1
|
Adolph C, Cheung CY, McNeil MB, Jowsey WJ, Williams ZC, Hards K, Harold LK, Aboelela A, Bujaroski RS, Buckley BJ, Tyndall JDA, Li Z, Langer JD, Preiss L, Meier T, Steyn AJC, Rhee KY, Berney M, Kelso MJ, Cook GM. A dual-targeting succinate dehydrogenase and F 1F o-ATP synthase inhibitor rapidly sterilizes replicating and non-replicating Mycobacterium tuberculosis. Cell Chem Biol 2024; 31:683-698.e7. [PMID: 38151019 DOI: 10.1016/j.chembiol.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
Mycobacterial bioenergetics is a validated target space for antitubercular drug development. Here, we identify BB2-50F, a 6-substituted 5-(N,N-hexamethylene)amiloride derivative as a potent, multi-targeting bioenergetic inhibitor of Mycobacterium tuberculosis. We show that BB2-50F rapidly sterilizes both replicating and non-replicating cultures of M. tuberculosis and synergizes with several tuberculosis drugs. Target identification experiments, supported by docking studies, showed that BB2-50F targets the membrane-embedded c-ring of the F1Fo-ATP synthase and the catalytic subunit (substrate-binding site) of succinate dehydrogenase. Biochemical assays and metabolomic profiling showed that BB2-50F inhibits succinate oxidation, decreases the activity of the tricarboxylic acid (TCA) cycle, and results in succinate secretion from M. tuberculosis. Moreover, we show that the lethality of BB2-50F under aerobic conditions involves the accumulation of reactive oxygen species. Overall, this study identifies BB2-50F as an effective inhibitor of M. tuberculosis and highlights that targeting multiple components of the mycobacterial respiratory chain can produce fast-acting antimicrobials.
Collapse
Affiliation(s)
- Cara Adolph
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Matthew B McNeil
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - William J Jowsey
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Zoe C Williams
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Kiel Hards
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Liam K Harold
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Ashraf Aboelela
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Richard S Bujaroski
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Benjamin J Buckley
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Joel D A Tyndall
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou, China
| | - Julian D Langer
- Proteomics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Laura Preiss
- Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Thomas Meier
- Department of Life Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, UK; Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Adrie J C Steyn
- Africa Health Research Institute, University of KwaZulu Natal, Durban, KwaZulu, Natal, South Africa; Department of Microbiology, Centers for AIDs Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kyu Y Rhee
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY 14853, USA; Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Michael Berney
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Michael J Kelso
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Gregory M Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand.
| |
Collapse
|
2
|
Chen J, Campbell AP, Wakelin LPG, Finch AM. Characterisation of bis(4-aminoquinoline)s as α 1A adrenoceptor allosteric modulators. Eur J Pharmacol 2021; 916:174659. [PMID: 34871559 DOI: 10.1016/j.ejphar.2021.174659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022]
Abstract
The development of sub-type selective α1 adrenoceptor ligands has been hampered by the high sequence similarity of the amino acids forming the orthosteric binding pocket of the three α1 adrenoceptor subtypes, along with other biogenic amine receptors. One possible approach to overcome this issue is to target allosteric sites on the α1 adrenoceptors. Previous docking studies suggested that one of the quinoline moieties of a bis(4-aminoquinoline), comprising a 9-carbon methylene linker attached via the amine groups, could interact with residues outside of the orthosteric binding site while, simultaneously, the other quinoline moiety bound within the orthosteric site. We therefore hypothesized that this compound could act in a bitopic manner, displaying both orthosteric and allosteric binding properties. To test this proposition, we investigated the allosteric activity of a series of bis(4-aminoquinoline)s with linker lengths ranging from 2 to 12 methylene units (designated C2-C12). A linear trend of increasing [3H]prazosin dissociation rate with increasing linker length between C7 and C11 was observed, confirming their action as allosteric modulators. These data suggest that the optimal linker length for the bis(4-aminoquinoline)s to occupy the allosteric site of the α1A adrenoceptor is between 7 and 11 methylene units. In addition, the ability of C9 bis(4-aminoquinoline) to modulate the activation of the α1A adrenoceptor by norepinephrine was subsequently examined, showing that C9 acted as a non-competitive antagonist. Our findings indicate that the bis(4-aminoquinolines) are acting as allosteric modulators of orthosteric ligand binding, but not efficacy, in a bitopic manner.
Collapse
Affiliation(s)
- Junli Chen
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Adrian P Campbell
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Laurence P G Wakelin
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Angela M Finch
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia.
| |
Collapse
|
3
|
Zhang Y, Wang K, Yu Z. Drug Development in Channelopathies: Allosteric Modulation of Ligand-Gated and Voltage-Gated Ion Channels. J Med Chem 2020; 63:15258-15278. [PMID: 33253554 DOI: 10.1021/acs.jmedchem.0c01304] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ion channels have been characterized as promising drug targets for treatment of numerous human diseases. Functions of ion channels can be fine-tuned by allosteric modulators, which interact with channels and modulate their activities by binding to sites spatially discrete from those of orthosteric ligands. Positive and negative allosteric modulators have presented a plethora of potential therapeutic advantages over traditionally orthosteric agonists and antagonists in terms of selectivity and safety. This thematic review highlights the discovery of representative allosteric modulators for ligand-gated and voltage-gated ion channels, discussing in particular their identifications, locations, and therapeutic uses in the treatment of a range of channelopathies. Additionally, structures and functions of selected ion channels are briefly described to aid in the rational design of channel modulators. Overall, allosteric modulation represents an innovative targeting approach, and the corresponding modulators provide an abundant but challenging landscape for novel therapeutics targeting ligand-gated and voltage-gated ion channels.
Collapse
Affiliation(s)
- Yanyun Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ke Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhiyi Yu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
4
|
Buckley BJ, Majed H, Aboelela A, Minaei E, Jiang L, Fildes K, Cheung CY, Johnson D, Bachovchin D, Cook GM, Huang M, Ranson M, Kelso MJ. 6-Substituted amiloride derivatives as inhibitors of the urokinase-type plasminogen activator for use in metastatic disease. Bioorg Med Chem Lett 2019; 29:126753. [PMID: 31679971 DOI: 10.1016/j.bmcl.2019.126753] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 11/25/2022]
Abstract
The oral K+-sparing diuretic amiloride shows anti-cancer side-activities in multiple rodent models. These effects appear to arise, at least in part, through moderate inhibition of the urokinase-type plasminogen activator (uPA, Ki = 2.4 µM), a pro-metastatic trypsin-like serine protease that is upregulated in many aggressive solid malignancies. In applying the selective optimization of side-activity (SOSA) approach, a focused library of twenty two 6-substituted amiloride derivatives were prepared, with multiple examples displaying uPA inhibitory potencies in the nM range. X-ray co-crystal structures revealed that the potency increases relative to amiloride arise from increased occupancy of uPA's S1β subsite by the appended 6-substituents. Leading compounds were shown to have high selectivity over related trypsin-like serine proteases and no diuretic or anti-kaliuretic effects in rats. Compound 15 showed anti-metastatic effects in a xenografted mouse model of late-stage lung metastasis.
Collapse
Affiliation(s)
- Benjamin J Buckley
- School of Chemistry and Molecular Bioscience, University of Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, NSW 2522, Australia; Molecular Horizons, University of Wollongong, NSW 2522, Australia
| | - Hiwa Majed
- School of Chemistry and Molecular Bioscience, University of Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, NSW 2522, Australia; Molecular Horizons, University of Wollongong, NSW 2522, Australia
| | - Ashraf Aboelela
- School of Chemistry and Molecular Bioscience, University of Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, NSW 2522, Australia; Molecular Horizons, University of Wollongong, NSW 2522, Australia
| | - Elahe Minaei
- Illawarra Health and Medical Research Institute, NSW 2522, Australia; Molecular Horizons, University of Wollongong, NSW 2522, Australia
| | - Longguang Jiang
- National Joint Biomdical Engineering Research Centre on Photodynamic Technologies, Fuzhou University, Fuzhou 350116, China
| | - Karen Fildes
- Illawarra Health and Medical Research Institute, NSW 2522, Australia; Graduate School of Medicine, University of Wollongong, NSW 2522, Australia
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, University of Otago, Otago 9016, New Zealand
| | - Darren Johnson
- Tri-institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, NY 10065, USA
| | - Daniel Bachovchin
- Tri-institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Centre, NY 10065, USA
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Otago 9016, New Zealand
| | - Mingdong Huang
- National Joint Biomdical Engineering Research Centre on Photodynamic Technologies, Fuzhou University, Fuzhou 350116, China
| | - Marie Ranson
- School of Chemistry and Molecular Bioscience, University of Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, NSW 2522, Australia; Molecular Horizons, University of Wollongong, NSW 2522, Australia.
| | - Michael J Kelso
- School of Chemistry and Molecular Bioscience, University of Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, NSW 2522, Australia; Molecular Horizons, University of Wollongong, NSW 2522, Australia.
| |
Collapse
|
5
|
Buckley BJ, Aboelela A, Minaei E, Jiang LX, Xu Z, Ali U, Fildes K, Cheung CY, Cook SM, Johnson DC, Bachovchin DA, Cook GM, Apte M, Huang M, Ranson M, Kelso MJ. 6-Substituted Hexamethylene Amiloride (HMA) Derivatives as Potent and Selective Inhibitors of the Human Urokinase Plasminogen Activator for Use in Cancer. J Med Chem 2018; 61:8299-8320. [PMID: 30130401 PMCID: PMC6290913 DOI: 10.1021/acs.jmedchem.8b00838] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metastasis is the cause of death in the majority (∼90%) of malignant cancers. The oral potassium-sparing diuretic amiloride and its 5-substituted derivative 5 -N, N-(hexamethylene)amiloride (HMA) reportedly show robust antitumor/metastasis effects in multiple in vitro and animal models. These effects are likely due, at least in part, to inhibition of the urokinase plasminogen activator (uPA), a key protease determinant of cell invasiveness and metastasis. This study reports the discovery of 6-substituted HMA analogs that show nanomolar potency against uPA, high selectivity over related trypsin-like serine proteases, and minimal inhibitory effects against epithelial sodium channels (ENaC), the diuretic and antikaliuretic target of amiloride. Reductions in lung metastases were demonstrated for two analogs in a late-stage experimental mouse metastasis model, and one analog completely inhibited formation of liver metastases in an orthotopic xenograft mouse model of pancreatic cancer. The results support further evaluation of 6-substituted HMA derivatives as uPA-targeting anticancer drugs.
Collapse
Affiliation(s)
- Benjamin J. Buckley
- Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Ashraf Aboelela
- Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Elahe Minaei
- Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Longguang X. Jiang
- National Joint Biomedical Engineering Research Centre on Photodynamic Technologies, Fuzhou University, Fujian 350116, China
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical School, University of New South Wales, and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Umar Ali
- Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Karen Fildes
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, University of Otago, Otago 9016, New Zealand
| | - Simon M. Cook
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Darren C. Johnson
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Daniel A. Bachovchin
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Gregory M. Cook
- Department of Microbiology and Immunology, University of Otago, Otago 9016, New Zealand
| | - Minoti Apte
- Pancreatic Research Group, South Western Sydney Clinical School, University of New South Wales, and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Mingdong Huang
- National Joint Biomedical Engineering Research Centre on Photodynamic Technologies, Fuzhou University, Fujian 350116, China
| | - Marie Ranson
- Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Michael J. Kelso
- Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|