1
|
Shouman S, Hesham N, Salem TZ. Viruses and neurodegeneration: a growing concern. J Transl Med 2025; 23:46. [PMID: 39800721 PMCID: PMC11727702 DOI: 10.1186/s12967-024-06025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Neurodegenerative diseases (NDDs) cause a progressive loss of neurons. Since NDDs are multifactorial, the precise etiology varies on the basis of the type of disease and patient history. Cohort studies and case studies have demonstrated a potential link between viral infections and the onset or progression of NDDs. Recent findings concerning the mechanisms by which neuropathic infections occur have provided more insights into the importance of such connections. In this review, we aim to elaborate on the occurrence of the neuropathic effects of viruses from epidemiological, clinical, and biological perspectives while highlighting potential treatments and challenges. One of the key players in viral neuropathogenesis is neuroinflammation caused by the immune response to the virus; this can occur due to both neurotropic and nonneurotropic viruses. The COVID-19 pandemic has raised concerns about whether vaccines are essential for preventing viruses or whether vaccines may play a part in exacerbating or accelerating NDDs. By classifying viruses and the common NDDs associated with them and further delving into their cellular pathways, this review provides insights to advance the development of potential treatments and diagnostic methods.
Collapse
Affiliation(s)
- S Shouman
- Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - N Hesham
- Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
- Molecular Biology and Virology Laboratory (MBVL), Center for X-Ray Determination of the Structure of Matter (CXDS), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - T Z Salem
- Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt.
- Molecular Biology and Virology Laboratory (MBVL), Center for X-Ray Determination of the Structure of Matter (CXDS), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt.
| |
Collapse
|
2
|
Wei J, Ho G, Masliah E, Hashimoto M. Differential involvement of amyloidogenic evolvability in oligodendropathies; Multiple Sclerosis and Multiple System Atrophy. Prion 2023; 17:29-34. [PMID: 36785484 PMCID: PMC9928476 DOI: 10.1080/19336896.2023.2172912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Although multiple sclerosis (MS) and multiple system atrophy (MSA) are both characterized by impaired oligodendrocytes (OLs), the aetiological relevance remains obscure. Given inherent stressors affecting OLs, the objective of the present study was to discuss the possible role of amyloidogenic evolvability (aEVO) in these conditions. Hypothetically, in aEVO, protofibrils of amyloidogenic proteins (APs), including β-synuclein and β-amyloid, might form in response to diverse stressors in parental brain. Subsequently, the AP protofibrils might be transmitted to offspring via germ cells in a prion-like fashion. By virtue of the stress information conferred by protofibrillar APs, the OLs in offspring's brain might be more resilient to forthcoming stressors, perhaps reducing MS risk. aEVO could be comparable to a gene for the inheritance of acquired characteristics. On the contrary, during ageing, MSA risk is increased through antagonistic pleiotropy. Consistently, the expression levels of APs are reduced in MS, but are increased in MSA compared to controls. Furthermore, β-synuclein, the non-amyloidogenic homologue of β-synuclein, might exert a buffering effect on aEVO, and abnormal β-synuclein could also increase MS and MSA disease activity. Collectively, a better understanding of the role of aEVO in the OL diseases might lead to novel interventions for such chronic degenerative conditions.
Collapse
Affiliation(s)
- Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan, China,CONTACT Jianshe Wei Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Gilbert Ho
- Pacific Center for Neurological Disease (PCND) Neuroscience Research Institute, Poway, CA, USA
| | - Eliezer Masliah
- Division of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Makoto Hashimoto
- Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan,Makoto Hashimoto Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo156-0057
| |
Collapse
|
3
|
Gouveia C, Morais LM, Guimarães S, Camacho C, Jesus S. Creutzfeldt-Jakob Disease: A Rare Case of Dementia. Cureus 2023; 15:e47177. [PMID: 38021531 PMCID: PMC10652161 DOI: 10.7759/cureus.47177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Prion diseases are rare neurodegenerative diseases that have a rapid evolution. Creutzfeldt-Jakob disease (CJD) is the most common and its sporadic form the most frequent. Definitive diagnosis is only obtained through autopsy, and there are currently no available treatments. Here, we present a case of an 84-year-old woman presenting with resting tremor, abnormal gait, frequent falls, apraxia, visual hallucinations, and delirium. There were no signs of relevant metabolic, infectious, or nutritional alterations, and brain computed tomography (CT) scan and magnetic resonance imaging (MRI) had no significant findings. Two months later, the patient was completely immobile with mutism, seizures, and myoclonus. In the presence of a rapidly progressive dementia associated with myoclonus, it was hypothesized that the patient had CJD. The patient's clinical state deteriorated, she died, and autopsy confirmed sporadic CJD. The purpose of this case is to highlight a rare disease that can go undiagnosed because of low awareness and clinical suspicion and the importance of the differential diagnosis of dementia, a common disease at this age.
Collapse
Affiliation(s)
- Cláudio Gouveia
- Internal Medicine, Centro Hospitalar Lisboa Ocidental, Lisbon, PRT
| | - Luís M Morais
- Critical Care Medicine, Centro Hospitalar Lisboa Ocidental, Lisbon, PRT
| | | | | | - Susana Jesus
- Internal Medicine, Centro Hospitalar Lisboa Ocidental, Lisbon, PRT
| |
Collapse
|
4
|
Yamashita S, O Kamatari Y, Honda R, Niwa A, Tomiata H, Hara A, Kuwata K. Monomeric a-synuclein (aS) inhibits amyloidogenesis of human prion protein (hPrP) by forming a stable aS-hPrP hetero-dimer. Prion 2021; 15:37-43. [PMID: 33849375 PMCID: PMC8049198 DOI: 10.1080/19336896.2021.1910176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Intermolecular interaction between hPrP and αS was investigated using high-speed atomic force microscopy, dynamic light scattering, and nuclear magnetic resonance. We found that hPrP spontaneously gathered and naturally formed oligomers. Upon addition of monomer αS with a disordered conformation, poly-dispersive property of hPrP was lost, and hetero-dimer formation started quite coherently, and further oligomerization was not observed. Solution structure of hPrP-αS dimer was firstly characterized using hetero-nuclear NMR spectroscopy. In this hetero-dimeric complex, C-terminal helical region of hPrP was in the molten-globule like state, while specific sites including hot spot and C-terminal region of αS selectively interacted with hPrP. Thus αS may suppress amyloidogenesis of hPrP by trapping the hPrP intermediate by the formation of a stable hetero-dimer with hPrP. Abbreviations: hPrP, human prion protein of amino acid residues of 23-231; PrPC, cellular form of prion protein; PrPSc, scrapie form of prion protein, HS-AFM; high speed atomic force microscopy; αS, α-synuclein; DLS, dynamic light scattering
Collapse
Affiliation(s)
- Satoshi Yamashita
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Tokai National Higher Education and Research System, Gifu, Japan
| | - Yuji O Kamatari
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Tokai National Higher Education and Research System, Gifu, Japan.,Institute for Glyco-core Research, Tokai National Higher Education and Research System, Gifu, Japan
| | - Ryo Honda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Tokai National Higher Education and Research System, Gifu, Japan
| | - Ayumi Niwa
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Tokai National Higher Education System, Gifu, Japan
| | - Hiroyuki Tomiata
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Tokai National Higher Education System, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Tokai National Higher Education System, Gifu, Japan
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Tokai National Higher Education and Research System, Gifu, Japan.,Department of Gene and Development, Gifu University School of Medicine, Tokai National Higher Education and Research System, Gifu, Japan
| |
Collapse
|