El Hajji M. Modelling and optimal control for Chikungunya disease.
Theory Biosci 2020;
140:27-44. [PMID:
33128733 DOI:
10.1007/s12064-020-00324-4]
[Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/12/2020] [Indexed: 11/28/2022]
Abstract
A generalized model of intra-host CHIKV infection with two routes of infection has been proposed. In a first step, the basic reproduction number [Formula: see text] was calculated using the next-generation matrix method and the local and global stability analyses of the steady states are carried out using the Lyapunov method. It is proven that the CHIKV-free steady state [Formula: see text] is globally asymptotically stable when [Formula: see text] and the infected steady state [Formula: see text] is globally asymptotically stable when [Formula: see text]. In a second step, we applied an optimal strategy via the antibodies' flow rate in order to optimize infected compartment and to maximize the uninfected one. For this, we formulated a nonlinear optimal control problem. Existence of the optimal solution was discussed and characterized using an adjoint variables. Thus, an algorithm based on competitive Gauss-Seidel-like implicit difference method was applied in order to resolve the optimality system. The theoretical results are confirmed by some numerical simulations.
Collapse