1
|
Yang Y, Razak SRA, Ismail IS, Ma Y, Yunus MA. Molecular mechanisms of miR-192 in cancer: a biomarker and therapeutic target. Cancer Cell Int 2025; 25:94. [PMID: 40087755 PMCID: PMC11908092 DOI: 10.1186/s12935-025-03666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/29/2025] [Indexed: 03/17/2025] Open
Abstract
Cancer remains a major global health challenge due to its rising prevalence and high mortality rates. The field of microRNAs (miRNAs) has made significant progress in the understanding of tumorigenesis and has broadened our knowledge of their targeting, especially in cancer therapy. miRNAs, a class of small non-coding RNAs, participate in post-transcriptional gene regulation by translational inhibition or mRNA degradation. Among these, microRNA-192 (miR-192) is located on human chromosome 11q13.1, and is highly correlated with the occurrence and development of various human cancers. Dysregulation of miR-192 has been extensively studied in various pathological processes, including tumorigenesis, making it a valuable biomarker for cancer diagnosis and prognosis. The functional role of miR-192 varies across cancer types, acting as either a tumor suppressor or as an oncogene through the modulation of multiple gene expressions and downstream signaling pathways. However, the roles of miR-192 in cancer appear inconsistent across types, with current research often focused on specific genes or pathways, limiting insight into its broader impact on cellular signaling networks. Therefore, this review aims to provide a comprehensive overview of miR-192 research. The paper reviews differences in miR-192 expression in cancer and systematically summarizes the role of miR-192 in cancers. The review further explores the complex roles of miR-192 in various pathological processes, emphasizing its regulatory pathways, interaction networks, and association with tumor progression. This review also illustrates the clinical application of miR-192 as a diagnostic and prognostic biomarker for non-invasive cancer detection, as it is consistently present in both serum and exosomes. A comprehensive summary and analysis of the relationship between miR-192 and various cancers may provide valuable insights, potentially guiding novel approaches in clinical diagnosis, therapeutic strategies, and foundational cancer research.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia
- School of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Siti Razila Abdul Razak
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Ida Shazrina Ismail
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Yanxia Ma
- School of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China.
| | - Muhammad Amir Yunus
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia.
| |
Collapse
|
2
|
Zhang N, Yang P, Li Y, Ouyang Q, Hou F, Zhu G, Zhang B, Huang J, Jia J, Xu A. Serum Iron Overload Activates the SMAD Pathway and Hepcidin Expression of Hepatocytes via SMURF1. J Clin Transl Hepatol 2024; 12:227-235. [PMID: 38426189 PMCID: PMC10899870 DOI: 10.14218/jcth.2023.00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
Background and Aims Liver iron overload can induce hepatic expression of bone morphogenic protein (BMP) 6 and activate the BMP/SMAD pathway. However, serum iron overload can also activate SMAD but does not induce BMP6 expression. Therefore, the mechanisms through which serum iron overload activates the BMP/SMAD pathway remain unclear. This study aimed to clarify the role of SMURF1 in serum iron overload and the BMP/SMAD pathway. Methods A cell model of serum iron overload was established by treating hepatocytes with 2 mg/mL of holo-transferrin (Holo-Tf). A serum iron overload mouse model and a liver iron overload mouse model were established by intraperitoneally injecting 10 mg of Holo-Tf into C57BL/6 mice and administering a high-iron diet for 1 week followed by a low-iron diet for 2 days. Western blotting and real-time PCR were performed to evaluate the activation of the BMP/SMAD pathway and the expression of hepcidin. Results Holo-Tf augmented the sensitivity and responsiveness of hepatocytes to BMP6. The E3 ubiquitin-protein ligase SMURF1 mediated Holo-Tf-induced SMAD1/5 activation and hepcidin expression; specifically, SMURF1 expression dramatically decreased when the serum iron concentration was increased. Additionally, the expression of SMURF1 substrates, which are important molecules involved in the transduction of BMP/SMAD signaling, was significantly upregulated. Furthermore, in vivo analyses confirmed that SMURF1 specifically regulated the BMP/SMAD pathway during serum iron overload. Conclusions SMURF1 can specifically regulate the BMP/SMAD pathway by augmenting the responsiveness of hepatocytes to BMPs during serum iron overload.
Collapse
Affiliation(s)
- Ning Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Gastroenterology, Beijing Shunyi Hospital, Beijing, China
| | - Pengyao Yang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanmeng Li
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qin Ouyang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fei Hou
- Department of Critical Liver Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guixin Zhu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bei Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jian Huang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Anjian Xu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Zhou H, Chang J, Zhang J, Zheng H, Miao X, Mo H, Sun J, Jia Q, Qi G. PRMT5 activates KLF5 by methylation to facilitate lung cancer. J Cell Mol Med 2024; 28:e17856. [PMID: 37461162 PMCID: PMC10902573 DOI: 10.1111/jcmm.17856] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 03/01/2024] Open
Abstract
The highly expressed oncogenic factor Krüppel-like factor 5 (KLF5) promotes various cancerous processes, such as cell growth, survival, anti-apoptosis, migration and metastasis, particularly in lung cancer. Nevertheless, the modifications to KLF5 after translation are poorly understood. Protein arginine methyltransferase 5 (PRMT5) is considered as an oncogene known to be involved in different types of carcinomas, including lung cancer. Here, we show that the expression levels of PRMT5 and KLF5 are highly expressed lung cancer. Moreover, PRMT5 interacts with KLF5 and facilitates the dimethylation of KLF5 at Arginine 41 in a manner that depends on methyltransferase activity. Downregulation or pharmaceutical suppression of PRMT5 reduces the expression of KLF5 and its downstream targets both in vitro and in vivo. Mechanistically, the dimethylation of KLF5 by PRMT5 promotes the maintenance and proliferation of lung cancer cells at least partially by stabilising KLF5 via regulation of the Akt/GSK3β signalling axis. In summary, PRMT5 methylates KLF5 to prevent its degradation, thereby promoting the maintenance and proliferation of lung cancer cells. These results suggest that targeting PRMT5/KLF5 axis may offer a potential therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Hai Zhou
- Department of Respiratory and Critical Care MedicineShidong Hospital of Yangpu DistrictShanghaiChina
| | - Jing Chang
- Department of Respiratory and Critical Care MedicineShidong Hospital of Yangpu DistrictShanghaiChina
| | - Jingjian Zhang
- Department of Respiratory and Critical Care MedicineShidong Hospital of Yangpu DistrictShanghaiChina
| | - Hongzhen Zheng
- Department of Respiratory and Critical Care MedicineShidong Hospital of Yangpu DistrictShanghaiChina
| | - Xiang Miao
- Department of Respiratory and Critical Care MedicineShidong Hospital of Yangpu DistrictShanghaiChina
| | - Huimin Mo
- Department of Respiratory and Critical Care MedicineShidong Hospital of Yangpu DistrictShanghaiChina
| | - Jie Sun
- Department of Respiratory and Critical Care MedicineShidong Hospital of Yangpu DistrictShanghaiChina
| | - Qin Jia
- Department of Respiratory and Critical Care MedicineShidong Hospital of Yangpu DistrictShanghaiChina
| | - Guangsheng Qi
- Department of Pulmonary and Critical Care MedicineSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| |
Collapse
|
4
|
Qu X, Xu C, Yang W, Li Q, Tu S, Gao C. KLF5 inhibits the migration and invasion in cervical cancer cell lines by regulating SNAI1. Cancer Biomark 2024; 39:231-243. [PMID: 38217587 PMCID: PMC11191462 DOI: 10.3233/cbm-230175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/21/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is an important biological process by which malignant tumor cells to acquire migration and invasion abilities. This study explored the role of KLF5 in the EMT process of in cervical cancer cell lines. OBJECTIVE Krüpple-like factor 5 (KLF5) is a basic transcriptional factor that plays a key role in cell-cycle arrest and inhibition of apoptosis. However, the molecular mechanism by which KLF5 mediates the biological functions of cervical cancer cell lines has not been elucidated. Here, we focus on the potential function of ELF5 in regulating the EMT process in in vitro model of cervical cancer cell lines. METHOD Western-blot and real-time quantitative PCR were used to detect the expression of EMT-related genes in HeLa cells. MTT assays, cell scratch and Transwell assays were used to assess HeLa cells proliferation and invasion capability. Using the bioinformatics tool JASPAR, we identified a high-scoring KLF5-like binding sequence in the SNAI1 gene promoter. Luciferase reporter assays was used to detect transcriptional activity for different SNAI1 promoter truncates. RESULT After overexpressing the KLF5 gene in HeLa cells, KLF5 not only significantly inhibited the invasion and migration of HeLa cells, but also increased the expression of E-cadherin and decreased the expression of N-cadherin and MMP9. In addition, the mRNA expression of upstream regulators of E-cadherin, such as SNAI1, SLUG, ZEB1/2 and TWIST1 was also decreased. Furthermore, KLF5 inhibiting the expression of the SNAI1 gene via binding its promoter region, and the EMT of Hela cells was promoted after overexpression of the SNAI1 gene. CONCLUSION These results indicate that KLF5 can downregulate the EMT process of HeLa cells by decreasing the expression of the SNAI1 gene, thereby inhibiting the migration and invasion of HeLa cervical cancer cells.
Collapse
Affiliation(s)
- Xinjian Qu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Chang Xu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Wenbo Yang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, Liaoning, China
| | - Qianqian Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, Liaoning, China
| | - Simei Tu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, Liaoning, China
| | - Chenghai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
5
|
Wang T, Feng L, Shi Z, Yang L, Yu X, Wu J, Sun J, Zhang J, Feng Y, Wang W. A negative feedback loop between KLF9 and the EMT program dictates metastasis of hepatocellular carcinoma. J Cell Mol Med 2023; 27:2372-2384. [PMID: 37400979 PMCID: PMC10424290 DOI: 10.1111/jcmm.17823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/25/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023] Open
Abstract
Metastasis is the primary cause of death of hepatocellular carcinoma (HCC), while the mechanism underlying this severe disease remains largely unclear. The Kruppel-like factor (KLF) family is one of the largest transcription factor families that control multiple physiologic and pathologic processes by governing the cellular transcriptome. To identify metastatic regulators of HCC, we conducted gene expression profiling on the MHCC97 cell series, a set of subclones of the original MHCC97 that was established by in vivo metastasis selection therefore harbouring differential metastatic capacities. We found that the expression of KLF9, a member of the KLF family, was dramatically repressed in the metastatic progeny clone of the MHCC97 cells. Functional studies revealed overexpression of KLF9 suppressed HCC migration in vitro and metastasis in vivo, while knockdown of KLF9 was sufficient to promote cell migration and metastasis accordingly. Mechanistically, we found the expression of KLF9 can reverse the pro-metastatic epithelial-mesenchymal transition (EMT) program via direct binding to the promoter regions of essential mesenchymal genes, thus repressing their expression. Interestingly, we further revealed that KLF9 was, in turn, directly suppressed by a mesenchymal transcription factor Slug, suggesting an intriguing negative feedback loop between KLF9 and the EMT program. Using clinical samples, we found that KLF9 was not only downregulated in HCC tissue compared to its normal counterparts but also further reduced in the HCC samples of whom had developed metastatic lesions. Together, we established a critical transcription factor that represses HCC metastasis, which is clinically and mechanically significant in HCC therapies.
Collapse
Affiliation(s)
- Tao Wang
- Department of Interventional OncologyRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Limin Feng
- Zhejiang University School of MedicineHangzhouChina
| | - Zhong Shi
- Department of Medical OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouChina
| | - Lixian Yang
- First Affiliated HospitalInstitute of Translational Medicine, Zhejiang University School of MedicineHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Xiaofu Yu
- Department of Thoracic RadiotherapyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouChina
| | - Jinsong Wu
- College of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhouChina
| | - Jirui Sun
- Department of PathologyBaoding NO.1 Central HospitalBaodingChina
| | - Jinku Zhang
- Department of PathologyBaoding NO.1 Central HospitalBaodingChina
| | - Yuxiong Feng
- First Affiliated HospitalInstitute of Translational Medicine, Zhejiang University School of MedicineHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouChina
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
6
|
Zeng L, Zhu Y, Moreno CS, Wan Y. New insights into KLFs and SOXs in cancer pathogenesis, stemness, and therapy. Semin Cancer Biol 2023; 90:29-44. [PMID: 36806560 PMCID: PMC10023514 DOI: 10.1016/j.semcancer.2023.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/04/2022] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Despite the development of cancer therapies, the success of most treatments has been impeded by drug resistance. The crucial role of tumor cell plasticity has emerged recently in cancer progression, cancer stemness and eventually drug resistance. Cell plasticity drives tumor cells to reversibly convert their cell identity, analogous to differentiation and dedifferentiation, to adapt to drug treatment. This phenotypical switch is driven by alteration of the transcriptome. Several pluripotent factors from the KLF and SOX families are closely associated with cancer pathogenesis and have been revealed to regulate tumor cell plasticity. In this review, we particularly summarize recent studies about KLF4, KLF5 and SOX factors in cancer development and evolution, focusing on their roles in cancer initiation, invasion, tumor hierarchy and heterogeneity, and lineage plasticity. In addition, we discuss the various regulation of these transcription factors and related cutting-edge drug development approaches that could be used to drug "undruggable" transcription factors, such as PROTAC and PPI targeting, for targeted cancer therapy. Advanced knowledge could pave the way for the development of novel drugs that target transcriptional regulation and could improve the outcome of cancer therapy.
Collapse
Affiliation(s)
- Lidan Zeng
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA
| | - Yueming Zhu
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Department of Biomedical Informatics, Winship Cancer Institute, Emory University School of Medicine, USA.
| | - Yong Wan
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA.
| |
Collapse
|
7
|
Feng J, He W, Xia J, Huang Q, Yang J, Gu WP, Zhang N, Liu YH. Human umbilical cord mesenchymal stem cells-derived exosomal circDLGAP4 promotes angiogenesis after cerebral ischemia-reperfusion injury by regulating miR-320/KLF5 axis. FASEB J 2023; 37:e22733. [PMID: 36723877 DOI: 10.1096/fj.202201488r] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 02/02/2023]
Abstract
Accumulating evidence suggests that human umbilical cord mesenchymal stem cell-derived exosomes (hUC-MSCs-Exos) are a promising therapeutic strategy for cerebral ischemia-reperfusion injury (CIRI). However, the underlying mechanism remains unclear. hUC-MSCs-Exos were identified by electron microscopy, NTA, and Western blotting. In the hypoxia/reoxygenation (H/R) cell model, human brain microvascular endothelial cells (HBMECs) were cocultured with hUC-MSCs-Exos. Then, cell viability, migration, apoptosis, and tube formation were measured by MTT, flow cytometry, transwell, and tube formation assays. RT-qPCR and Western blotting were used to detect the changes in RNA and protein. RNA pull-down and dual luciferase reporter assays confirmed the relationship between circDLGAP4, miR-320, and KLF5. Ischemia-reperfusion (I/R) rat model was established for in vivo experiments. hUC-MSCs-Exos increased the expression levels of circDLGAP4 and KLF5 but decreased miR-320 in H/R-treated HBMECs by transferring exosomal circDLGAP4. Knockdown of circDLGAP4 in hUC-MSCs-Exos reversed the promoting effects of hUC-MSCs-Exos on cell viability, migration, and tube formation in H/R-treated HBMECs in vitro and also abolished the protective effects of hUC-MSCs-Exos on cerebrovascular injury in I/R rats. Mechanistically, exosomal circDLGAP4 negatively regulated miR-320 in HBMECs, which directly bound to KLF5. In addition, the downregulation of miR-320 could reverse the regulatory effect of exosomal shcircDLGAL5 in H/R-treated HBMECs by upregulating KLF5. hUC-MSCs-Exos-derived circDLGAP4 reduced cerebrovascular injury by regulating miR-320/KLF5 signaling. These results provide a stem cell-based approach to treat CIRI.
Collapse
Affiliation(s)
- Jie Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Hunan Provincial Cerebrovascular Disease Clinical Medicine Research Center, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Wei He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Hunan Provincial Cerebrovascular Disease Clinical Medicine Research Center, Changsha, P.R. China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Hunan Provincial Cerebrovascular Disease Clinical Medicine Research Center, Changsha, P.R. China
| | - Qing Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Hunan Provincial Cerebrovascular Disease Clinical Medicine Research Center, Changsha, P.R. China
| | - Jie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Hunan Provincial Cerebrovascular Disease Clinical Medicine Research Center, Changsha, P.R. China
| | - Wen-Ping Gu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Hunan Provincial Cerebrovascular Disease Clinical Medicine Research Center, Changsha, P.R. China
| | - Ning Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Hunan Provincial Cerebrovascular Disease Clinical Medicine Research Center, Changsha, P.R. China
| | - Yun-Hai Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Hunan Provincial Cerebrovascular Disease Clinical Medicine Research Center, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
8
|
Cruz Walma DA, Chen Z, Bullock AN, Yamada KM. Ubiquitin ligases: guardians of mammalian development. Nat Rev Mol Cell Biol 2022; 23:350-367. [PMID: 35079164 DOI: 10.1038/s41580-021-00448-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
|
9
|
Luo Y, Chen C. The roles and regulation of the KLF5 transcription factor in cancers. Cancer Sci 2021; 112:2097-2117. [PMID: 33811715 PMCID: PMC8177779 DOI: 10.1111/cas.14910] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Krüppel‐like factor 5 (KLF5) is a member of the KLF family. Recent studies have suggested that KLF5 regulates the expression of a large number of new target genes and participates in diverse cellular functions, such as stemness, proliferation, apoptosis, autophagy, and migration. In response to multiple signaling pathways, various transcriptional modulation and posttranslational modifications affect the expression level and activity of KLF5. Several transgenic mouse models have revealed the physiological and pathological functions of KLF5 in different cancers. Studies of KLF5 will provide prognostic biomarkers, therapeutic targets, and potential drugs for cancers.
Collapse
Affiliation(s)
- Yao Luo
- Medical Faculty of Kunming University of Science and Technology, Kunming, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
10
|
Siraj AK, Pratheeshkumar P, Divya SP, Parvathareddy SK, Alobaisi KA, Thangavel S, Siraj S, Al-Badawi IA, Al-Dayel F, Al-Kuraya KS. Krupple-Like Factor 5 is a Potential Therapeutic Target and Prognostic Marker in Epithelial Ovarian Cancer. Front Pharmacol 2020; 11:598880. [PMID: 33424607 PMCID: PMC7793801 DOI: 10.3389/fphar.2020.598880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy. Despite current therapeutic and surgical options, advanced EOC shows poor prognosis. Identifying novel molecular therapeutic targets is highly needed in the management of EOC. Krupple-like factor 5 (KLF5), a zinc-finger transcriptional factor, is highly expressed in a variety of cancer types. However, its role and expression in EOC is not fully illustrated. Immunohistochemical analysis was performed to assess KLF5 protein expression in 425 primary EOC samples using tissue microarray. We also addressed the function of KLF5 in EOC and its interaction with signal transducer and activator of transcription 3 (STAT3) signaling pathway. We found that KLF5 overexpressed in 53% (229/425) of EOC samples, and is associated with aggressive markers. Forced expression of KLF5 enhanced cell growth in low expressing EOC cell line, MDAH2774. Conversely, knockdown of KLF5 reduced cell growth, migration, invasion and progression of epithelial to mesenchymal transition in KLF5 expressing cell lines, OVISE and OVSAHO. Importantly, silencing of KLF5 decreased the self-renewal ability of spheroids generated from OVISE and OVSAHO cell lines. In addition, downregulation of KLF5 potentiated the effect of cisplatin to induce apoptosis in these cell lines. These data reveals the pro-tumorigenic role of KLF5 in EOC and uncover its role in activation of STAT3 signaling pathway, suggesting the importance of KLF5 as a potential therapeutic target for EOC therapy.
Collapse
Affiliation(s)
- Abdul K Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Poyil Pratheeshkumar
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sasidharan Padmaja Divya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Khadija A Alobaisi
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saravanan Thangavel
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sarah Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ismail A Al-Badawi
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|