1
|
Petersilie L, Heiduschka S, Nelson JS, Neu LA, Le S, Anand R, Kafitz KW, Prigione A, Rose CR. Cortical brain organoid slices (cBOS) for the study of human neural cells in minimal networks. iScience 2024; 27:109415. [PMID: 38523789 PMCID: PMC10957451 DOI: 10.1016/j.isci.2024.109415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
Brain organoids derived from human pluripotent stem cells are a promising tool for studying human neurodevelopment and related disorders. Here, we generated long-term cultures of cortical brain organoid slices (cBOS) grown at the air-liquid interphase from regionalized cortical organoids. We show that cBOS host mature neurons and astrocytes organized in complex architecture. Whole-cell patch-clamp demonstrated subthreshold synaptic inputs and action potential firing of neurons. Spontaneous intracellular calcium signals turned into synchronous large-scale oscillations upon combined disinhibition of NMDA receptors and blocking of GABAA receptors. Brief metabolic inhibition to mimic transient energy restriction in the ischemic brain induced reversible intracellular calcium loading of cBOS. Moreover, metabolic inhibition induced a reversible decline in neuronal ATP as revealed by ATeam1.03YEMK. Overall, cBOS provide a powerful platform to assess morphological and functional aspects of human neural cells in intact minimal networks and to address the pathways that drive cellular damage during brain ischemia.
Collapse
Affiliation(s)
- Laura Petersilie
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Sonja Heiduschka
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital and Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Joel S.E. Nelson
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Louis A. Neu
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Stephanie Le
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital and Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Karl W. Kafitz
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital and Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Christine R. Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|
2
|
Calbiague-Garcia V, Chen Y, Cádiz B, Tapia F, Paquet-Durand F, Schmachtenberg O. Extracellular lactate as an alternative energy source for retinal bipolar cells. J Biol Chem 2024; 300:106794. [PMID: 38403245 PMCID: PMC10966802 DOI: 10.1016/j.jbc.2024.106794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024] Open
Abstract
Retinal bipolar and amacrine cells receive visual information from photoreceptors and participate in the first steps of image processing in the retina. Several studies have suggested the operation of aerobic glycolysis and a lactate shuttle system in the retina due to the high production of this metabolite under aerobic conditions. However, whether bipolar cells form part of this metabolic circuit remains unclear. Here, we show that the monocarboxylate transporter 2 is expressed and functional in inner retinal neurons. Additionally, we used genetically encoded FRET nanosensors to demonstrate the ability of inner retinal neurons to consume extracellular lactate as an alternative to glucose. In rod bipolar cells, lactate consumption allowed cells to maintain the homeostasis of ions and electrical responses. We also found that lactate synthesis and transporter inhibition caused functional alterations and an increased rate of cell death. Overall, our data shed light on a notable but still poorly understood aspect of retinal metabolism.
Collapse
Affiliation(s)
- Victor Calbiague-Garcia
- PhD Program in Neuroscience, Universidad de Valparaíso, Valparaíso, Chile; CINV, Instituto de Biología, Universidad de Valparaíso, Valparaíso, Chile.
| | - Yiyi Chen
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Bárbara Cádiz
- CINV, Instituto de Biología, Universidad de Valparaíso, Valparaíso, Chile
| | - Felipe Tapia
- CINV, Instituto de Biología, Universidad de Valparaíso, Valparaíso, Chile
| | | | | |
Collapse
|
3
|
Wiatr K, Marczak Ł, Pérot JB, Brouillet E, Flament J, Figiel M. Broad Influence of Mutant Ataxin-3 on the Proteome of the Adult Brain, Young Neurons, and Axons Reveals Central Molecular Processes and Biomarkers in SCA3/MJD Using Knock-In Mouse Model. Front Mol Neurosci 2021; 14:658339. [PMID: 34220448 PMCID: PMC8248683 DOI: 10.3389/fnmol.2021.658339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/01/2021] [Indexed: 01/11/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3/MJD) is caused by CAG expansion mutation resulting in a long polyQ domain in mutant ataxin-3. The mutant protein is a special type of protease, deubiquitinase, which may indicate its prominent impact on the regulation of cellular proteins levels and activity. Yet, the global model picture of SCA3 disease progression on the protein level, molecular pathways in the brain, and neurons, is largely unknown. Here, we investigated the molecular SCA3 mechanism using an interdisciplinary research paradigm combining behavioral and molecular aspects of SCA3 in the knock-in ki91 model. We used the behavior, brain magnetic resonance imaging (MRI) and brain tissue examination to correlate the disease stages with brain proteomics, precise axonal proteomics, neuronal energy recordings, and labeling of vesicles. We have demonstrated that altered metabolic and mitochondrial proteins in the brain and the lack of weight gain in Ki91 SCA3/MJD mice is reflected by the failure of energy metabolism recorded in neonatal SCA3 cerebellar neurons. We have determined that further, during disease progression, proteins responsible for metabolism, cytoskeletal architecture, vesicular, and axonal transport are disturbed, revealing axons as one of the essential cell compartments in SCA3 pathogenesis. Therefore we focus on SCA3 pathogenesis in axonal and somatodendritic compartments revealing highly increased axonal localization of protein synthesis machinery, including ribosomes, translation factors, and RNA binding proteins, while the level of proteins responsible for cellular transport and mitochondria was decreased. We demonstrate the accumulation of axonal vesicles in neonatal SCA3 cerebellar neurons and increased phosphorylation of SMI-312 positive adult cerebellar axons, which indicate axonal dysfunction in SCA3. In summary, the SCA3 disease mechanism is based on the broad influence of mutant ataxin-3 on the neuronal proteome. Processes central in our SCA3 model include disturbed localization of proteins between axonal and somatodendritic compartment, early neuronal energy deficit, altered neuronal cytoskeletal structure, an overabundance of various components of protein synthesis machinery in axons.
Collapse
Affiliation(s)
- Kalina Wiatr
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Jean-Baptiste Pérot
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de Biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Emmanuel Brouillet
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de Biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Julien Flament
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de Biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Maciej Figiel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
4
|
Esmael A, Talaat M, Egila H, Eltoukhy K. Mitochondrial dysfunction and serum lactate as a biomarker for the progression and disability in MS and its correlation with the radiological findings. Neurol Res 2021; 43:582-590. [PMID: 33657991 DOI: 10.1080/01616412.2021.1893567] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective: To study the serum lactate level in MS and to explore its correlation with the progression and disability in multiple sclerosis (MS), and the important role of mitochondrial dysfunction in the pathogenesis of MS.Methods: This case-control study included 80 participants, involved 50 MS patients and 30 normal healthy controls. Detailed history taking, complete neurological examination, and clinical evaluation of the disability using the Expanded Disability Status Scale (EDSS) were done for all patients. Level of serum lactate was measured in both groups and was correlated with EDSS, MS subtypes, MRI brain, and MRS findings.Results: Serum lactate in MS patients was about three and half times higher than serum lactate levels of healthy controls (22.87 ± 5.92 mg/dl versus 6.39 ± 0.9 6.39 ± 0.91, p < 0.001). Importantly, serum lactate values were increased in MS cases with a progressive course compared with MS cases with RR course. Also, there were linearly correlations linking serum lactate levels and the duration of MS (r = 0.342, P = 0.015), relapses numbers (r = 0.335, P = 0.022), and EDSS (r = 0.483, P < 0.001). Also, there were strong positive correlations between serum lactate and Lipid/Lactate (r = 0.461, P = 0.001), periventricular lesion (r = 0.453, P = 0.005), and moderate positive correlations between serum lactate and juxtacortical lesion (r = 0.351, P = 0.02), and infratentorial lesion (r = 0.355, P = 0.02).Conclusion: Measurement of serum lactate may be helpful in MS and this supports the hypothesis of the critical role of mitochondrial dysfunction and axonal damage in MS.Registration of Clinical Trial Research: ClinicalTrials.gov ID: NCT04210960.
Collapse
Affiliation(s)
- Ahmed Esmael
- Neurology Department, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Mona Talaat
- Diagnostic Radiology Department, Faculty of Medicine, Kafrelsheikh University, Kafr Ash Shaykh, Egypt
| | - Hosam Egila
- Neurology Department, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Khaled Eltoukhy
- Neurology Department, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia, Egypt
| |
Collapse
|
5
|
Kardos J, Héja L, Jemnitz K, Kovács R, Palkovits M. The nature of early astroglial protection-Fast activation and signaling. Prog Neurobiol 2017; 153:86-99. [PMID: 28342942 DOI: 10.1016/j.pneurobio.2017.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/22/2016] [Accepted: 03/05/2017] [Indexed: 12/14/2022]
Abstract
Our present review is focusing on the uniqueness of balanced astroglial signaling. The balance of excitatory and inhibitory signaling within the CNS is mainly determined by sharp synaptic transients of excitatory glutamate (Glu) and inhibitory γ-aminobutyrate (GABA) acting on the sub-second timescale. Astroglia is involved in excitatory chemical transmission by taking up i) Glu through neurotransmitter-sodium transporters, ii) K+ released due to presynaptic action potential generation, and iii) water keeping osmotic pressure. Glu uptake-coupled Na+ influx may either ignite long-range astroglial Ca2+ transients or locally counteract over-excitation via astroglial GABA release and increased tonic inhibition. Imbalance of excitatory and inhibitory drives is associated with a number of disease conditions, including prevalent traumatic and ischaemic injuries or the emergence of epilepsy. Therefore, when addressing the potential of early therapeutic intervention, astroglial signaling functions combating progress of Glu excitotoxicity is of critical importance. We suggest, that excitotoxicity is linked primarily to over-excitation induced by the impairment of astroglial Glu uptake and/or GABA release. Within this framework, we discuss the acute alterations of Glu-cycling and metabolism and conjecture the therapeutic promise of regulation. We also confer the role played by key carrier proteins and enzymes as well as their interplay at the molecular, cellular, and organ levels. Moreover, based on our former studies, we offer potential prospect on the emerging theme of astroglial succinate sensing in course of Glu excitotoxicity.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary.
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary
| | - Katalin Jemnitz
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary
| | - Richárd Kovács
- Institute of Neurophysiology, Charité - Universitätsmedizin, Berlin, Germany
| | - Miklós Palkovits
- Human Brain Tissue Bank and Laboratory, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Gerkau NJ, Rakers C, Petzold GC, Rose CR. Differential effects of energy deprivation on intracellular sodium homeostasis in neurons and astrocytes. J Neurosci Res 2017; 95:2275-2285. [PMID: 28150887 DOI: 10.1002/jnr.23995] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 12/11/2022]
Abstract
The maintenance of a low intracellular sodium concentration by the Na+ /K+ -ATPase (NKA) is critical for brain function. In both neurons and glial cells, NKA activity is required to counteract changes in the sodium gradient due to opening of voltage- and ligand-gated channels and/or activation of sodium-dependent secondary active transporters. Because NKA consumes about 50% of cellular ATP, sodium homeostasis is strictly dependent on an intact cellular energy metabolism. Despite the high energetic costs of electrical signaling, neurons do not contain significant energy stores themselves, but rely on a close metabolic interaction with surrounding astrocytes. A disruption of energy supply as observed during focal ischemia causes a rapid drop in ATP in both neurons and astrocytes. There is accumulating evidence that dysregulation of intracellular sodium is an inherent consequence of a reduction in cellular ATP, triggering secondary failure of extra- and intracellular homeostasis of other ions -in particular potassium, calcium, and protons- and thereby promoting excitotoxicity. The characteristics, cellular mechanisms and direct consequences of harmful sodium influx, however, differ between neurons and astrocytes. Moreover, recent work has shown that an intact astrocyte metabolism and sodium homeostasis are critical to maintain the sodium homeostasis of surrounding neurons as well as their capacity to recover from imposed sodium influx. Understanding the mechanisms of sodium increases upon metabolic failure and the differential responses of neurons and glial cells as well as their metabolic interactions will be critical to fully unravel the events causing cellular malfunction, failure and cell death following energy depletion. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Niklas J Gerkau
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | - Cordula Rakers
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
7
|
Mondragão MA, Schmidt H, Kleinhans C, Langer J, Kafitz KW, Rose CR. Extrusion versus diffusion: mechanisms for recovery from sodium loads in mouse CA1 pyramidal neurons. J Physiol 2016; 594:5507-27. [PMID: 27080107 PMCID: PMC5043027 DOI: 10.1113/jp272431] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Neuronal activity causes local or global sodium signalling in neurons, depending on the pattern of synaptic activity. Recovery from global sodium loads critically relies on Na(+) /K(+) -ATPase and an intact energy metabolism in both somata and dendrites. For recovery from local sodium loads in dendrites, Na(+) /K(+) -ATPase activity is not required per se. Instead, recovery is predominately mediated by lateral diffusion, exhibiting rates that are 10-fold higher than for global sodium signals. Recovery from local dendritic sodium increases is still efficient during short periods of energy deprivation, indicating that fast diffusion of sodium to non-stimulated regions strongly reduces local energy requirements. ABSTRACT Excitatory activity is accompanied by sodium influx into neurones as a result of the opening of voltage- and ligand-activated channels. Recovery from resulting sodium transients has mainly been attributed to Na(+) /K(+) -ATPase (NKA). Because sodium ions are highly mobile, diffusion could provide an additional pathway. We tested this in hippocampal neurones using whole-cell patch-clamp recordings and sodium imaging. Somatic sodium transients induced by local glutamate application recovered at a maximum rate of 8 mm min(-1) (∼0.03 mm min(-1 ) μm(-2) ). Somatic sodium extrusion was accelerated at higher temperature and blocked by ouabain, emphasizing its dependence on NKA. Moreover, it was slowed down during inhibition of glycolysis by sodium fluoride (NaF). Local glutamate application to dendrites revealed a 10-fold higher apparent dendritic sodium extrusion rate compared to somata. Recovery was almost unaltered by increased temperature, ouabain or NaF. We found that sodium diffused along primary dendrites with a diffusion coefficient of ∼330 μm²/s. During global glutamate application, impeding substantial net diffusion, apparent dendritic extrusion rates were reduced to somatic rates and also affected by NaF. Numerical simulations confirmed the essential role of NKA for the recovery of somatic, but not dendritic sodium loads. Our data show that sodium export upon global sodium increases is largely mediated by NKA and depends on an intact energy metabolism. For recovery from local dendritic sodium increases, diffusion dominates over extrusion, operating efficiently even during short periods of energy deprivation. Although sodium will eventually be extruded by the NKA, its diffusion-based fast dissemination to non-stimulated regions might reduce local energy requirements.
Collapse
Affiliation(s)
- Miguel A Mondragão
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hartmut Schmidt
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Christian Kleinhans
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Langer
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl W Kafitz
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
8
|
Albanese M, Zagaglia S, Landi D, Boffa L, Nicoletti CG, Marciani MG, Mandolesi G, Marfia GA, Buttari F, Mori F, Centonze D. Cerebrospinal fluid lactate is associated with multiple sclerosis disease progression. J Neuroinflammation 2016; 13:36. [PMID: 26863878 PMCID: PMC4750170 DOI: 10.1186/s12974-016-0502-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Altered cerebrospinal fluid (CSF) levels of lactate have been described in neurodegenerative diseases and related to mitochondrial dysfunction and neuronal degeneration. We investigated the relationship between CSF lactate levels, disease severity, and biomarkers associated with neuroaxonal damage in patients with multiple sclerosis (MS). METHODS One-hundred eighteen subjects with relapsing-remitting multiple sclerosis (RRMS) were included, along with one-hundred fifty seven matched controls. CSF levels of lactate, tau protein, and neurofilament light were detected at the time of diagnosis. Patients were followed-up for a mean of 5 years. Progression index (PI), multiple sclerosis severity scale (MSSS), and Bayesian risk estimate for multiple sclerosis (BREMS) were assessed as clinical measures of disease severity and progression. Differences between groups and correlation between CSF lactate, disease severity and CSF biomarkers of neuronal damage were explored. RESULTS CSF lactate was higher in RRMS patients compared to controls. A negative correlation was found between lactate levels and disease duration. Patients with higher CSF lactate concentration had significantly higher PI, MSSS, and BREMS scores at long-term follow-up. Furthermore, CSF lactate correlated positively and significantly with CSF levels of both tau protein and neurofilament light protein. CONCLUSIONS Measurement of CSF lactate may be helpful, in conjunction with other biomarkers of tissue damage, as an early predictor of disease severity in RRMS patients. A better understanding of the alterations of mitochondrial metabolic pathways associated to RRMS severity may pave the way to new therapeutic targets to contrast axonal damage and disease severity.
Collapse
Affiliation(s)
- Maria Albanese
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy.,IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli, IS, Italy
| | - Sara Zagaglia
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy.,Clinica di Neurologia, Università Politecnica delle Marche, 60100, Ancona, Italy
| | - Doriana Landi
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy.,IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli, IS, Italy
| | - Laura Boffa
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy
| | - Carolina G Nicoletti
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy
| | - Maria Grazia Marciani
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy
| | | | - Girolama A Marfia
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy.,IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli, IS, Italy
| | - Fabio Buttari
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy.,IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli, IS, Italy
| | - Francesco Mori
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy.,IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli, IS, Italy
| | - Diego Centonze
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy. .,IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli, IS, Italy.
| |
Collapse
|