Kanaporis G, Martinez‐Hernandez E, Blatter LA. Calcium- and voltage-driven atrial alternans: Insight from [Ca]
i and V
m asynchrony.
Physiol Rep 2023;
11:e15703. [PMID:
37226365 PMCID:
PMC10209431 DOI:
10.14814/phy2.15703]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/26/2023] Open
Abstract
Cardiac alternans is defined as beat-to-beat alternations in contraction strength, action potential duration (APD), and Ca transient (CaT) amplitude. Cardiac excitation-contraction coupling relies on the activity of two bidirectionally coupled excitable systems, membrane voltage (Vm ) and Ca release. Alternans has been classified as Vm - or Ca-driven, depending whether a disturbance of Vm or [Ca]i regulation drives the alternans. We determined the primary driver of pacing induced alternans in rabbit atrial myocytes, using combined patch clamp and fluorescence [Ca]i and Vm measurements. APD and CaT alternans are typically synchronized; however, uncoupling between APD and CaT regulation can lead to CaT alternans in the absence of APD alternans, and APD alternans can fail to precipitate CaT alternans, suggesting a considerable degree of independence of CaT and APD alternans. Using alternans AP voltage clamp protocols with extra APs showed that most frequently the pre-existing CaT alternans pattern prevailed after the extra-beat, indicating that alternans is Ca-driven. In electrically coupled cell pairs, dyssynchrony of APD and CaT alternans points to autonomous regulation of CaT alternans. Thus, with three novel experimental protocols, we collected evidence for Ca-driven alternans; however, the intimately intertwined regulation of Vm and [Ca]i precludes entirely independent development of CaT and APD alternans.
Collapse