1
|
Song L, Lin J, Yang W, Zhang L, Liu H, Wei J, Li Y. Early metabolomics revealed the sensitivity of sacubitril/valsartan to person with end-stage renal disease accompanied by heart failure. J Pharm Biomed Anal 2025; 260:116790. [PMID: 40058083 DOI: 10.1016/j.jpba.2025.116790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/08/2025] [Accepted: 03/02/2025] [Indexed: 04/06/2025]
Abstract
Heart failure (HF) is a major complication in patients with end-stage renal disease (ESRD) and is the leading cause of death in this high-risk population. Sacubitril/Valsartan is an angiotensin receptor-neprilysin inhibitor (ARNI) that has been shown to improve treatment outcomes in patients with ESRD accompanied by HF. Unfortunately, in clinical practice, some patients who received sacubitril/valsartan treatment not only did not show a good therapeutic effect, but also got worse with the passage of time. To explore potential biomarkers for predicting the clinical efficacy of sacubitril/valsartan, serum samples were prospectively collected upon admission and again collected after sacubitril/valsartan treatment was completed. Patients were divided into good response group (GR) and poor response group (PR). At the same time, samples before treatment were divided into GR group and PR group by sample tracing and matching, and metabolomics analysis was conducted. In the end, a total of 9 different metabolites were identified between patients in the early GR and PR groups. In order to find more effective biomarkers, two algorithms, random forest (RF) and support vector machine (SVM), were used for metabolite selection and performance evaluation, and three kinds of Lysophosphatidylcholine (LysoPC) metabolites showed good predictive effect, and the expression of the enzyme phospholipase A2 group IVA (PLA2G4A), associated with this metabolite was significantly elevated in the PR group. The disordered metabolism may reduce the sensitivity of patients to sacubitril/valsartan treatment, and PLA2G4A targeted inhibitors may be a promising therapeutic strategy to improve the sensitivity of patients with ESRD and HF to sacubitril/valsartan treatment.
Collapse
Affiliation(s)
- Lili Song
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiayi Lin
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weiyu Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lijuan Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huimin Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jinxia Wei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Sedighikamal H, Mashayekhan S. Critical assessment of quenching and extraction/sample preparation methods for microorganisms in metabolomics. Metabolomics 2025; 21:40. [PMID: 40082321 DOI: 10.1007/s11306-025-02228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/29/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Advancements in the research of intracellular metabolome have the potential to affect our understanding of biological processes. The applications and findings of intracellular metabolome analysis are useful in understanding cellular pathways, microbial interactions, and the detection of secreted metabolites and their functions. AIM OF REVIEW This work focuses on the analysis of intracellular metabolomes in microorganisms. The techniques used for analyzing the intracellular metabolomes including metabolomics approaches such as mass spectrometry, nuclear magnetic resonance, liquid chromatography, and gas chromatography are discussed. KEY SCIENTIFIC CONCEPTS OF REVIEW Challenges such as sample preparation, data analysis, metabolite extraction, sample storage and collection, and processing techniques were investigated, as they can highlight emerging technologies and advancements in metabolome analysis, future applications in drug discovery, personalized medicine, systems biology, and the limitations and challenges in studying the metabolome of microorganisms.
Collapse
Affiliation(s)
- Hossein Sedighikamal
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, PO Box: 11365-11155, Tehran, Iran
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, PO Box: 11365-11155, Tehran, Iran.
| |
Collapse
|
3
|
Sarafidis K, Agakidou E, Kontou A, Agakidis C, Neu J. Struggling to Understand the NEC Spectrum-Could the Integration of Metabolomics, Clinical-Laboratory Data, and Other Emerging Technologies Help Diagnosis? Metabolites 2024; 14:521. [PMID: 39452903 PMCID: PMC11509608 DOI: 10.3390/metabo14100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is the most prevalent and potentially fatal intestinal injury mainly affecting premature infants, with significant long-term consequences for those who survive. This review explores the scale of the problem, highlighting advancements in epidemiology, the understanding of pathophysiology, and improvements in the prediction and diagnosis of this complex, multifactorial, and multifaced disease. Additionally, we focus on the potential role of metabolomics in distinguishing NEC from other conditions, which could allow for an earlier and more accurate classification of intestinal injuries in infants. By integrating metabolomic data with other diagnostic approaches, it is hoped to enhance our ability to predict outcomes and tailor treatments, ultimately improving care for affected infants.
Collapse
Affiliation(s)
- Kosmas Sarafidis
- 1st Department of Neonatology, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (E.A.); (A.K.)
| | - Eleni Agakidou
- 1st Department of Neonatology, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (E.A.); (A.K.)
| | - Angeliki Kontou
- 1st Department of Neonatology, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (E.A.); (A.K.)
| | - Charalampos Agakidis
- 1st Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Josef Neu
- Department of Pediatrics, Division of Neonatology, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
4
|
Naja K, Anwardeen N, Bashraheel SS, Elrayess MA. Pharmacometabolomics of sulfonylureas in patients with type 2 diabetes: a cross-sectional study. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13305. [PMID: 39355646 PMCID: PMC11442225 DOI: 10.3389/jpps.2024.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/10/2024] [Indexed: 10/03/2024]
Abstract
Background Sulfonylureas have been a longstanding pharmacotherapy in the management of type 2 diabetes, with potential benefits beyond glycemic control. Although sulfonylureas are effective, interindividual variability exists in drug response. Pharmacometabolomics is a potent method for elucidating variations in individual drug response. Identifying unique metabolites associated with treatment response can improve our ability to predict outcomes and optimize treatment strategies for individual patients. Our objective is to identify metabolic signatures associated with good and poor response to sulfonylureas, which could enhance our capability to anticipate treatment outcome. Methods In this cross-sectional study, clinical and metabolomics data for 137 patients with type 2 diabetes who are taking sulfonylurea as a monotherapy or a combination therapy were obtained from Qatar Biobank. Patients were empirically categorized according to their glycosylated hemoglobin levels into poor and good responders to sulfonylureas. To examine variations in metabolic signatures between the two distinct groups, we have employed orthogonal partial least squares discriminant analysis and linear models while correcting for demographic confounders and metformin usage. Results Good responders showed increased levels of acylcholines, gamma glutamyl amino acids, sphingomyelins, methionine, and a novel metabolite 6-bromotryptophan. Conversely, poor responders showed increased levels of metabolites of glucose metabolism and branched chain amino acid metabolites. Conclusion The results of this study have the potential to empower our knowledge of variability in patient response to sulfonylureas, and carry significant implications for advancing precision medicine in type 2 diabetes management.
Collapse
Affiliation(s)
- Khaled Naja
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | | | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha, Qatar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
5
|
Pegoraro C, Domingo-Ortí I, Conejos-Sánchez I, Vicent MJ. Unlocking the Mitochondria for Nanomedicine-based Treatments: Overcoming Biological Barriers, Improving Designs, and Selecting Verification Techniques. Adv Drug Deliv Rev 2024; 207:115195. [PMID: 38325562 DOI: 10.1016/j.addr.2024.115195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/13/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Enhanced targeting approaches will support the treatment of diseases associated with dysfunctional mitochondria, which play critical roles in energy generation and cell survival. Obstacles to mitochondria-specific targeting include the presence of distinct biological barriers and the need to pass through (or avoid) various cell internalization mechanisms. A range of studies have reported the design of mitochondrially-targeted nanomedicines that navigate the complex routes required to influence mitochondrial function; nonetheless, a significant journey lies ahead before mitochondrially-targeted nanomedicines become suitable for clinical use. Moving swiftly forward will require safety studies, in vivo assays confirming effectiveness, and methodologies to validate mitochondria-targeted nanomedicines' subcellular location/activity. From a nanomedicine standpoint, we describe the biological routes involved (from administration to arrival within the mitochondria), the features influencing rational design, and the techniques used to identify/validate successful targeting. Overall, rationally-designed mitochondria-targeted-based nanomedicines hold great promise for precise subcellular therapeutic delivery.
Collapse
Affiliation(s)
- Camilla Pegoraro
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inés Domingo-Ortí
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inmaculada Conejos-Sánchez
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
6
|
Li W, Chen X, Yao M, Sun B, Zhu K, Wang W, Zhang A. LC-MS based untargeted metabolomics studies of the metabolic response of Ginkgo biloba extract on arsenism patients. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116183. [PMID: 38471343 DOI: 10.1016/j.ecoenv.2024.116183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Arsenic is an environmentally ubiquitous toxic metalloid. Chronic exposure to arsenic may lead to arsenicosis, while no specific therapeutic strategies are available for the arsenism patients. And Ginkgo biloba extract (GBE) exhibited protective effect in our previous study. However, the mechanisms by which GBE protects the arsenism patients remain poorly understood. A liquid chromatography-mass spectrometry (LC-MS) based untargeted metabolomics analysis was used to study metabolic response in arsenism patients upon GBE intervention. In total, 39 coal-burning type of arsenism patients and 50 healthy residents were enrolled from Guizhou province of China. The intervention group (n = 39) were arsenism patients orally administered with GBE (three times per day) for continuous 90 days. Plasma samples from 50 healthy controls (HC) and 39 arsenism patients before and after GBE intervention were collected and analyzed by established LC-MS method. Statistical analysis was performed by MetaboAnalyst 5.0 to identify differential metabolites. Multivariate analysis revealed a separation in arsenism patients between before (BG) and after GBE intervention (AG) group. It was observed that 35 differential metabolites were identified between BG and AG group, and 30 of them were completely or partially reversed by GBE intervention, with 14 differential metabolites significantly up-regulated and 16 differential metabolites considerably down-regulated. These metabolites were involved in promoting immune response and anti-inflammatory functions, and alleviating oxidative stress. Taken together, these findings indicate that the GBE intervention could probably exert its protective effects by reversing disordered metabolites modulating these functions in arsenism patients, and provide insights into further exploration of mechanistic studies.
Collapse
Affiliation(s)
- Weiwei Li
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Xiong Chen
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Maolin Yao
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Baofei Sun
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Kai Zhu
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Wenjuan Wang
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China.
| |
Collapse
|
7
|
Rushing BR, Thessen AE, Soliman GA, Ramesh A, Sumner SCJ. The Exposome and Nutritional Pharmacology and Toxicology: A New Application for Metabolomics. EXPOSOME 2023; 3:osad008. [PMID: 38766521 PMCID: PMC11101153 DOI: 10.1093/exposome/osad008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The exposome refers to all of the internal and external life-long exposures that an individual experiences. These exposures, either acute or chronic, are associated with changes in metabolism that will positively or negatively influence the health and well-being of individuals. Nutrients and other dietary compounds modulate similar biochemical processes and have the potential in some cases to counteract the negative effects of exposures or enhance their beneficial effects. We present herein the concept of Nutritional Pharmacology/Toxicology which uses high-information metabolomics workflows to identify metabolic targets associated with exposures. Using this information, nutritional interventions can be designed toward those targets to mitigate adverse effects or enhance positive effects. We also discuss the potential for this approach in precision nutrition where nutrients/diet can be used to target gene-environment interactions and other subpopulation characteristics. Deriving these "nutrient cocktails" presents an opportunity to modify the effects of exposures for more beneficial outcomes in public health.
Collapse
Affiliation(s)
- Blake R. Rushing
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anne E Thessen
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ghada A. Soliman
- Department of Environmental, Occupational and Geospatial Health Sciences, City University of New York-Graduate School of Public Health and Health Policy, New York, NY, USA
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Susan CJ Sumner
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Jian J, He D, Gao S, Tao X, Dong X. Pharmacokinetics in Pharmacometabolomics: Towards Personalized Medication. Pharmaceuticals (Basel) 2023; 16:1568. [PMID: 38004434 PMCID: PMC10675232 DOI: 10.3390/ph16111568] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Indiscriminate drug administration may lead to drug therapy results with varying effects on patients, and the proposal of personalized medication can help patients to receive effective drug therapy. Conventional ways of personalized medication, such as pharmacogenomics and therapeutic drug monitoring (TDM), can only be implemented from a single perspective. The development of pharmacometabolomics provides a research method for the realization of precise drug administration, which integrates the environmental and genetic factors, and applies metabolomics technology to study how to predict different drug therapeutic responses of organisms based on baseline metabolic levels. The published research on pharmacometabolomics has achieved satisfactory results in predicting the pharmacokinetics, pharmacodynamics, and the discovery of biomarkers of drugs. Among them, the pharmacokinetics related to pharmacometabolomics are used to explore individual variability in drug metabolism from the level of metabolism of the drugs in vivo and the level of endogenous metabolite changes. By searching for relevant literature with the keyword "pharmacometabolomics" on the two major literature retrieval websites, PubMed and Web of Science, from 2006 to 2023, we reviewed articles in the field of pharmacometabolomics that incorporated pharmacokinetics into their research. This review explains the therapeutic effects of drugs on the body from the perspective of endogenous metabolites and pharmacokinetic principles, and reports the latest advances in pharmacometabolomics related to pharmacokinetics to provide research ideas and methods for advancing the implementation of personalized medication.
Collapse
Affiliation(s)
- Jingai Jian
- School of Medicine, Shanghai University, Shanghai 200444, China; (J.J.); (D.H.)
| | - Donglin He
- School of Medicine, Shanghai University, Shanghai 200444, China; (J.J.); (D.H.)
| | - Songyan Gao
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China;
| | - Xia Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai 200444, China; (J.J.); (D.H.)
| |
Collapse
|
9
|
Naja K, Anwardeen N, Al-Hariri M, Al Thani AA, Elrayess MA. Pharmacometabolomic Approach to Investigate the Response to Metformin in Patients with Type 2 Diabetes: A Cross-Sectional Study. Biomedicines 2023; 11:2164. [PMID: 37626661 PMCID: PMC10452592 DOI: 10.3390/biomedicines11082164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Metformin constitutes the foundation therapy in type 2 diabetes (T2D). Despite its multiple beneficial effects and widespread use, there is considerable inter-individual variability in response to metformin. Our objective is to identify metabolic signatures associated with poor and good responses to metformin, which may improve our ability to predict outcomes for metformin treatment. In this cross-sectional study, clinical and metabolic data for 119 patients with type 2 diabetes taking metformin were collected from the Qatar Biobank. Patients were empirically dichotomized according to their HbA1C levels into good and poor responders. Differences in the level of metabolites between these two groups were compared using orthogonal partial least square discriminate analysis (OPLS-DA) and linear models. Good responders showed increased levels of sphingomyelins, acylcholines, and glutathione metabolites. On the other hand, poor responders showed increased levels of metabolites resulting from glucose metabolism and gut microbiota metabolites. The results of this study have the potential to increase our knowledge of patient response variability to metformin and carry significant implications for enabling personalized medicine.
Collapse
Affiliation(s)
- Khaled Naja
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
| | - Najeha Anwardeen
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
| | | | - Asmaa A. Al Thani
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
- QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
- QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
10
|
Wang RC, Wang Z. Precision Medicine: Disease Subtyping and Tailored Treatment. Cancers (Basel) 2023; 15:3837. [PMID: 37568653 PMCID: PMC10417651 DOI: 10.3390/cancers15153837] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The genomics-based concept of precision medicine began to emerge following the completion of the Human Genome Project. In contrast to evidence-based medicine, precision medicine will allow doctors and scientists to tailor the treatment of different subpopulations of patients who differ in their susceptibility to specific diseases or responsiveness to specific therapies. The current precision medicine model was proposed to precisely classify patients into subgroups sharing a common biological basis of diseases for more effective tailored treatment to achieve improved outcomes. Precision medicine has become a term that symbolizes the new age of medicine. In this review, we examine the history, development, and future perspective of precision medicine. We also discuss the concepts, principles, tools, and applications of precision medicine and related fields. In our view, for precision medicine to work, two essential objectives need to be achieved. First, diseases need to be classified into various subtypes. Second, targeted therapies must be available for each specific disease subtype. Therefore, we focused this review on the progress in meeting these two objectives.
Collapse
Affiliation(s)
- Richard C. Wang
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Zhixiang Wang
- Department of Medical Genetics, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB T6J 5H4, Canada
| |
Collapse
|
11
|
Guo W, Cao P, Wang X, Hu M, Feng Y. Medicinal Plants for the Treatment of Gastrointestinal Cancers From the Metabolomics Perspective. Front Pharmacol 2022; 13:909755. [PMID: 35833022 PMCID: PMC9271783 DOI: 10.3389/fphar.2022.909755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 12/27/2022] Open
Abstract
Gastrointestinal cancer (GIC), primarily including colorectal cancer, gastric cancer, liver cancer, pancreatic cancer, and esophageal cancer, is one of the most common causes of cancer-related deaths with increasing prevalence and poor prognosis. Medicinal plants have been shown to be a great resource for the treatment of GIC. Due to their complex manifestations of multi-component and multi-target, the underlying mechanisms how they function against GIC remain to be completely deciphered. Cell metabolism is of primary importance in the initialization and development of GIC, which is reported to be a potential target. As an essential supplement to the newest “omics” sciences, metabolomics focuses on the systematic study of the small exogenous and endogenous metabolites involved in extensive biochemical metabolic pathways of living system. In good agreement with the systemic perspective of medicinal plants, metabolomics offers a new insight into the efficacy assessment and action mechanism investigation of medicinal plants as adjuvant therapeutics for GIC therapy. In this review, the metabolomics investigations on metabolism-targeting therapies for GIC in the recent 10 years were systematically reviewed from five aspects of carbohydrate, lipid, amino acid, and nucleotide metabolisms, as well as other altered metabolisms (microbial metabolism, inflammation, and oxidation), with particular attention to the potential of active compounds, extracts, and formulae from medicinal plants. Meanwhile, the current perspectives and future challenges of metabolism-targeting therapies of medicinal plants for GIC were also discussed. In conclusion, the understanding of the action mechanisms of medicinal plants in GIC from the metabolomics perspective will contribute to the clinical application of potential candidates from the resourceful medicinal plants as novel and efficient adjuvant therapeutics for GIC therapy.
Collapse
Affiliation(s)
- Wei Guo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Min Hu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
- *Correspondence: Min Hu, ; Yibin Feng,
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- *Correspondence: Min Hu, ; Yibin Feng,
| |
Collapse
|
12
|
Pharmacokinetic-Pharmacometabolomic Approach in Early-Phase Clinical Trials: A Way Forward for Targeted Therapy in Type 2 Diabetes. Pharmaceutics 2022; 14:pharmaceutics14061268. [PMID: 35745841 PMCID: PMC9231303 DOI: 10.3390/pharmaceutics14061268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/20/2022] Open
Abstract
Pharmacometabolomics in early phase clinical trials demonstrate the metabolic profiles of a subject responding to a drug treatment in a controlled environment, whereas pharmacokinetics measure the drug plasma concentration in human circulation. Application of the personalized peak plasma concentration from pharmacokinetics in pharmacometabolomic studies provides insights into drugs’ pharmacological effects through dysregulation of metabolic pathways or pharmacodynamic biomarkers. This proof-of-concept study integrates personalized pharmacokinetic and pharmacometabolomic approaches to determine the predictive pharmacodynamic response of human metabolic pathways for type 2 diabetes. In this study, we use metformin as a model drug. Metformin is a first-line glucose-lowering agent; however, the variation of metabolites that potentially affect the efficacy and safety profile remains inconclusive. Seventeen healthy subjects were given a single dose of 1000 mg of metformin under fasting conditions. Fifteen sampling time-points were collected and analyzed using the validated bioanalytical LCMS method for metformin quantification in plasma. The individualized peak-concentration plasma samples determined from the pharmacokinetic parameters calculated using Matlab Simbiology were further analyzed with pre-dose plasma samples using an untargeted metabolomic approach. Pharmacometabolomic data processing and statistical analysis were performed using MetaboAnalyst with a functional meta-analysis peaks-to-pathway approach to identify dysregulated human metabolic pathways. The validated metformin calibration ranged from 80.4 to 2010 ng/mL for accuracy, precision, stability and others. The median and IQR for Cmax was 1248 (849–1391) ng/mL; AUC0-infinity was 9510 (7314–10,411) ng·h/mL, and Tmax was 2.5 (2.5–3.0) h. The individualized Cmax pharmacokinetics guided the untargeted pharmacometabolomics of metformin, suggesting a series of provisional predictive human metabolic pathways, which include arginine and proline metabolism, branched-chain amino acid (BCAA) metabolism, glutathione metabolism and others that are associated with metformin’s pharmacological effects of increasing insulin sensitivity and lipid metabolism. Integration of pharmacokinetic and pharmacometabolomic approaches in early-phase clinical trials may pave a pathway for developing targeted therapy. This could further reduce variability in a controlled trial environment and aid in identifying surrogates for drug response pathways, increasing the prediction of responders for dose selection in phase II clinical trials.
Collapse
|
13
|
Gandhi S, Chinnadurai V, Bhadra K, Gupta I, Kanwar RS. Urinary metabolic modulation in human participants residing in Siachen: a 1H NMR metabolomics approach. Sci Rep 2022; 12:9070. [PMID: 35641596 PMCID: PMC9156790 DOI: 10.1038/s41598-022-13031-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022] Open
Abstract
The main physiological challenge in high altitude environment is hypoxia which affects the aerobic metabolism reducing the energy supply. These changes may further progress toward extreme environment-related diseases. These are further reflected in changes in small molecular weight metabolites and metabolic pathways. In the present study, metabolic changes due to chronic environmental hypoxia were assessed using 1H NMR metabolomics by analysing the urinary metabolic profile of 70 people at sea level and 40 people at Siachen camp (3700 m) for 1 year. Multivariate statistical analysis was carried out, and PLSDA detected 15 metabolites based on VIP score > 1. ROC analysis detected cis-aconitate, Nicotinamide Mononucleotide, Tyrosine, Choline and Creatinine metabolites with a high range of sensitivity and specificity. Pathway analysis revealed 16 pathways impact > 0.05, and phenylalanine tyrosine and tryptophan biosynthesis was the most prominent altered pathway indicating metabolic remodelling to meet the energy requirements. TCA cycle, Glycine serine and Threonine metabolism, Glutathione metabolism and Cysteine alterations were other metabolic pathways affected during long-term high-altitude hypoxia exposure. Present findings will help unlock a new dimension for the potential application of NMR metabolomics to address extreme environment-related health problems, early detection and developing strategies to combat high altitude hypoxia.
Collapse
Affiliation(s)
- Sonia Gandhi
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Vijayakumar Chinnadurai
- Cognitive Control and Machine Learning Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - Kuntal Bhadra
- Department of Endocrinology and Thyroid Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - Isha Gupta
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Ratnesh Singh Kanwar
- Department of Endocrinology and Thyroid Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| |
Collapse
|
14
|
Du P, Liu L, Hu T, An Z. Integrative Analysis of Pharmacokinetic and Metabolomic Profiles for Predicting Metabolic Phenotype and Drug Exposure Caused by Sotorasib in Rats. Front Oncol 2022; 12:778035. [PMID: 35449573 PMCID: PMC9017425 DOI: 10.3389/fonc.2022.778035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/28/2022] [Indexed: 11/23/2022] Open
Abstract
Sotorasib is a novel targeted inhibitor of Kirsten rat sarcoma (KRAS) (G12C) that has shown exciting tumor-suppressing effects not only for single targeted agents but also for combination with immune checkpoint inhibitors. However, no integrative analysis of the pharmacokinetics (PK) and pharmacometabolomics (PM) of sotorasib has been reported to date. In the present study, a sensitive and robust high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS) method was firstly developed and fully validated for the quantitation of sotorasib in rat plasma. After one-step protein precipitation, sotorasib and an internal standard (carbamazepine) were separated on a Waters XBrige C18 column (50 mm × 2.1 mm, 3.5 μm) and analyzed in electrospray ionization positive ion (ESI+) mode. The optimized method was fully validated according to guidance and was successfully applied for the PK study of sotorasib at a dose of 10 mg/kg. In addition, a longitudinal and transversal PM was employed and correlated with PK using partial least squares model and Pearson’s analysis. With multivariate statistical analysis, the selected six (AUC model) and nine (Cmax model) metabolites completely distinguished the high- and low-exposure groups after sotorasib treatment, which indicates that these potential biomarkers can predict drug exposure or toxicity. The results of this study will not only shed light on how sotorasib disturbs the metabolic profiles and the relationship between PK and PM but also offer meaningful references for precision therapy in patients with the KRAS (G12C) mutation.
Collapse
Affiliation(s)
- Ping Du
- Department of Pharmacy, Research Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lihong Liu
- Department of Pharmacy, Research Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ting Hu
- Department of Pharmacy, Research Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhuoling An
- Department of Pharmacy, Research Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Alarcon-Barrera JC, Kostidis S, Ondo-Mendez A, Giera M. Recent advances in metabolomics analysis for early drug development. Drug Discov Today 2022; 27:1763-1773. [PMID: 35218927 DOI: 10.1016/j.drudis.2022.02.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 12/25/2022]
Abstract
The pharmaceutical industry adapted proteomics and other 'omics technologies for drug research early following their initial introduction. Although metabolomics lacked behind in this development, it has now become an accepted and widely applied approach in early drug development. Over the past few decades, metabolomics has evolved from a pure exploratory tool to a more mature and quantitative biochemical technology. Several metabolomics-based platforms are now applied during the early phases of drug discovery. Metabolomics analysis assists in the definition of the physiological response and target engagement (TE) markers as well as elucidation of the mode of action (MoA) of drug candidates under investigation. In this review, we highlight recent examples and novel developments of metabolomics analyses applied during early drug development.
Collapse
Affiliation(s)
- Juan Carlos Alarcon-Barrera
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands; Clinical Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Alejandro Ondo-Mendez
- Clinical Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
16
|
Awad A, Madla CM, McCoubrey LE, Ferraro F, Gavins FK, Buanz A, Gaisford S, Orlu M, Siepmann F, Siepmann J, Basit AW. Clinical translation of advanced colonic drug delivery technologies. Adv Drug Deliv Rev 2022; 181:114076. [PMID: 34890739 DOI: 10.1016/j.addr.2021.114076] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Targeted drug delivery to the colon offers a myriad of benefits, including treatment of local diseases, direct access to unique therapeutic targets and the potential for increasing systemic drug bioavailability and efficacy. Although a range of traditional colonic delivery technologies are available, these systems exhibit inconsistent drug release due to physiological variability between and within individuals, which may be further exacerbated by underlying disease states. In recent years, significant translational and commercial advances have been made with the introduction of new technologies that incorporate independent multi-stimuli release mechanisms (pH and/or microbiota-dependent release). Harnessing these advanced technologies offers new possibilities for drug delivery via the colon, including the delivery of biopharmaceuticals, vaccines, nutrients, and microbiome therapeutics for the treatment of both local and systemic diseases. This review details the latest advances in colonic drug delivery, with an emphasis on emerging therapeutic opportunities and clinical technology translation.
Collapse
|
17
|
Ali S, Nedvědová Š, Badshah G, Afridi MS, Abdullah, Dutra LM, Ali U, Faria SG, Soares FL, Rahman RU, Cançado FA, Aoyanagi MM, Freire LG, Santos AD, Barison A, Oliveira CA. NMR spectroscopy spotlighting immunogenicity induced by COVID-19 vaccination to mitigate future health concerns. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:199-214. [PMID: 36032416 PMCID: PMC9393187 DOI: 10.1016/j.crimmu.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
In this review, the disease and immunogenicity affected by COVID-19 vaccination at the metabolic level are described considering the use of nuclear magnetic resonance (NMR) spectroscopy for the analysis of different biological samples. Consistently, we explain how different biomarkers can be examined in the saliva, blood plasma/serum, bronchoalveolar-lavage fluid (BALF), semen, feces, urine, cerebrospinal fluid (CSF) and breast milk. For example, the proposed approach for the given samples can allow one to detect molecular biomarkers that can be relevant to disease and/or vaccine interference in a system metabolome. The analysis of the given biomaterials by NMR often produces complex chemical data which can be elucidated by multivariate statistical tools, such as PCA and PLS-DA/OPLS-DA methods. Moreover, this approach may aid to improve strategies that can be helpful in disease control and treatment management in the future. NMR analysis of various bio-samples can explore disease course and vaccine interaction. Immunogenicity and reactogenicity caused by COVID-19 vaccination can be studied by NMR. Vaccine interaction alters metabolic pathway(s) at a certain stage, and this mechanism can be probed at the metabolic level.
Collapse
|
18
|
Phapale P. Pharmaco-metabolomics opportunities in drug development and clinical research. ANALYTICAL SCIENCE ADVANCES 2021; 2:611-616. [PMID: 38715865 PMCID: PMC10989535 DOI: 10.1002/ansa.202000178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 07/18/2024]
Abstract
Pharmaco-metabolomics uses metabolic phenotypes for the prediction of inter-individual variations in drug response and helps in understanding the mechanisms of drug action. The field has made significant progress over the last 14 years with numerous studies providing clinical evidence for personalised medicine. However, discovered pharmaco-metabolomic biomarkers are not yet translated into clinics due to a lack of large-scale validation. Integration of targeted and untargeted metabolomics workflows into pharmacokinetic analysis and drug development can advance the field from bench to bedside. Also, Indian pharmaceutical research and its bioanalytical infrastructure are in a position to take on these opportunities by addressing challenges such as appropriate training and regulatory compliance.
Collapse
Affiliation(s)
- Prasad Phapale
- European Molecular Biology LabMetabolomics Core FacilityHeidelbergGermany
| |
Collapse
|
19
|
Naithani N, Sinha S, Misra P, Vasudevan B, Sahu R. Precision medicine: Concept and tools. Med J Armed Forces India 2021; 77:249-257. [PMID: 34305276 PMCID: PMC8282508 DOI: 10.1016/j.mjafi.2021.06.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Precision medicine is the new age medicine and refers to tailoring treatments to a subpopulation who have a common susceptibility to a particular disease or similar response to a particular drug. Although the concept existed even during the times of Sir William Osler, it was given a shot in the arm with the Precision Medicine Initiative launched by Barack Obama in 2015. The main tools of precision medicine are Big data, artificial intelligence, the various omics, pharmaco-omics, environmental and social factors and the integration of these with preventive and population medicine. Big data can be acquired from electronic health records of patients and includes various biomarkers (clinical and omics based), laboratory and radiological investigations and these can be analysed through machine learning by various complex flowcharts setting up an algorithm for the management of specific subpopulations. So, there is a move away from the traditional "one size fits all" treatment to precision-based medicine. Research in "omics" has increased in leaps and bounds and advancements have included the fields of genomics, epigenomics, proteomics, transcriptomics, metabolomics and microbiomics. Pharmaco-omics has also come to the forefront with development of new drugs and suiting a particular drug to a particular subpopulation, thus avoiding their prescription to non-responders, preventing unwanted adverse effects and proving economical in the long run. Environmental, social and behavioural factors are as important or in fact more important than genetic factors in most complex diseases and managing these factors form an important part of precision medicine. Finally integrating precision with preventive and public health makes "precision medicine" a complete final product which will change the way medicine will be practised in future.
Collapse
Affiliation(s)
- Nardeep Naithani
- Director & Commandant, Armed Forces Medical College, Pune, India
| | - Sharmila Sinha
- Professor & Head, Department of Pharmacology, Armed Forces Medical College, Pune, India
| | - Pratibha Misra
- Professor & Head, Department of Biochemistry, Armed Forces Medical College, Pune, India
| | - Biju Vasudevan
- Professor & Head, Department of Dermatology, Armed Forces Medical College, Pune, India
| | - Rajesh Sahu
- Associate Professor, Department of Community Medicine, Armed Forces Medical College, Pune, India
| |
Collapse
|
20
|
Mussap M, Noto A, Piras C, Atzori L, Fanos V. Slotting metabolomics into routine precision medicine. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021. [DOI: 10.1080/23808993.2021.1911639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Michele Mussap
- Department of Surgical Science, University of Cagliari, Monserrato, Italy
| | - Antonio Noto
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Cristina Piras
- Department of Surgical Science, University of Cagliari, Monserrato, Italy
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Luigi Atzori
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Vassilios Fanos
- Department of Surgical Science, University of Cagliari, Monserrato, Italy
| |
Collapse
|
21
|
|