1
|
Pandey M, Sarkar S, Ghosh SK. Ancestral TALE homeobox protein transcription factor regulates actin dynamics and cellular activities of protozoan parasite Entamoeba invadens. Mol Microbiol 2024; 122:660-682. [PMID: 38654540 PMCID: PMC11586516 DOI: 10.1111/mmi.15266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Entamoeba histolytica causes invasive amoebiasis, an important neglected tropical disease with a significant global health impact. The pathogenicity and survival of E. histolytica and its reptilian equivalent, Entamoeba invadens, relies on its ability to exhibit efficient motility, evade host immune responses, and exploit host resources, all of which are governed by the actin cytoskeleton remodeling. Our study demonstrates the early origin and the regulatory role of TALE homeobox protein EiHbox1 in actin-related cellular processes. Several genes involved in different biological pathways, including actin dynamics are differentially expressed in EiHbox1 silenced cells. EiHbox1 silenced parasites showed disrupted F-actin organization and loss of cellular polarity. EiHbox1's presence in the anterior region of migrating cells further suggests its involvement in maintaining cellular polarity. Loss of polarized morphology of EiHbox1 silenced parasites leads to altered motility from fast, directionally persistent, and highly chemotactic to slow, random, and less chemotactic, which subsequently leads to defective aggregation during encystation. EiHbox1 knockdown also resulted in a significant reduction in phagocytic capacity and poor capping response. These findings highlight the importance of EiHbox1 of E. invadens in governing cellular processes crucial for their survival, pathogenicity, and evasion of the host immune system.
Collapse
Affiliation(s)
- Meenakshi Pandey
- Department of Bioscience and BiotechnologyIndian Institute of Technology KharagpurKharagpurWest BengalIndia
| | - Shilpa Sarkar
- Department of Bioscience and BiotechnologyIndian Institute of Technology KharagpurKharagpurWest BengalIndia
| | - Sudip K. Ghosh
- Department of Bioscience and BiotechnologyIndian Institute of Technology KharagpurKharagpurWest BengalIndia
| |
Collapse
|
2
|
Iroquois Family Genes in Gastric Carcinogenesis: A Comprehensive Review. Genes (Basel) 2023; 14:genes14030621. [PMID: 36980893 PMCID: PMC10048635 DOI: 10.3390/genes14030621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Gastric cancer (GC) is the fifth leading cause of cancer-associated death worldwide, accounting for 768,793 related deaths and 1,089,103 new cases in 2020. Despite diagnostic advances, GC is often detected in late stages. Through a systematic literature search, this study focuses on the associations between the Iroquois gene family and GC. Accumulating evidence indicates that Iroquois genes are involved in the regulation of various physiological and pathological processes, including cancer. To date, information about Iroquois genes in GC is very limited. In recent years, the expression and function of Iroquois genes examined in different models have suggested that they play important roles in cell and cancer biology, since they were identified to be related to important signaling pathways, such as wingless, hedgehog, mitogen-activated proteins, fibroblast growth factor, TGFβ, and the PI3K/Akt and NF-kB pathways. In cancer, depending on the tumor, Iroquois genes can act as oncogenes or tumor suppressor genes. However, in GC, they seem to mostly act as tumor suppressor genes and can be regulated by several mechanisms, including methylation, microRNAs and important GC-related pathogens. In this review, we provide an up-to-date review of the current knowledge regarding Iroquois family genes in GC.
Collapse
|
3
|
Wu S, Xu H, Zhang R, Wang X, Yang J, Li X, Chen S, He W, Nan A. Circular RNA circLAMA3 inhibits the proliferation of bladder cancer by directly binding an mRNA. Mol Ther Oncolytics 2022; 24:742-754. [PMID: 35317525 PMCID: PMC8908064 DOI: 10.1016/j.omto.2022.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
The circular RNA (circRNA) circLAMA3 is significantly downregulated in bladder cancer tissues and cell lines. However, its function in bladder cancer has not yet been explored, and further research is needed. In this study, functional experiments demonstrated that circLAMA3 significantly inhibited the proliferation, migration, and invasion of bladder cancer cells and inhibited bladder cancer growth in vivo. Mechanistically, circLAMA3 directly binds to and promotes the degradation of MYCN mRNA, thereby reducing the MYCN protein expression in bladder cancer cells. Decreased expression of the MYCN protein inhibits the promoter activity and expression of CDK6. Ultimately, circLAMA3 affects DNA replication by downregulating CDK6, resulting in G0/G1 phase arrest and inhibition of bladder cancer proliferation. In summary, we report a potential novel regulatory mechanism via which a circRNA directly binds an mRNA and thereby regulates its fate. Moreover, circLAMA3 significantly affects the progression of bladder cancer and has potential as a diagnostic biomarker and therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Shuilian Wu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haotian Xu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Ruirui Zhang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China.,Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xin Wang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jialei Yang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiaofei Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Sixian Chen
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Wanting He
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Aruo Nan
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China.,Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
4
|
Bjune JI, Dyer L, Røsland GV, Tronstad KJ, Njølstad PR, Sagen JV, Dankel SN, Mellgren G. The homeobox factor Irx3 maintains adipogenic identity. Metabolism 2020; 103:154014. [PMID: 31751577 DOI: 10.1016/j.metabol.2019.154014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/22/2019] [Accepted: 11/13/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Inhibition of Irx3 and Irx5 has been shown to reduce body weight and white adipose tissue (WAT) mass through cell-autonomous and sympathetic-induced increases in adipocyte beiging and thermogenesis in mice and humans. However, the underlying mechanisms of the Irx control over beiging are still largely unknown, as illustrated by recent reports showing divergent effects of Irx3 on adipocyte metabolism and function. Here, we investigated the role of Irx3 in controlling beige preadipocyte function and differentiation. METHODS Stable knock out of Irx3 in ME3 mouse preadipocytes capable of beiging was performed using a CRISPR-Cas9 system, and the effect on cell differentiation was assessed by qPCR, RNA-seq, Oil-red-O lipid staining and Alcian Blue staining of proteoglycans. Changes in cell identities were validated using cell type enrichment analysis from RNA-seq data. Proliferation and cell cycle progression in undifferentiated cells were measured by WST-1 and flow cytometry, reactive oxygen species (ROS) generation was determined by fluorescence spectrometry and mitochondrial respiration was investigated by Seahorse assay. RESULTS Irx3 was found to be essential for the identity, function and adipogenic differentiation of beige adipocyte precursors. Irx3-KO impaired proliferation, ROS generation and mitochondrial respiration in the preadipocytes. We further observed profound changes in numerous genes during both early and late stages of adipogenic differentiation, including genes important for adipocyte differentiation, cell cycle progression, oxidative phosphorylation (OXPHOS) and morphogenesis. Irx3-KO cells failed to accumulate lipids following adipogenic stimuli, and cell enrichment analysis revealed a loss of preadipocyte identity and a gain of chondrocyte-like identity in Irx3-KO cells during early differentiation. Finally, unlike the control cells, the Irx3-KO cells readily responded to chondrogenic stimuli. CONCLUSIONS Irx3 is required for preadipocyte identity and differentiation capacity. Our findings suggest that, while inhibition of Irx3 may be beneficial during later developmental stages to modulate adipogenesis in the beige direction, constitutive and complete absence of Irx3 in the embryonic fibroblast stage leads to detrimental loss of adipogenic differentiation capacity.
Collapse
Affiliation(s)
- Jan-Inge Bjune
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Laurence Dyer
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Gro V Røsland
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Karl Johan Tronstad
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway; Department of Oncology and Medical Physics, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Pål R Njølstad
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Department of Pediatrics and Adolescents, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Jørn V Sagen
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Simon N Dankel
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway.
| | - Gunnar Mellgren
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway.
| |
Collapse
|