Yu Zhou
- Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Jianfeng Li
- Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing, 100124, China.
| | - Xi Rong
- Department of Neurology, the Affiliated Hospital of Qingdao University, 59 Haier Road, Laoshan District, Qingdao, 266000, China
| | - Wenpei Fan
- Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Xiaodong Zhou
- Beijing Institute of Control Engineering, Beijing, 100094, China
| | - Yuan Kong
- Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing, 100124, China
| |
Collapse
|
19
|
Calabrò RS, Billeri L, Ciappina F, Balletta T, Porcari B, Cannavò A, Pignolo L, Manuli A, Naro A. Toward improving functional recovery in spinal cord injury using robotics: a pilot study focusing on ankle rehabilitation. Expert Rev Med Devices 2021; 19:83-95. [PMID: 33616471 DOI: 10.1080/17434440.2021.1894125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Conventional physical therapy interventions are strongly recommended to improve ambulation potential and upright mobility in persons with incomplete spinal cord injury (iSCI). Ankle rehabilitation plays a significant role, as it aims to stem drop foot consequences.Research question: This pilot study aimed to assess the neurophysiological underpinnings of robot-aided ankle rehabilitation (using a platform robot) compared to conventional physiotherapy and its efficacy in improving gait performance and balance in persons with iSCI.Methods: Ten individuals with subacute/chronic iSCI (six males and four females, 39 ± 13 years, time since injury 8 ± 4 months, ASIA impairment scale grade C-D) were provided with one-month intensive training for robot-aided ankle rehabilitation (24 sessions, 1 h daily, six times a week). Clinical (10-Meter Walk Test (10MWT), 6-Minute Walk Test (6MWT), and Timed Up and Go test (TUG)), and electrophysiological aftereffects (surface-EMG from tibialis anterior and medial gastrocnemius muscles to estimate muscle activation patterns; and corticomuscular coherence-CMC-to assess functional synchronization between sensorimotor cortex and muscles, i.e. the functional integrity of corticospinal output) were assessed at baseline (PRE) and after the trial completion (POST). The experimental group (EG) data were compared with those coming from a retrospective control group (CG; n = 10) matched for clinical-demographic characteristics, who previously underwent conventional ankle rehabilitation.Results: the EG achieved a greater improvement in balance and gait as compared to the CG (TUG EG from 70 ± 18 to 45 ± 15 s, p = 0.002; CG from 68 ± 21 to 48 ± 18 s, p = 0.01; group-comparison p = 0.001; 10MWT EG from 0.43 ± 0.11 to 0.51 ± 0.09 m/s, p = 0.006; CG from 0.4 ± 0.13 to 0.45 ± 0.12, p = 0.01; group-comparison p = 0.006; 6 MWT EG from 231 ± 13 to 274 ± 15 m, p < 0.001; CG from 236 ± 13 to 262 ± 15 m, p = 0.003; group-comparison p = 0.01). Furthermore, the EG showed a retraining of muscle activation (an increase within proper movements, with a reduction of co-contractions) and CMC (beta frequency increase within proper movements, i.e. in a framework of preserved motor coordination). The improvements in CMC, gait, balance, and muscle activation were not correlated with each other.Conclusions: Robot-aided ankle rehabilitation improved gait performance by selectively ameliorating CMC, muscle activation patterns, and, lastly, gait balance and speed. Despite CMC, gait, balance, and muscle activation were not correlated, this pilot study suggests that robot-aided ankle rehabilitation may favor a better communication between above-SCI and below-SCI structures. This communication improvement may depend on a more synchronized corticospinal output (as per CMC increase) and a better responsiveness of below-SCI motorneurons to corticospinal output (as per specific and ankle movement focused muscle activation increases at the surface EMG), thus favoring greater recruitment of spinal motor units and, ultimately, improving muscle activation pattern and strength.Significance: Adopting robot-aided ankle rehabilitation protocols for persons with iSCI in the subacute/chronic phase may allow achieving a clinically significant improvement in gait performance.
Collapse
Affiliation(s)
| | - Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | - Tina Balletta
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Bruno Porcari
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | | | | | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| |
Collapse
|
20
|
Decoding of Ankle Joint Movements in Stroke Patients Using Surface Electromyography. SENSORS 2021; 21:s21051575. [PMID: 33668229 PMCID: PMC7956677 DOI: 10.3390/s21051575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/29/2023]
Abstract
Stroke is a cerebrovascular disease (CVD), which results in hemiplegia, paralysis, or death. Conventionally, a stroke patient requires prolonged sessions with physical therapists for the recovery of motor function. Various home-based rehabilitative devices are also available for upper limbs and require minimal or no assistance from a physiotherapist. However, there is no clinically proven device available for functional recovery of a lower limb. In this study, we explored the potential use of surface electromyography (sEMG) as a controlling mechanism for the development of a home-based lower limb rehabilitative device for stroke patients. In this experiment, three channels of sEMG were used to record data from 11 stroke patients while performing ankle joint movements. The movements were then decoded from the sEMG data and their correlation with the level of motor impairment was investigated. The impairment level was quantified using the Fugl-Meyer Assessment (FMA) scale. During the analysis, Hudgins time-domain features were extracted and classified using linear discriminant analysis (LDA) and artificial neural network (ANN). On average, 63.86% ± 4.3% and 67.1% ± 7.9% of the movements were accurately classified in an offline analysis by LDA and ANN, respectively. We found that in both classifiers, some motions outperformed others (p < 0.001 for LDA and p = 0.014 for ANN). The Spearman correlation (ρ) was calculated between the FMA scores and classification accuracies. The results indicate that there is a moderately positive correlation (ρ = 0.75 for LDA and ρ = 0.55 for ANN) between the two of them. The findings of this study suggest that a home-based EMG system can be developed to provide customized therapy for the improvement of functional lower limb motion in stroke patients.
Collapse
|
21
|
Abstract
As one of the most commonly injured joints of the human body, the ankle is often subject to sprains or fractures that require motion assistance to recover mobility. Whereas physiotherapists usually perform rehabilitation in one-on-one sessions with patients, several successful robotic rehabilitation solutions have been proposed in the last years. However, their design is usually bulky and requires the patient to sit or stand in a static position. A lightweight wearable device for ankle motion assistance, the CABLEankle, is here proposed for motion ankle exercising in rehabilitation and training. The CABLEankle is based on a cable-driven S-4SPS parallel architecture, which enables motion assistance over the large motion range of the human ankle in a walking gait. The proposed mechanism design is analyzed with kinematic and static models, and the force closure workspace of the mechanism is discussed with analytical results. Finally, the feasibility of the proposed design is investigated through numerical simulations over the ankle motion range as a characterization of the peculiar motion.
Collapse
|
22
|
Abstract
A deep analysis of ankle mechanical properties is a fundamental step in the design of an exoskeleton, especially if it is to be suitable for both adults and children. This study aims at assessing age-related differences of ankle properties using pediAnklebot. To achieve this aim, we enrolled 16 young adults and 10 children in an experimental protocol that consisted of the evaluation of ankle mechanical impedance and kinematic performance. Ankle impedance was measured by imposing stochastic torque perturbations in dorsi-plantarflexion and inversion-eversion directions. Kinematic performance was assessed by asking participants to perform a goaldirected task. Magnitude and anisotropy of impedance were computed using a multipleinput multiple-output system. Kinematic performance was quantified by computing indices of accuracy, smoothness, and timing. Adults showed greater magnitude of ankle impedance in both directions and for all frequencies, while the anisotropy was higher in children. By analyzing kinematics, children performed movements with lower accuracy and higher smoothness, while no differences were found for the duration of the movement. In addition, adults showed a greater ability to stop the movement when hitting the target. These findings can be useful to a proper development of robotic devices, as well as for implementation of specific training programs.
Collapse
|