1
|
Zhang T, Tyson JJ. Understanding virtual patients efficiently and rigorously by combining machine learning with dynamical modelling. J Pharmacokinet Pharmacodyn 2022; 49:117-131. [PMID: 34985622 PMCID: PMC8837571 DOI: 10.1007/s10928-021-09798-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023]
Abstract
Individual biological organisms are characterized by daunting heterogeneity, which precludes describing or understanding populations of ‘patients’ with a single mathematical model. Recently, the field of quantitative systems pharmacology (QSP) has adopted the notion of virtual patients (VPs) to cope with this challenge. A typical population of VPs represents the behavior of a heterogeneous patient population with a distribution of parameter values over a mathematical model of fixed structure. Though this notion of VPs is a powerful tool to describe patients’ heterogeneity, the analysis and understanding of these VPs present new challenges to systems pharmacologists. Here, using a model of the hypothalamic–pituitary–adrenal axis, we show that an integrated pipeline that combines machine learning (ML) and bifurcation analysis can be used to effectively and efficiently analyse the behaviors observed in populations of VPs. Compared with local sensitivity analyses, ML allows us to capture and analyse the contributions of simultaneous changes of multiple model parameters. Following up with bifurcation analysis, we are able to provide rigorous mechanistic insight regarding the influences of ML-identified parameters on the dynamical system’s behaviors. In this work, we illustrate the utility of this pipeline and suggest that its wider adoption will facilitate the use of VPs in the practice of systems pharmacology.
Collapse
Affiliation(s)
- Tongli Zhang
- Department of Pharmacology & Systems Physiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45219, USA.
| | - John J Tyson
- Department of Biological Sciences, Virginia Polytechnic Institute & State University, Blacksburg, VA, 24061, USA
| |
Collapse
|
2
|
Geerts H, Spiros A. Simulating the Effects of Common Comedications and Genotypes on Alzheimer's Cognitive Trajectory Using a Quantitative Systems Pharmacology Approach. J Alzheimers Dis 2020; 78:413-424. [PMID: 33016912 DOI: 10.3233/jad-200688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Many Alzheimer's disease patients in clinical practice are on polypharmacy for treatment of comorbidities. OBJECTIVE While pharmacokinetic interactions between drugs have been relatively well established with corresponding treatment guidelines, many medications and common genotype variants also affect central brain circuits involved in cognitive trajectory, leading to complex pharmacodynamic interactions and a large variability in clinical trials. METHODS We applied a mechanism-based and ADAS-Cog calibrated Quantitative Systems Pharmacology biophysical model of neuronal circuits relevant for cognition in Alzheimer's disease, to standard-of-care cholinergic therapy with COMTVal158Met, 5-HTTLPR rs25531, and APOE genotypes and with benzodiazepines, antidepressants, and antipsychotics, all together 9,585 combinations. RESULTS The model predicts a variability of up to 14 points on ADAS-Cog at baseline (COMTVV 5-HTTLPRss APOE 4/4 combination is worst) and a four-fold range for the rate of progression. The progression rate is inversely proportional to baseline ADAS-Cog. Antidepressants, benzodiazepines, first-generation more than second generation, and most antipsychotics with the exception of aripiprazole worsen the outcome when added to standard-of-care in mild cases. Low dose second-generation benzodiazepines revert the negative effects of risperidone and olanzapine, but only in mild stages. Non APOE4 carriers with a COMTMM and 5HTTLPRLL are predicted to have the best cognitive performance at baseline but deteriorate somewhat faster over time. However, this effect is significantly modulated by comedications. CONCLUSION Once these simulations are validated, the platform can in principle provide optimal treatment guidance in clinical practice at an individual patient level, identify negative pharmacodynamic interactions with novel targets and address protocol amendments in clinical trials.
Collapse
|
3
|
Future avenues for Alzheimer's disease detection and therapy: liquid biopsy, intracellular signaling modulation, systems pharmacology drug discovery. Neuropharmacology 2020; 185:108081. [PMID: 32407924 DOI: 10.1016/j.neuropharm.2020.108081] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/01/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022]
Abstract
When Alzheimer's disease (AD) disease-modifying therapies will be available, global healthcare systems will be challenged by a large-scale demand for clinical and biological screening. Validation and qualification of globally accessible, minimally-invasive, and time-, cost-saving blood-based biomarkers need to be advanced. Novel pathophysiological mechanisms (and related candidate biomarkers) - including neuroinflammation pathways (TREM2 and YKL-40), axonal degeneration (neurofilament light chain protein), synaptic dysfunction (neurogranin, synaptotagmin, α-synuclein, and SNAP-25) - may be integrated into an expanding pathophysiological and biomarker matrix and, ultimately, integrated into a comprehensive blood-based liquid biopsy, aligned with the evolving ATN + classification system and the precision medicine paradigm. Liquid biopsy-based diagnostic and therapeutic algorithms are increasingly employed in Oncology disease-modifying therapies and medical practice, showing an enormous potential for AD and other brain diseases as well. For AD and other neurodegenerative diseases, newly identified aberrant molecular pathways have been identified as suitable therapeutic targets and are currently investigated by academia/industry-led R&D programs, including the nerve-growth factor pathway in basal forebrain cholinergic neurons, the sigma1 receptor, and the GTPases of the Rho family. Evidence for a clinical long-term effect on cognitive function and brain health span of cholinergic compounds, drug candidates for repositioning programs, and non-pharmacological multidomain interventions (nutrition, cognitive training, and physical activity) is developing as well. Ultimately, novel pharmacological paradigms, such as quantitative systems pharmacology-based integrative/explorative approaches, are gaining momentum to optimize drug discovery and accomplish effective pathway-based strategies for precision medicine. This article is part of the special issue on 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
|
4
|
Geerts H, Wikswo J, van der Graaf PH, Bai JPF, Gaiteri C, Bennett D, Swalley SE, Schuck E, Kaddurah-Daouk R, Tsaioun K, Pelleymounter M. Quantitative Systems Pharmacology for Neuroscience Drug Discovery and Development: Current Status, Opportunities, and Challenges. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2019; 9:5-20. [PMID: 31674729 PMCID: PMC6966183 DOI: 10.1002/psp4.12478] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/09/2019] [Indexed: 12/18/2022]
Abstract
The substantial progress made in the basic sciences of the brain has yet to be adequately translated to successful clinical therapeutics to treat central nervous system (CNS) diseases. Possible explanations include the lack of quantitative and validated biomarkers, the subjective nature of many clinical endpoints, and complex pharmacokinetic/pharmacodynamic relationships, but also the possibility that highly selective drugs in the CNS do not reflect the complex interactions of different brain circuits. Although computational systems pharmacology modeling designed to capture essential components of complex biological systems has been increasingly accepted in pharmaceutical research and development for oncology, inflammation, and metabolic disorders, the uptake in the CNS field has been very modest. In this article, a cross-disciplinary group with representatives from academia, pharma, regulatory, and funding agencies make the case that the identification and exploitation of CNS therapeutic targets for drug discovery and development can benefit greatly from a system and network approach that can span the gap between molecular pathways and the neuronal circuits that ultimately regulate brain activity and behavior. The National Institute of Neurological Disorders and Stroke (NINDS), in collaboration with the National Institute on Aging (NIA), National Institute of Mental Health (NIMH), National Institute on Drug Abuse (NIDA), and National Center for Advancing Translational Sciences (NCATS), convened a workshop to explore and evaluate the potential of a quantitative systems pharmacology (QSP) approach to CNS drug discovery and development. The objective of the workshop was to identify the challenges and opportunities of QSP as an approach to accelerate drug discovery and development in the field of CNS disorders. In particular, the workshop examined the potential for computational neuroscience to perform QSP-based interrogation of the mechanism of action for CNS diseases, along with a more accurate and comprehensive method for evaluating drug effects and optimizing the design of clinical trials. Following up on an earlier white paper on the use of QSP in general disease mechanism of action and drug discovery, this report focuses on new applications, opportunities, and the accompanying limitations of QSP as an approach to drug development in the CNS therapeutic area based on the discussions in the workshop with various stakeholders.
Collapse
Affiliation(s)
- Hugo Geerts
- In Silico Biosciences, Berwyn, Pennsylvania, USA
| | - John Wikswo
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Jane P F Bai
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Chris Gaiteri
- Rush Alzheimer's Disease Center, Rush University, Chicago, Illinois, USA
| | - David Bennett
- Rush Alzheimer's Disease Center, Rush University, Chicago, Illinois, USA
| | | | | | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA
| | - Katya Tsaioun
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Mary Pelleymounter
- Division of Translational Research, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Geerts H, Barrett JE. Neuronal Circuit-Based Computer Modeling as a Phenotypic Strategy for CNS R&D. Front Neurosci 2019; 13:723. [PMID: 31379482 PMCID: PMC6646593 DOI: 10.3389/fnins.2019.00723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
With the success rate of drugs for CNS indications at an all-time low, new approaches are needed to turn the tide of failed clinical trials. This paper reviews the history of CNS drug Discovery over the last 60 years and proposes a new paradigm based on the lessons learned. The initial wave of successful therapeutics discovered using careful clinical observations was followed by an emphasis on a phenotypic target-agnostic approach, often leading to successful drugs with a rich pharmacology. The subsequent introduction of molecular biology and the focus on a target-driven strategy has largely dominated drug discovery efforts over the last 30 years, but has not increased the probability of success, because these highly selective molecules are unlikely to address the complex pathological phenotypes of most CNS disorders. In many cases, reliance on preclinical animal models has lacked robust translational power. We argue that Quantitative Systems Pharmacology (QSP), a mechanism-based computer model of biological processes informed by preclinical knowledge and enhanced by neuroimaging and clinical data could be a new powerful knowledge generator engine and paradigm for rational polypharmacy. Progress in the academic discipline of computational neurosciences, allows one to model the effect of pathology and therapeutic interventions on neuronal circuit firing activity that can relate to clinical phenotypes, driven by complex properties of specific brain region activation states. The model is validated by optimizing the correlation between relevant emergent properties of these neuronal circuits and historical clinical and imaging datasets. A rationally designed polypharmacy target profile will be discovered using reverse engineering and sensitivity analysis. Small molecules will be identified using a combination of Artificial Intelligence methods and computational modeling, tested subsequently in heterologous cellular systems with human targets. Animal models will be used to establish target engagement and for ADME-Tox, with the QSP approach complemented by in vivo preclinical models that can be further refined to increase predictive validity. The QSP platform can also mitigate the variability in clinical trials with the concept of virtual patients. Because the QSP platform integrates knowledge from a wide variety of sources in an actionable simulation, it offers the possibility of substantially improving the success rate of CNS R&D programs while, at the same time, reducing both cost and the number of animals.
Collapse
Affiliation(s)
- Hugo Geerts
- In Silico Biosciences, Inc., Berwyn, IL, United States
| | - James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Hampel H, Goetzl EJ, Kapogiannis D, Lista S, Vergallo A. Biomarker-Drug and Liquid Biopsy Co-development for Disease Staging and Targeted Therapy: Cornerstones for Alzheimer's Precision Medicine and Pharmacology. Front Pharmacol 2019; 10:310. [PMID: 30984002 PMCID: PMC6450260 DOI: 10.3389/fphar.2019.00310] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/14/2019] [Indexed: 11/13/2022] Open
Abstract
Systems biology studies have demonstrated that different (epi)genetic and pathophysiological alterations may be mapped onto a single tumor’s clinical phenotype thereby revealing commonalities shared by cancers with divergent phenotypes. The success of this approach in cancer based on analyses of traditional and emerging body fluid-based biomarkers has given rise to the concept of liquid biopsy enabling a non-invasive and widely accessible precision medicine approach and a significant paradigm shift in the management of cancer. Serial liquid biopsies offer clues about the evolution of cancer in individual patients across disease stages enabling the application of individualized genetically and biologically guided therapies. Moreover, liquid biopsy is contributing to the transformation of drug research and development strategies as well as supporting clinical practice allowing identification of subsets of patients who may enter pathway-based targeted therapies not dictated by clinical phenotypes alone. A similar liquid biopsy concept is emerging for Alzheimer’s disease, in which blood-based biomarkers adaptable to each patient and stage of disease, may be used for positive and negative patient selection to facilitate establishment of high-value drug targets and counter-measures for drug resistance. Going beyond the “one marker, one drug” model, integrated applications of genomics, transcriptomics, proteomics, receptor expression and receptor cell biology and conformational status assessments during biomarker-drug co-development may lead to a new successful era for Alzheimer’s disease therapeutics. We argue that the time is now for implementing a liquid biopsy-guided strategy for the development of drugs that precisely target Alzheimer’s disease pathophysiology in individual patients.
Collapse
Affiliation(s)
- Harald Hampel
- AXA Research Fund & Sorbonne University Chair, Paris, France.,Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'Hôpital, Paris, France.,Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'Hôpital, Paris, France
| | - Edward J Goetzl
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Simone Lista
- AXA Research Fund & Sorbonne University Chair, Paris, France.,Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'Hôpital, Paris, France.,Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'Hôpital, Paris, France
| | - Andrea Vergallo
- AXA Research Fund & Sorbonne University Chair, Paris, France.,Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'Hôpital, Paris, France.,Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'Hôpital, Paris, France
| |
Collapse
|
7
|
Polasek TM, Rostami-Hodjegan A, Yim DS, Jamei M, Lee H, Kimko H, Kim JK, Nguyen PTT, Darwich AS, Shin JG. What Does it Take to Make Model-Informed Precision Dosing Common Practice? Report from the 1st Asian Symposium on Precision Dosing. AAPS JOURNAL 2019; 21:17. [PMID: 30627939 DOI: 10.1208/s12248-018-0286-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
Abstract
Model-informed precision dosing (MIPD) is modeling and simulation in healthcare to predict the drug dose for a given patient based on their individual characteristics that is most likely to improve efficacy and/or lower toxicity in comparison to traditional dosing. This paper describes the background and status of MIPD and the activities at the 1st Asian Symposium of Precision Dosing. The theme of the meeting was the question, "What does it take to make MIPD common practice?" Formal presentations highlighted the distinction between genetic and non-genetic sources of variability in drug exposure and response, the use of modeling and simulation as decision support tools, and the facilitators to MIPD implementation. A panel discussion addressed the types of models used for MIPD, how the pharmaceutical industry views MIPD, ways to upscale MIPD beyond academic hospital centers, and the essential role of healthcare professional education as a way to progress. The meeting concluded with an ongoing commitment to use MIPD to improve patient care.
Collapse
Affiliation(s)
- Thomas M Polasek
- Certara, 100 Overlook Center, Suite 101, Princeton, New Jersey, 08540, USA. .,Centre for Medicines Use and Safety, Monash University, Melbourne, Australia.
| | - Amin Rostami-Hodjegan
- Certara, 100 Overlook Center, Suite 101, Princeton, New Jersey, 08540, USA.,Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Dong-Seok Yim
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Masoud Jamei
- Certara, 100 Overlook Center, Suite 101, Princeton, New Jersey, 08540, USA
| | - Howard Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, South Korea.,Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Holly Kimko
- Janssen Research and Development, Lower Gwynedd Township, Pennsylvania, USA
| | - Jae Kyoung Kim
- Korea Advanced Institute of Advanced Technology, Daedoek Innopolis, Daejeon, South Korea
| | - Phuong Thi Thu Nguyen
- Department of Pharmacology and Clinical Pharmacology, Pharmacogenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Faculty of Pharmacy, Haiphong University of Medicine and Pharmacy, Haiphong, Vietnam
| | - Adam S Darwich
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Jae-Gook Shin
- Department of Pharmacology and Clinical Pharmacology, Pharmacogenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|