1
|
Skou LD, Johansen SK, Okarmus J, Meyer M. Pathogenesis of DJ-1/PARK7-Mediated Parkinson's Disease. Cells 2024; 13:296. [PMID: 38391909 PMCID: PMC10887164 DOI: 10.3390/cells13040296] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Parkinson's disease (PD) is a common movement disorder associated with the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Mutations in the PD-associated gene PARK7 alter the structure and function of the encoded protein DJ-1, and the resulting autosomal recessively inherited disease increases the risk of developing PD. DJ-1 was first discovered in 1997 as an oncogene and was associated with early-onset PD in 2003. Mutations in DJ-1 account for approximately 1% of all recessively inherited early-onset PD occurrences, and the functions of the protein have been studied extensively. In healthy subjects, DJ-1 acts as an antioxidant and oxidative stress sensor in several neuroprotective mechanisms. It is also involved in mitochondrial homeostasis, regulation of apoptosis, chaperone-mediated autophagy (CMA), and dopamine homeostasis by regulating various signaling pathways, transcription factors, and molecular chaperone functions. While DJ-1 protects neurons against damaging reactive oxygen species, neurotoxins, and mutant α-synuclein, mutations in the protein may lead to inefficient neuroprotection and the progression of PD. As current therapies treat only the symptoms of PD, the development of therapies that directly inhibit oxidative stress-induced neuronal cell death is critical. DJ-1 has been proposed as a potential therapeutic target, while oxidized DJ-1 could operate as a biomarker for PD. In this paper, we review the role of DJ-1 in the pathogenesis of PD by highlighting some of its key neuroprotective functions and the consequences of its dysfunction.
Collapse
Affiliation(s)
- Line Duborg Skou
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark; (L.D.S.); (S.K.J.); (J.O.)
| | - Steffi Krudt Johansen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark; (L.D.S.); (S.K.J.); (J.O.)
| | - Justyna Okarmus
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark; (L.D.S.); (S.K.J.); (J.O.)
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark; (L.D.S.); (S.K.J.); (J.O.)
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- BRIDGE—Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
2
|
Cossu D, Hatano T, Hattori N. The Role of Immune Dysfunction in Parkinson's Disease Development. Int J Mol Sci 2023; 24:16766. [PMID: 38069088 PMCID: PMC10706591 DOI: 10.3390/ijms242316766] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Recent research has unveiled intriguing insights suggesting that the body's immune system may be implicated in Parkinson's disease (PD) development. Studies have observed disparities in pro-inflammatory and anti-inflammatory markers between PD patients and healthy individuals. This finding underscores the potential influence of immune system dysfunction in the genesis of this condition. A dysfunctional immune system can serve as a primary catalyst for systemic inflammation in the body, which may contribute to the emergence of various brain disorders. The identification of several genes associated with PD, as well as their connection to neuroinflammation, raises the likelihood of disease susceptibility. Moreover, advancing age and mitochondrial dysfunction can weaken the immune system, potentially implicating them in the onset of the disease, particularly among older individuals. Compromised integrity of the blood-brain barrier could facilitate the immune system's access to brain tissue. This exposure may lead to encounters with native antigens or infections, potentially triggering an autoimmune response. Furthermore, there is mounting evidence supporting the notion that gut dysbiosis might represent an initial trigger for brain inflammation, ultimately promoting neurodegeneration. In this comprehensive review, we will delve into the numerous hypotheses surrounding the role of both innate and adaptive immunity in PD.
Collapse
Affiliation(s)
- Davide Cossu
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan
- Department of Biomedical Sciences, Sassari University, 07100 Sassari, Italy
| | - Taku Hatano
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama 3510918, Japan
| |
Collapse
|
3
|
Kłosowski G, Koim-Puchowska B, Dróżdż-Afelt J, Mikulski D. The Reaction of the Yeast Saccharomyces cerevisiae to Contamination of the Medium with Aflatoxins B 2 and G 1, Ochratoxin A and Zearalenone in Aerobic Cultures. Int J Mol Sci 2023; 24:16401. [PMID: 38003590 PMCID: PMC10671187 DOI: 10.3390/ijms242216401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The mechanisms by which yeast cells respond to environmental stress include the production of heat shock proteins (HSPs) and the reduction of oxidative stress. The response of yeast exposed to aflatoxins B2+G1 (AFB2+G1), ochratoxin A (OTA), and zearalenone (ZEA) in aerobic conditions was studied. After 72 h of yeast cultivation in media contaminated with mycotoxins, the growth of yeast biomass, the level of malondialdehyde, and the activity of superoxide dismutase, glutathione S-transferase and glutathione peroxidase were examined; the expression profile of the following heat shock proteins was also determined: HSP31, HSP40, HSP60, HSP70, and HSP104. It was demonstrated that at the tested concentrations, both AFB2+G1 and ZEA inhibited yeast biomass growth. OTA at a concentration of 8.4 [µg/L] raised the MDA level. Intensified lipoperoxidation and increased activity of SOD and GPx were observed, regardless of the level of contamination with ZEA (300 µg/L or 900 µg/L). Increased contamination with AFB2+G1 and OTA caused an increase in the production of most HSPs tested (HSP31, HSP40, HSP70, HSP104). ZEA contamination in the used concentration ranges reduced the production of HSP31. The response of yeast cells to the presence of mycotoxin as a stressor resulted in the expression of certain HSPs, but the response was not systematic, which was manifested in different profiles of protein expression depending on the mycotoxin used. The tested mycotoxins influenced the induction of oxidative stress in yeast cells to varying degrees, which resulted in the activation of mainly SOD without GST mobilization or with a small involvement of GPx.
Collapse
Affiliation(s)
- Grzegorz Kłosowski
- Department of Biotechnology, Faculty of Biological Sciences, Kazimierz Wielki University, ul. K. J. Poniatowskiego 12, 85-671 Bydgoszcz, Poland (J.D.-A.); (D.M.)
| | | | | | | |
Collapse
|
4
|
Izquierdo-Fiallo K, Muñoz-Villagrán C, Orellana O, Sjoberg R, Levicán G. Comparative genomics of the proteostasis network in extreme acidophiles. PLoS One 2023; 18:e0291164. [PMID: 37682893 PMCID: PMC10490939 DOI: 10.1371/journal.pone.0291164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Extreme acidophiles thrive in harsh environments characterized by acidic pH, high concentrations of dissolved metals and high osmolarity. Most of these microorganisms are chemolithoautotrophs that obtain energy from low redox potential sources, such as the oxidation of ferrous ions. Under these conditions, the mechanisms that maintain homeostasis of proteins (proteostasis), as the main organic components of the cells, are of utmost importance. Thus, the analysis of protein chaperones is critical for understanding how these organisms deal with proteostasis under such environmental conditions. In this work, using a bioinformatics approach, we performed a comparative genomic analysis of the genes encoding classical, periplasmic and stress chaperones, and the protease systems. The analysis included 35 genomes from iron- or sulfur-oxidizing autotrophic, heterotrophic, and mixotrophic acidophilic bacteria. The results showed that classical ATP-dependent chaperones, mostly folding chaperones, are widely distributed, although they are sub-represented in some groups. Acidophilic bacteria showed redundancy of genes coding for the ATP-independent holdase chaperones RidA and Hsp20. In addition, a systematically high redundancy of genes encoding periplasmic chaperones like HtrA and YidC was also detected. In the same way, the proteolytic ATPase complexes ClpPX and Lon presented redundancy and broad distribution. The presence of genes that encoded protein variants was noticeable. In addition, genes for chaperones and protease systems were clustered within the genomes, suggesting common regulation of these activities. Finally, some genes were differentially distributed between bacteria as a function of the autotrophic or heterotrophic character of their metabolism. These results suggest that acidophiles possess an abundant and flexible proteostasis network that protects proteins in organisms living in energy-limiting and extreme environmental conditions. Therefore, our results provide a means for understanding the diversity and significance of proteostasis mechanisms in extreme acidophilic bacteria.
Collapse
Affiliation(s)
- Katherin Izquierdo-Fiallo
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Claudia Muñoz-Villagrán
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Omar Orellana
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rachid Sjoberg
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Gloria Levicán
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| |
Collapse
|
5
|
Prasad M, Kataria P, Ningaraju S, Buddidathi R, Bankapalli K, Swetha C, Susarla G, Venkatesan R, D'Silva P, Shivaprasad PV. Double DJ-1 domain containing Arabidopsis DJ-1D is a robust macromolecule deglycase. THE NEW PHYTOLOGIST 2022; 236:1061-1074. [PMID: 35976797 DOI: 10.1111/nph.18414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Plants, being sessile, are prone to genotoxin-induced macromolecule damage. Among the inevitable damaging agents are reactive carbonyls that induce glycation of DNA, RNA and proteins to result in the build-up of advanced glycated end-products. However, it is unclear how plants repair glycated macromolecules. DJ-1/PARK7 members are a highly conserved family of moonlighting proteins having double domains in higher plants and single domains in other phyla. Here we show that Arabidopsis DJ-1D offers robust tolerance to endogenous and exogenous stresses through its ability to repair glycated DNA, RNA and proteins. DJ-1D also reduced the formation of reactive carbonyls through its efficient methylglyoxalase activity. Strikingly, full-length double domain-containing DJ-1D suppressed the formation of advanced glycated end-products in yeast and plants. DJ-1D also efficiently repaired glycated nucleic acids and nucleotides in vitro and mitochondrial DNA in vivo under stress, indicating the existence of a new DNA repair pathway in plants. We propose that multi-stress responding plant DJ-1 members, often present in multiple copies among plants, probably contributed to the adaptation to a variety of endogenous and exogenous stresses.
Collapse
Affiliation(s)
- Melvin Prasad
- National Centre for Biological Sciences, GKVK Campus, Bangalore, 560 065, India
| | - Priyanka Kataria
- Department of Biochemistry, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560 012, India
| | - Sunayana Ningaraju
- Department of Biochemistry, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560 012, India
| | - Radhika Buddidathi
- National Centre for Biological Sciences, GKVK Campus, Bangalore, 560 065, India
| | - Kondalarao Bankapalli
- Department of Biochemistry, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560 012, India
| | - Chenna Swetha
- National Centre for Biological Sciences, GKVK Campus, Bangalore, 560 065, India
| | - Gautam Susarla
- Department of Biochemistry, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560 012, India
| | - Radhika Venkatesan
- National Centre for Biological Sciences, GKVK Campus, Bangalore, 560 065, India
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560 012, India
| | | |
Collapse
|
6
|
Mazza MC, Shuck SC, Lin J, Moxley MA, Termini J, Cookson MR, Wilson MA. DJ-1 is not a deglycase and makes a modest contribution to cellular defense against methylglyoxal damage in neurons. J Neurochem 2022; 162:245-261. [PMID: 35713360 PMCID: PMC9539984 DOI: 10.1111/jnc.15656] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 11/27/2022]
Abstract
Human DJ‐1 is a cytoprotective protein whose absence causes Parkinson's disease and is also associated with other diseases. DJ‐1 has an established role as a redox‐regulated protein that defends against oxidative stress and mitochondrial dysfunction. Multiple studies have suggested that DJ‐1 is also a protein/nucleic acid deglycase that plays a key role in the repair of glycation damage caused by methylglyoxal (MG), a reactive α‐keto aldehyde formed by central metabolism. Contradictory reports suggest that DJ‐1 is a glyoxalase but not a deglycase and does not play a major role in glycation defense. Resolving this issue is important for understanding how DJ‐1 protects cells against insults that can cause disease. We find that DJ‐1 reduces levels of reversible adducts of MG with guanine and cysteine in vitro. The steady‐state kinetics of DJ‐1 acting on reversible hemithioacetal substrates are fitted adequately with a computational kinetic model that requires only a DJ‐1 glyoxalase activity, supporting the conclusion that deglycation is an apparent rather than a true activity of DJ‐1. Sensitive and quantitative isotope‐dilution mass spectrometry shows that DJ‐1 modestly reduces the levels of some irreversible guanine and lysine glycation products in primary and cultured neuronal cell lines and whole mouse brain, consistent with a small but measurable effect on total neuronal glycation burden. However, DJ‐1 does not improve cultured cell viability in exogenous MG. In total, our results suggest that DJ‐1 is not a deglycase and has only a minor role in protecting neurons against methylglyoxal toxicity.![]()
Collapse
Affiliation(s)
- Melissa Conti Mazza
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarah C Shuck
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, California, USA
| | - Jiusheng Lin
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, USA
| | - Michael A Moxley
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska, USA
| | - John Termini
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, California, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark A Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
7
|
Nava Ramírez T, Hansberg W. Características comunes de las chaperonas pequeñas y diméricas. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2020. [DOI: 10.22201/fesz.23958723e.2020.0.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Las chaperonas moleculares constituyen un mecanismo importante para evitar la muerte celular provocada por la agregación de proteínas. Las chaperonas independientes del ATP son un grupo de proteínas de bajo peso molecular que pueden proteger y ayudar a alcanzar la estructura nativa de las proteínas desplegadas o mal plegadas sin necesidad de un gasto energético. Hemos encontrado que el dominio C-terminal de las catalasas de subunidad grande tiene actividad de chaperona. Por ello, en esta revisión analizamos las características más comunes de las chaperonas pequeñas y más estudiadas como: αB-cristalina, Hsp20, Spy, Hsp33 y Hsp31. En particular, se examina la participación de los aminoácidos hidrofóbicos y de los aminoácidos con carga en el reconocimiento de las proteínas sustrato, así como el papel que tiene la forma dimérica y su oligomerización en la actividad de chaperona. En cada una de esas chaperonas revisaremos la estructura de la proteína, su función, localización celular e importancia para la célula.
Collapse
|
8
|
Bifunctional Chloroplastic DJ-1B from Arabidopsis thaliana is an Oxidation-Robust Holdase and a Glyoxalase Sensitive to H₂O₂. Antioxidants (Basel) 2019; 8:antiox8010008. [PMID: 30609642 PMCID: PMC6356872 DOI: 10.3390/antiox8010008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/15/2018] [Accepted: 12/22/2018] [Indexed: 01/04/2023] Open
Abstract
Members of the DJ-1 protein family are multifunctional enzymes whose loss increases the susceptibility of the cell to oxidative stress. However, little is known about the function of the plant DJ-1 homologs. Therefore, we analyzed the effect of oxidation on the structure and function of chloroplastic AtDJ-1B and studied the phenotype of T-DNA lines lacking the protein. In vitro oxidation of AtDJ-1B with H₂O₂ lowers its glyoxalase activity, but has no effect on its holdase chaperone function. Remarkably, upon oxidation, the thermostability of AtDJ-1B increases with no significant alteration of the overall secondary structure. Moreover, we found that AtDJ-1B transcript levels are invariable, and loss of AtDJ-1B does not affect plant viability, growth and stress response. All in all, two discrete functions of AtDJ-1B respond differently to H₂O₂, and AtDJ-1B is not essential for plant development under stress.
Collapse
|
9
|
Zhang Y, Li Y, Han X, Dong X, Yan X, Xing Q. Elevated expression of DJ-1 (encoded by the human PARK7 gene) protects neuronal cells from sevoflurane-induced neurotoxicity. Cell Stress Chaperones 2018; 23:967-974. [PMID: 29728856 PMCID: PMC6111095 DOI: 10.1007/s12192-018-0904-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 01/08/2023] Open
Abstract
Sevoflurane, an inhaled ether general anesthetic agent, exerts a variety of neurotoxic effects, including oxidative stress, mitochondrial dysfunction, and neuronal apoptosis. However, the underlying molecular mechanisms remain to be elucidated. DJ-1 is a protein that exerts neuroprotective effects against different kinds of stress through multiple pathways. This study aimed to investigate the neuroprotective effects of DJ-1 against sevoflurane-induced neurotoxicity. Here, we found that sevoflurane treatment significantly increased DJ-1 expression in human neuroblastoma M17 cells in a dose-dependent manner at both the mRNA and protein levels. Interestingly, we found that overexpression of wild-type (WT) DJ-1 prevented sevoflurane-induced generation of reactive oxygen species (ROS) and nitric oxide (NO), deletion of reduced GSH, reduction of adenosine triphosphate (ATP), and mitochondrial membrane potential. Interestingly, we found that WT DJ-1 could inhibit sevoflurane-induced apoptosis by modulating the mitochondrial pathway. However, its "loss of function" mutation DJ-1(L166P) exacerbated sevoflurane-induced neurotoxicity in M17 cells. Our findings suggest that WT DJ-1 protects neuronal cells against sevoflurane-induced neurotoxicity.
Collapse
Affiliation(s)
- Yajie Zhang
- Department of Anesthesiology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang, 471003, Henan, China
| | - Yu Li
- Department of Anesthesiology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang, 471003, Henan, China
| | - Xuechang Han
- Department of Anesthesiology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang, 471003, Henan, China
| | - Xu Dong
- Department of Anesthesiology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang, 471003, Henan, China
| | - Xiangbiao Yan
- Department of Anesthesiology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang, 471003, Henan, China
| | - Qunzhi Xing
- Department of Anesthesiology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang, 471003, Henan, China.
| |
Collapse
|
10
|
Natkańska U, Skoneczna A, Skoneczny M. Oxidative stress triggers aggregation of GFP-tagged Hsp31p, the budding yeast environmental stress response chaperone, and glyoxalase III. Cell Stress Chaperones 2018; 23:595-607. [PMID: 29264711 PMCID: PMC6045530 DOI: 10.1007/s12192-017-0868-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/01/2017] [Accepted: 12/07/2017] [Indexed: 12/24/2022] Open
Abstract
The Saccharomyces cerevisiae Hsp31p protein belongs to the ubiquitous DJ-1/ThiJ/PfpI family. The most prominent member of this family is human DJ-1; defects of this protein are associated with Parkinson's disease pathogenesis. Numerous recent findings reported by our group and others have revealed the importance of Hsp31p for survival in the post-diauxic phase of cell growth and under diverse environmental stresses. Hsp31p was shown to possess glutathione-independent glyoxalase III activity and to function as a protein chaperone, suggesting that it has multiple cellular roles. Our previous work also revealed that HSP31 gene expression was controlled by multiple stress-related transcription factors, which mediated HSP31 promoter responses to oxidative, osmotic, and thermal stresses, toxic products of glycolysis, and the diauxic shift. Nevertheless, the exact role of Hsp31p within budding yeast cells remains elusive. Here, we aimed to obtain insights into the function of Hsp31p based on its intracellular localization. We have demonstrated that the Hsp31p-GFP fusion protein is localized to the cytosol under most environmental conditions and that it becomes particulate in response to oxidative stress. However, the particles do not colocalize with other granular subcellular structures present in budding yeast cells. The observed particulate localization does not seem to be important for Hsp31p functionality. Instead, it is likely the result of oxidative damage, as the particle abundance increases when Hsp31p is nonfunctional, when the cellular oxidative stress response is affected, or when cellular maintenance systems that optimize the state of the proteome are compromised.
Collapse
Affiliation(s)
- Urszula Natkańska
- Institute of Biochemistry and Biophysics, Department of Genetics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warszawa, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics, Laboratory of Mutagenesis and DNA Repair, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warszawa, Poland
| | - Marek Skoneczny
- Institute of Biochemistry and Biophysics, Department of Genetics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warszawa, Poland.
| |
Collapse
|
11
|
Aslam K, Tsai CJ, Hazbun TR. The small heat shock protein Hsp31 cooperates with Hsp104 to modulate Sup35 prion aggregation. Prion 2017; 10:444-465. [PMID: 27690738 DOI: 10.1080/19336896.2016.1234574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The yeast homolog of DJ-1, Hsp31, is a multifunctional protein that is involved in several cellular pathways including detoxification of the toxic metabolite methylglyoxal and as a protein deglycase. Prior studies ascribed Hsp31 as a molecular chaperone that can inhibit α-Syn aggregation in vitro and alleviate its toxicity in vivo. It was also shown that Hsp31 inhibits Sup35 aggregate formation in yeast, however, it is unknown if Hsp31 can modulate [PSI+] phenotype and Sup35 prionogenesis. Other small heat shock proteins, Hsp26 and Hsp42 are known to be a part of a synergistic proteostasis network that inhibits Sup35 prion formation and promotes its disaggregation. Here, we establish that Hsp31 inhibits Sup35 [PSI+] prion formation in collaboration with a well-known disaggregase, Hsp104. Hsp31 transiently prevents prion induction but does not suppress induction upon prolonged expression of Sup35 indicating that Hsp31 can be overcome by larger aggregates. In addition, elevated levels of Hsp31 do not cure [PSI+] strains indicating that Hsp31 cannot intervene in a pre-existing prion oligomerization cycle. However, Hsp31 can modulate prion status in cooperation with Hsp104 because it inhibits Sup35 aggregate formation and potentiates [PSI+] prion curing upon overexpression of Hsp104. The absence of Hsp31 reduces [PSI+] prion curing by Hsp104 without influencing its ability to rescue cellular thermotolerance. Hsp31 did not synergize with Hsp42 to modulate the [PSI+] phenotype suggesting that both proteins act on similar stages of the prion cycle. We also showed that Hsp31 physically interacts with Hsp104 and together they prevent Sup35 prion toxicity to greater extent than if they were expressed individually. These results elucidate a mechanism for Hsp31 on prion modulation that suggest it acts at a distinct step early in the Sup35 aggregation process that is different from Hsp104. This is the first demonstration of the modulation of [PSI+] status by the chaperone action of Hsp31. The delineation of Hsp31's role in the chaperone cycle has implications for understanding the role of the DJ-1 superfamily in controlling misfolded proteins in neurodegenerative disease and cancer.
Collapse
Affiliation(s)
- Kiran Aslam
- a Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue University Center for Cancer Research , Purdue University , West Lafayette , IN , USA
| | - Chai-Jui Tsai
- a Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue University Center for Cancer Research , Purdue University , West Lafayette , IN , USA
| | - Tony R Hazbun
- a Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue University Center for Cancer Research , Purdue University , West Lafayette , IN , USA
| |
Collapse
|
12
|
Larson SB, McPherson A. The structure of the Pfp1 protease from the hyperthermophilic archaeonThermococcus thioreducensin two crystal forms. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2017; 73:749-756. [DOI: 10.1107/s2059798317010622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/18/2017] [Indexed: 11/10/2022]
Abstract
The Pfp1 protease, a cysteine protease of unknown specificity from the hyperthermophilic archaeonThermococcus thioreducens, was crystallized in two distinctive crystal forms: from concentrated citrate in one case and PEG in the other. X-ray data were collected from both crystal forms at room temperature to about 1.9 Å resolution using a laboratory source and detector, and the structures were solved by molecular replacement using the Pfp1 protease fromPyrococcus horikoshiias the search model. In theT. thioreducensprotease structures, Cys18 residues on adjacent molecules in the asymmetric units form intermolecular disulfide bonds, thereby yielding hexamers composed of three cross-linked, quasi-dyad-related dimers with crystallographically exact threefold axes and exhibiting almost exact 32 symmetry. The corresponding residue inP. horikoshiiPfp1 is Tyr18. An individual active site containing Cys100 and His101 also includes a Glu74 residue contributed by a quasi-twofold-related, non-cross-linked subunit. Two catalytic triads are therefore closely juxtaposed about the quasi-twofold axis at the interface of these subunits, and are relatively sequestered within the hexamer cavity. The cysteine in the active site is observed to be oxidized in both of the crystal forms that were studied.
Collapse
|
13
|
Melvin P, Bankapalli K, D'Silva P, Shivaprasad PV. Methylglyoxal detoxification by a DJ-1 family protein provides dual abiotic and biotic stress tolerance in transgenic plants. PLANT MOLECULAR BIOLOGY 2017; 94:381-397. [PMID: 28444544 DOI: 10.1007/s11103-017-0613-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/18/2017] [Indexed: 05/15/2023]
Abstract
Methylglyoxal (MG) is a key signaling molecule resulting from glycolysis and other metabolic pathways. During abiotic stress, MG levels accumulate to toxic levels in affected cells. However, MG is routinely detoxified through the action of DJ1/PARK7/Hsp31 proteins that are highly conserved across kingdoms and mutations in such genes are associated with neurodegenerative diseases. Here, we report for the first time that, similar to abiotic stresses, MG levels increase during biotic stresses in plants, likely contributing to enhanced susceptibility to a wide range of stresses. We show that overexpression of yeast Heat shock protein 31 (Hsp31), a DJ-1 homolog with robust MG detoxifying capabilities, confers dual biotic and abiotic stress tolerance in model plant Nicotiana tabacum. Strikingly, overexpression of Hsp31 in tobacco imparts robust stress tolerance against diverse biotic stress inducers such as viruses, bacteria and fungi, in addition to tolerance against a range of abiotic stress inducers. During stress, Hsp31 was targeted to mitochondria and induced expression of key stress-related genes. These results indicate that Hsp31 is a novel attractive tool to engineer plants against both biotic and abiotic stresses.
Collapse
Affiliation(s)
- Prasad Melvin
- National Centre for Biological Sciences, GKVK Campus, Bangalore, 560 065, India
| | - Kondalarao Bankapalli
- Department of Biochemistry, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560 012, India
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560 012, India
| | - P V Shivaprasad
- National Centre for Biological Sciences, GKVK Campus, Bangalore, 560 065, India.
| |
Collapse
|