1
|
Gagnon JC, Beauregard-Tousignant S, Marcil JS, Lazar CS. Deep Isolated Aquifer Brines Harbor Atypical Halophilic Microbial Communities in Quebec, Canada. Genes (Basel) 2023; 14:1529. [PMID: 37628582 PMCID: PMC10454208 DOI: 10.3390/genes14081529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
The deep terrestrial subsurface, hundreds of meters to kilometers below the surface, is characterized by oligotrophic conditions, dark and often anoxic settings, with fluctuating pH, salinity, and water availability. Despite this, microbial populations are detected and active, contributing to biogeochemical cycles over geological time. Because it is extremely difficult to access the deep biosphere, little is known about the identity and metabolisms of these communities, although they likely possess unknown pathways and might interfere with deep waste deposits. Therefore, we analyzed rock and groundwater microbial communities from deep, isolated brine aquifers in two regions dating back to the Ordovician and Devonian, using amplicon and whole genome sequencing. We observed significant differences in diversity and community structure between both regions, suggesting an impact of site age and composition. The deep hypersaline groundwater did not contain typical halophilic bacteria, and genomes suggested pathways involved in protein and hydrocarbon degradation, and carbon fixation. We identified mainly one strategy to cope with osmotic stress: compatible solute uptake and biosynthesis. Finally, we detected many bacteriophage families, potentially indicating that bacteria are infected. However, we also found auxiliary metabolic genes in the viral genomes, probably conferring an advantage to the infected hosts.
Collapse
Affiliation(s)
- Jean-Christophe Gagnon
- Department of Biological Sciences, University of Québec at Montréal (UQAM), C.P. 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (J.-C.G.); (S.B.-T.)
- Interuniversity Research Group in Limnology/Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, QC H3C 3P8, Canada
| | - Samuel Beauregard-Tousignant
- Department of Biological Sciences, University of Québec at Montréal (UQAM), C.P. 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (J.-C.G.); (S.B.-T.)
| | - Jean-Sébastien Marcil
- Derena Geosciences, Quebec, QC G7A 3Y5, Canada;
- Ressources Utica Inc., Quebec, QC G1V 4M7, Canada
| | - Cassandre Sara Lazar
- Department of Biological Sciences, University of Québec at Montréal (UQAM), C.P. 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (J.-C.G.); (S.B.-T.)
| |
Collapse
|
2
|
Acevedo RM, Avico EH, González S, Salvador AR, Rivarola M, Paniego N, Nunes-Nesi A, Ruiz OA, Sansberro PA. Transcript and metabolic adjustments triggered by drought in Ilex paraguariensis leaves. PLANTA 2019; 250:445-462. [PMID: 31055624 DOI: 10.1007/s00425-019-03178-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
Abscisic acid is involved in the drought response of Ilex paraguariensis. Acclimation includes root growth stimulation, stomatal closure, osmotic adjustment, photoprotection, and regulation of nonstructural carbohydrates and amino acid metabolisms. Ilex paraguariensis (yerba mate) is cultivated in the subtropical region of South America, where the occurrence of drought episodes limit yield. To explore the mechanisms that allow I. paraguariensis to overcome dehydration, we investigated (1) how gene expression varied between water-stressed and non-stressed plants and (2) in what way the modulation of gene expression was linked to physiological status and metabolite composition. A total of 4920 differentially expressed transcripts were obtained through RNA-Seq after water deprivation. Drought induced the expression of several transcripts involved in the ABA-signalling pathway. Stomatal closure and leaf osmotic adjustments were promoted to minimize water loss, and these responses were accompanied by a high transcriptional remodeling of stress perception, signalling and transcriptional regulation, the photoprotective and antioxidant systems, and other stress-responsive genes. Simultaneously, significant changes in metabolite contents were detected. Glutamine, phenylalanine, isomaltose, fucose, and malate levels were shown to be positively correlated with dehydration. Principal component analysis showed differences in the metabolic profiles of control and stressed leaves. These results provide a comprehensive overview of how I. paraguariensis responds to dehydration at transcriptional and metabolomic levels and provide further characterization of the molecular mechanisms associated with drought response in perennial subtropical species.
Collapse
Affiliation(s)
- Raúl M Acevedo
- Laboratorio de Biotecnología Aplicada y Genómica Funcional. Facultad de Ciencias Agrarias, Instituto de Botánica del Nordeste (IBONE-CONICET), Universidad Nacional del Nordeste, W3402BKG, Corrientes, Argentina
| | - Edgardo H Avico
- Laboratorio de Biotecnología Aplicada y Genómica Funcional. Facultad de Ciencias Agrarias, Instituto de Botánica del Nordeste (IBONE-CONICET), Universidad Nacional del Nordeste, W3402BKG, Corrientes, Argentina
| | - Sergio González
- Instituto de Biotecnología, CICVyA (INTA), 1686, Hurlingham, Buenos Aires, Argentina
| | | | - Máximo Rivarola
- Instituto de Biotecnología, CICVyA (INTA), 1686, Hurlingham, Buenos Aires, Argentina
| | - Norma Paniego
- Instituto de Biotecnología, CICVyA (INTA), 1686, Hurlingham, Buenos Aires, Argentina
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Oscar A Ruiz
- Unidad de Biotecnología 1, IIB-INTECH (UNSAM-CONICET), B7130IWA, Chascomús, Argentina
- Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV) "Ing. Victorio S. Trippi" (CIAP-INTA), X5020ICA, Córdoba, Argentina
| | - Pedro A Sansberro
- Laboratorio de Biotecnología Aplicada y Genómica Funcional. Facultad de Ciencias Agrarias, Instituto de Botánica del Nordeste (IBONE-CONICET), Universidad Nacional del Nordeste, W3402BKG, Corrientes, Argentina.
| |
Collapse
|
3
|
Zhang P, Burel C, Plasson C, Kiefer-Meyer MC, Ovide C, Gügi B, Wan C, Teo G, Mak A, Song Z, Driouich A, Lerouge P, Bardor M. Characterization of a GDP-Fucose Transporter and a Fucosyltransferase Involved in the Fucosylation of Glycoproteins in the Diatom Phaeodactylum tricornutum. FRONTIERS IN PLANT SCIENCE 2019; 10:610. [PMID: 31164895 PMCID: PMC6536626 DOI: 10.3389/fpls.2019.00610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/25/2019] [Indexed: 05/21/2023]
Abstract
Although Phaeodactylum tricornutum is gaining importance in plant molecular farming for the production of high-value molecules such as monoclonal antibodies, little is currently known about key cell metabolism occurring in this diatom such as protein glycosylation. For example, incorporation of fucose residues in the glycans N-linked to protein in P. tricornutum is questionable. Indeed, such epitope has previously been found on N-glycans of endogenous glycoproteins in P. tricornutum. Meanwhile, the potential immunogenicity of the α(1,3)-fucose epitope present on plant-derived biopharmaceuticals is still a matter of debate. In this paper, we have studied molecular actors potentially involved in the fucosylation of the glycoproteins in P. tricornutum. Based on sequence similarities, we have identified a putative P. tricornutum GDP-L-fucose transporter and three fucosyltransferase (FuT) candidates. The putative P. tricornutum GDP-L-fucose transporter coding sequence was expressed in the Chinese Hamster Ovary (CHO)-gmt5 mutant lacking its endogenous GDP-L-fucose transporter activity. We show that the P. tricornutum transporter is able to rescue the fucosylation of proteins in this CHO-gmt5 mutant cell line, thus demonstrating the functional activity of the diatom transporter and its appropriate Golgi localization. In addition, we overexpressed one of the three FuT candidates, namely the FuT54599, in P. tricornutum and investigated its localization within Golgi stacks of the diatom. Our findings show that overexpression of the FuT54599 leads to a significant increase of the α(1,3)-fucosylation of the diatom endogenous glycoproteins.
Collapse
Affiliation(s)
- Peiqing Zhang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Carole Burel
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Carole Plasson
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Marie-Christine Kiefer-Meyer
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Clément Ovide
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Bruno Gügi
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Corrine Wan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Gavin Teo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Amelia Mak
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Zhiwei Song
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Azeddine Driouich
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Patrice Lerouge
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Muriel Bardor
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
- Institut Universitaire de France (I.U.F.), Paris, France
| |
Collapse
|