1
|
Matsuki Y, Takashima M, Ueki M, Iwamoto M, Oiki S. Probing membrane deformation energy by KcsA potassium channel gating under varied membrane thickness and tension. FEBS Lett 2024; 598:1955-1966. [PMID: 38880762 DOI: 10.1002/1873-3468.14956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024]
Abstract
This study investigated how membrane thickness and tension modify the gating of KcsA potassium channels when simultaneously varied. The KcsA channel undergoes global conformational changes upon gating: expansion of the cross-sectional area and longitudinal shortening upon opening. Thus, membranes impose differential effects on the open and closed conformations, such as hydrophobic mismatches. Here, the single-channel open probability was recorded in the contact bubble bilayer, by which variable thickness membranes under a defined tension were applied. A fully open channel in thin membranes turned to sporadic openings in thick membranes, where the channel responded moderately to tension increase. Quantitative gating analysis prompted the hypothesis that tension augmented the membrane deformation energy when hydrophobic mismatch was enhanced in thick membranes.
Collapse
Affiliation(s)
- Yuka Matsuki
- Department of Anesthesiology and Reanimatology, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Japan
- Life Science Innovation Center, University of Fukui, Yoshida-gun, Japan
| | - Masako Takashima
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Japan
| | - Misuzu Ueki
- Life Science Innovation Center, University of Fukui, Yoshida-gun, Japan
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Japan
| | - Masayuki Iwamoto
- Life Science Innovation Center, University of Fukui, Yoshida-gun, Japan
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Japan
| | - Shigetoshi Oiki
- Biomedical Imaging Research Center, University of Fukui, Yoshida-gun, Japan
| |
Collapse
|
2
|
Maymand VM, Bavi O, Karami A. Probing the mechanical properties of ORF3a protein, a transmembrane channel of SARS-CoV-2 virus: Molecular dynamics study. Chem Phys 2023; 569:111859. [PMID: 36852417 PMCID: PMC9946729 DOI: 10.1016/j.chemphys.2023.111859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/04/2022] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
SARS-CoV-2-encoded accessory protein ORF3a was found to be a conserved coronavirus protein that shows crucial roles in apoptosis in cells as well as in virus release and replications. To complete the knowledge and identify the unknown of this protein, further comprehensive research is needed to clarify the leading role of ORF3a in the functioning of the coronavirus. One of the efficient approaches to determining the functionality of this protein is to investigate the mechanical properties and study its structural dynamics in the presence of physical stimuli. Herein, performing all-atom steered molecular dynamics (SMD) simulations, the mechanical properties of the force-bearing components of the ORF3a channel are calculated in different physiological conditions. As variations occurring in ORF3a may lead to alteration in protein structure and function, the G49V mutation was also simulated to clarify the relationship between the mechanical properties and chemical stability of the protein by comparing the behavior of the wild-type and mutant Orf3a. From a physiological conditions point of view, it was observed that in the solvated system, the presence of water molecules reduces Young's modulus of TM1 by ∼30 %. Our results also show that by substitution of Gly49 with valine, Young's modulus of the whole helix increases from 1.61 ± 0.20 to 2.08 ± 0.15 GPa, which is consistent with the calculated difference in free energy of wild-type and mutant helices. In addition to finding a way to fight against Covid-19 disease, understanding the mechanical behavior of these biological nanochannels can lead to the development of the potential applications of the ORF3a protein channel, such as tunable nanovalves in smart drug delivery systems, nanofilters in the new generation of desalination systems, and promising applications in DNA sequencing.
Collapse
Affiliation(s)
| | - Omid Bavi
- Department of Mechanical Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Abbas Karami
- Department of Mechanical Engineering, Shiraz University of Technology, Shiraz, Iran
| |
Collapse
|
3
|
Wang B, Lane BJ, Kapsalis C, Ault JR, Sobott F, El Mkami H, Calabrese AN, Kalli AC, Pliotas C. Pocket delipidation induced by membrane tension or modification leads to a structurally analogous mechanosensitive channel state. Structure 2022; 30:608-622.e5. [PMID: 34986323 PMCID: PMC9033278 DOI: 10.1016/j.str.2021.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/13/2021] [Accepted: 12/07/2021] [Indexed: 01/06/2023]
Abstract
The mechanosensitive ion channel of large conductance MscL gates in response to membrane tension changes. Lipid removal from transmembrane pockets leads to a concerted structural and functional MscL response, but it remains unknown whether there is a correlation between the tension-mediated state and the state derived by pocket delipidation in the absence of tension. Here, we combined pulsed electron paramagnetic resonance spectroscopy and hydrogen-deuterium exchange mass spectrometry, coupled with molecular dynamics simulations under membrane tension, to investigate the structural changes associated with the distinctively derived states. Whether it is tension- or modification-mediated pocket delipidation, we find that MscL samples a similar expanded subconducting state. This is the final step of the delipidation pathway, but only an intermediate stop on the tension-mediated path, with additional tension triggering further channel opening. Our findings hint at synergistic modes of regulation by lipid molecules in membrane tension-activated mechanosensitive channels.
Collapse
Affiliation(s)
- Bolin Wang
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Benjamin J Lane
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Charalampos Kapsalis
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - James R Ault
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Hassane El Mkami
- School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Antreas C Kalli
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9NL, UK
| | - Christos Pliotas
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK.
| |
Collapse
|
4
|
Bevacqua A, Bakshi S, Xia Y. Principal component analysis of alpha-helix deformations in transmembrane proteins. PLoS One 2021; 16:e0257318. [PMID: 34525125 PMCID: PMC8443038 DOI: 10.1371/journal.pone.0257318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/30/2021] [Indexed: 12/03/2022] Open
Abstract
α-helices are deformable secondary structural components regularly observed in protein folds. The overall flexibility of an α-helix can be resolved into constituent physical deformations such as bending in two orthogonal planes and twisting along the principal axis. We used Principal Component Analysis to identify and quantify the contribution of each of these dominant deformation modes in transmembrane α-helices, extramembrane α-helices, and α-helices in soluble proteins. Using three α-helical samples from Protein Data Bank entries spanning these three cellular contexts, we determined that the relative contributions of these modes towards total deformation are independent of the α-helix's surroundings. This conclusion is supported by the observation that the identities of the top three deformation modes, the scaling behaviours of mode eigenvalues as a function of α-helix length, and the percentage contribution of individual modes on total variance were comparable across all three α-helical samples. These findings highlight that α-helical deformations are independent of cellular location and will prove to be valuable in furthering the development of flexible templates in de novo protein design.
Collapse
Affiliation(s)
- Alexander Bevacqua
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Sachit Bakshi
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Yu Xia
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Bergues-Pupo AE, Lipowsky R, Vila Verde A. Unfolding mechanism and free energy landscape of single, stable, alpha helices at low pull speeds. SOFT MATTER 2020; 16:9917-9928. [PMID: 33030193 DOI: 10.1039/d0sm01166e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Single alpha helices (SAHs) stable in isolated form are often found in motor proteins where they bridge functional domains. Understanding the mechanical response of SAHs is thus critical to understand their function. The quasi-static force-extension relation of a small number of SAHs is known from single-molecule experiments. Unknown, or still controversial, are the molecular scale details behind those observations. We show that the deformation mechanism of SAHs pulled from the termini at pull speeds approaching the quasi-static limit differs from that of typical helices found in proteins, which are stable only when interacting with other protein domains. Using molecular dynamics simulations with atomistic resolution at low pull speeds previously inaccessible to simulation, we show that SAHs start unfolding from the termini at all pull speeds we investigated. Unfolding proceeds residue-by-residue and hydrogen bond breaking is not the main event determining the barrier to unfolding. We use the molecular simulation data to test the cooperative sticky chain model. This model yields excellent fits of the force-extension curves and quantifies the distance, xE = 0.13 nm, to the transition state, the natural frequency of bond vibration, ν0 = 0.82 ns-1, and the height, V0 = 2.9 kcal mol-1, of the free energy barrier associated with the deformation of single residues. Our results demonstrate that the sticky chain model could advantageously be used to analyze experimental force-extension curves of SAHs and other biopolymers.
Collapse
Affiliation(s)
- Ana Elisa Bergues-Pupo
- Max Planck Institute of Colloids and Interfaces, Department of Theory & Bio-Systems, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Department of Theory & Bio-Systems, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Ana Vila Verde
- Max Planck Institute of Colloids and Interfaces, Department of Theory & Bio-Systems, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
6
|
Martinac B, Nikolaev YA, Silvani G, Bavi N, Romanov V, Nakayama Y, Martinac AD, Rohde P, Bavi O, Cox CD. Cell membrane mechanics and mechanosensory transduction. CURRENT TOPICS IN MEMBRANES 2020; 86:83-141. [DOI: 10.1016/bs.ctm.2020.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Johnson LR, Battle AR, Martinac B. Remembering Mechanosensitivity of NMDA Receptors. Front Cell Neurosci 2019; 13:533. [PMID: 31866826 PMCID: PMC6906178 DOI: 10.3389/fncel.2019.00533] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
An increase in post-synaptic Ca2+ conductance through activation of the ionotropic N-methyl-D-aspartate receptor (NMDAR) and concomitant structural changes are essential for the initiation of long-term potentiation (LTP) and memory formation. Memories can be initiated by coincident events, as occurs in classical conditioning, where the NMDAR can act as a molecular coincidence detector. Binding of glutamate and glycine, together with depolarization of the postsynaptic cell membrane to remove the Mg2+ channel pore block, results in NMDAR opening for Ca2+ conductance. Accumulating evidence has implicated both force-from-lipids and protein tethering mechanisms for mechanosensory transduction in NMDAR, which has been demonstrated by both, membrane stretch and application of amphipathic molecules such as arachidonic acid (AA). The contribution of mechanosensitivity to memory formation and consolidation may be to increase activity of the NMDAR leading to facilitated memory formation. In this review we look back at the progress made toward understanding the physiological and pathological role of NMDA receptor channels in mechanobiology of the nervous system and consider these findings in like of their potential functional implications for memory formation. We examine recent studies identifying mechanisms of both NMDAR and other mechanosensitive channels and discuss functional implications including gain control of NMDA opening probability. Mechanobiology is a rapidly growing area of biology with many important implications for understanding form, function and pathology in the nervous system.
Collapse
Affiliation(s)
- Luke R Johnson
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia.,Division of Psychology, School of Medicine, University of Tasmania, Launceston, TAS, Australia.,Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,School of Biomedical Sciences, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, QLD, Australia
| | - Andrew R Battle
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, School of Clinical Medicine, The University of Queensland, Brisbane, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| |
Collapse
|
8
|
Ghasemi RH, Keramati M, Mojarrad MHS. The effect of structure on improvement of the PNA Young modulus: A study of steered molecular dynamics. Comput Biol Chem 2019; 83:107133. [DOI: 10.1016/j.compbiolchem.2019.107133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 10/25/2022]
|
9
|
Pavadai E, Bhattarai N, Baral P, Stahelin RV, Chapagain PP, Gerstman BS. Conformational Flexibility of the Protein-Protein Interfaces of the Ebola Virus VP40 Structural Matrix Filament. J Phys Chem B 2019; 123:9045-9053. [PMID: 31576755 DOI: 10.1021/acs.jpcb.9b04674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Ebola virus (EBOV) is a virulent pathogen that causes severe hemorrhagic fever with a high fatality rate in humans. The EBOV transformer protein VP40 plays crucial roles in viral assembly and budding at the plasma membrane of infected cells. One of VP40's roles is to form the long, flexible, pleomorphic filamentous structural matrix for the virus. Each filament contains three unique interfaces: monomer NTD-NTD to form a dimer, dimer-to-dimer NTD-NTD oligomerization to form a hexamer, and end-to-end hexamer CTD-CTD to build the filament. However, the atomic-level details of conformational flexibility of the VP40 filament are still elusive. In this study, we have performed explicit-solvent, all-atom molecular dynamic simulations to explore the conformational flexibility of the three different interface structures of the filament. Using dynamic network analysis and other calculational methods, we find that the CTD-CTD hexamer interface with weak interdomain amino acid communities is the most flexible, and the NTD-NTD oligomer interface with strong interdomain communities is the least flexible. Our study suggests that the high flexibility of the CTD-CTD interface may be essential for the supple bending of the Ebola filovirus, and such flexibility may present a target for molecular interventions to disrupt the Ebola virus functioning.
Collapse
Affiliation(s)
| | | | | | - Robert V Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue University Cancer Center , Purdue University , West Lafayette , Indiana 47907 , United States
| | | | | |
Collapse
|
10
|
Stassi S, Marini M, Allione M, Lopatin S, Marson D, Laurini E, Pricl S, Pirri CF, Ricciardi C, Di Fabrizio E. Nanomechanical DNA resonators for sensing and structural analysis of DNA-ligand complexes. Nat Commun 2019; 10:1690. [PMID: 30979901 PMCID: PMC6461617 DOI: 10.1038/s41467-019-09612-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
The effect of direct or indirect binding of intercalant molecules on DNA structure is of fundamental importance in understanding the biological functioning of DNA. Here we report on self-suspended DNA nanobundles as ultrasensitive nanomechanical resonators for structural studies of DNA-ligand complexes. Such vibrating nanostructures represent the smallest mechanical resonator entirely composed of DNA. A correlative analysis between the mechanical and structural properties is exploited to study the intrinsic changes of double strand DNA, when interacting with different intercalant molecules (YOYO-1 and GelRed) and a chemotherapeutic drug (Cisplatin), at different concentrations. Possible implications of our findings are related to the study of interaction mechanism of a wide category of molecules with DNA, and to further applications in medicine, such as optimal titration of chemotherapeutic drugs and environmental studies for the detection of heavy metals in human serum.
Collapse
Affiliation(s)
- Stefano Stassi
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129, Torino, Italy
| | - Monica Marini
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129, Torino, Italy
- Physical Science and Engineering and BESE Divisions, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Marco Allione
- Physical Science and Engineering and BESE Divisions, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Sergei Lopatin
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS) - DEA, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS) - DEA, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS) - DEA, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Candido Fabrizio Pirri
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129, Torino, Italy
| | - Carlo Ricciardi
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129, Torino, Italy.
| | - Enzo Di Fabrizio
- Physical Science and Engineering and BESE Divisions, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
11
|
Constitutive boost of a K + channel via inherent bilayer tension and a unique tension-dependent modality. Proc Natl Acad Sci U S A 2018; 115:13117-13122. [PMID: 30509986 DOI: 10.1073/pnas.1812282115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular mechanisms underlying channel-membrane interplay have been extensively studied. Cholesterol, as a major component of the cell membrane, participates either in specific binding to channels or via modification of membrane physical features. Here, we examined the action of various sterols (cholesterol, epicholesterol, etc.) on a prototypical potassium channel (KcsA). Single-channel current recordings of the KcsA channel were performed in a water-in-oil droplet bilayer (contact bubble bilayer) with a mixed phospholipid composition (azolectin). Upon membrane perfusion of sterols, the activated gate at acidic pH closed immediately, irrespective of the sterol species. During perfusion, we found that the contacting bubbles changed their shapes, indicating alterations in membrane physical features. Absolute bilayer tension was measured according to the principle of surface chemistry, and inherent bilayer tension was ∼5 mN/m. All tested sterols decreased the tension, and the nonspecific sterol action to the channel was likely mediated by the bilayer tension. Purely mechanical manipulation that reduced bilayer tension also closed the gate, whereas the resting channel at neutral pH never activated upon increased tension. Thus, rather than conventional stretch activation, the channel, once ready to activate by acidic pH, changes the open probability through the action of bilayer tension. This constitutes a channel regulating modality by two successive stimuli. In the contact bubble bilayer, inherent bilayer tension was high, and the channel remained boosted. In the cell membrane, resting tension is low, and it is anticipated that the ready-to-activate channel remains closed until bilayer tension reaches a few millinewton/meter during physiological and pathological cellular activities.
Collapse
|
12
|
Bavi N, Martinac AD, Cortes DM, Bavi O, Ridone P, Nomura T, Hill AP, Martinac B, Perozo E. Structural Dynamics of the MscL C-terminal Domain. Sci Rep 2017; 7:17229. [PMID: 29222414 PMCID: PMC5722894 DOI: 10.1038/s41598-017-17396-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
The large conductance mechanosensitive channel (MscL), acts as an osmoprotective emergency valve in bacteria by opening a large, water-filled pore in response to changes in membrane tension. In its closed configuration, the last 36 residues at the C-terminus form a bundle of five α-helices co-linear with the five-fold axis of symmetry. Here, we examined the structural dynamics of the C-terminus of EcMscL using site-directed spin labelling electron paramagnetic resonance (SDSL EPR) spectroscopy. These experiments were complemented with computational modelling including molecular dynamics (MD) simulations and finite element (FE) modelling. Our results show that under physiological conditions, the C-terminus is indeed an α-helical bundle, located near the five-fold symmetry axis of the molecule. Both experiments and computational modelling demonstrate that only the top part of the C-terminal domain (from the residue A110 to E118) dissociates during the channel gating, while the rest of the C-terminus stays assembled. This result is consistent with the view that the C-terminus functions as a molecular sieve and stabilizer of the oligomeric MscL structure as previously suggested.
Collapse
Affiliation(s)
- Navid Bavi
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales, 2010, Australia
- St. Vincent's Clinical School, The University of New South Wales, Darlinghurst (Sydney), New South Wales, 2010, Australia
| | - Adam D Martinac
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales, 2010, Australia
- School of Mechanical & Mining Engineering, University of Queensland, St. Lucia (Brisbane), QLD 4072, Brisbane, Australia
| | - D Marien Cortes
- Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, USA
| | - Omid Bavi
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales, 2010, Australia
- Department of Physics, University of Tehran, Tehran, 1439955961, Iran
| | - Pietro Ridone
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales, 2010, Australia
- St. Vincent's Clinical School, The University of New South Wales, Darlinghurst (Sydney), New South Wales, 2010, Australia
| | - Takeshi Nomura
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales, 2010, Australia
- Department of Rehabilitation, Kyushu Nutrition Welfare University, Kitakyushu, 800-029, Japan
| | - Adam P Hill
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales, 2010, Australia
- St. Vincent's Clinical School, The University of New South Wales, Darlinghurst (Sydney), New South Wales, 2010, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales, 2010, Australia.
- St. Vincent's Clinical School, The University of New South Wales, Darlinghurst (Sydney), New South Wales, 2010, Australia.
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 E 57th St, Chicago, Illinois, 60637, USA.
| |
Collapse
|
13
|
Martinac AD, Bavi N, Bavi O, Martinac B. Pulling MscL open via N-terminal and TM1 helices: A computational study towards engineering an MscL nanovalve. PLoS One 2017; 12:e0183822. [PMID: 28859093 PMCID: PMC5578686 DOI: 10.1371/journal.pone.0183822] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/11/2017] [Indexed: 11/18/2022] Open
Abstract
There are great opportunities in the manipulation of bacterial mechanosensitive (MS) ion channels for specific and targeted drug delivery purposes. Recent research has shown that these ion channels have the potential to be converted into nanovalves through clever use of magnetic nanoparticles and magnetic fields. Using a combination of molecular dynamics (MD) simulations and the finite element (FE) modelling, this study investigates the theoretical feasibility of opening the MscL channel (MS channel of large conductance of E. coli) by applying mechanical force directly to its N-terminus. This region has already been reported to function as a major mechanosensor in this channel. The stress-strain behaviour of each MscL helix was obtained using all atom MD simulations. Using the same method, we simulated two models, the wild-type (WT) MscL and the G22N mutant MscL, both embedded in a POPE lipid bilayer. In addition to indicating the main interacting residues at the hydrophobic pore, their pairwise interaction energies were monitored during the channel gating. We implemented these inputs into our FE model of MscL using curve-fitting codes and continuum mechanics equations. In the FE model, the channel could be fully opened via pulling directly on the N-terminus and bottom of TM1 by mutating dominant van der Waals interactions in the channel pore; otherwise the stress generated on the channel protein can irreversibly unravel the N-secondary structure. This is a significant finding suggesting that applying force in this manner is sufficient to open an MscL nanovalve delivering various drugs used, for example, in cancer chemotherapy. More importantly, the FE model indicates that to fully operate an MscL nanovalve by pulling directly on the N-terminus and bottom of TM1, gain-of-function (GOF) mutants (e.g., G22N MscL) would have to be employed rather than the WT MscL channel.
Collapse
Affiliation(s)
- Adam D. Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Navid Bavi
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
| | - Omid Bavi
- Department of Physics, University of Tehran, Tehran, Iran
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
- * E-mail:
| |
Collapse
|
14
|
Anishkin A, Sukharev S. Channel disassembled: Pick, tweak, and soak parts to soften. Channels (Austin) 2017; 11:173-175. [PMID: 28166450 DOI: 10.1080/19336950.2017.1291213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Andriy Anishkin
- a Department of Biology , University of Maryland , College Park , MD , USA
| | - Sergei Sukharev
- a Department of Biology , University of Maryland , College Park , MD , USA
| |
Collapse
|
15
|
|
16
|
Bavi N, Bavi O, Vossoughi M, Naghdabadi R, Hill AP, Martinac B, Jamali Y. Nanomechanical properties of MscL α helices: A steered molecular dynamics study. Channels (Austin) 2016; 11:209-223. [PMID: 27753526 DOI: 10.1080/19336950.2016.1249077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Gating of mechanosensitive (MS) channels is driven by a hierarchical cascade of movements and deformations of transmembrane helices in response to bilayer tension. Determining the intrinsic mechanical properties of the individual transmembrane helices is therefore central to understanding the intricacies of the gating mechanism of MS channels. We used a constant-force steered molecular dynamics (SMD) approach to perform unidirectional pulling tests on all the helices of MscL in M. tuberculosis and E. coli homologs. Using this method, we could overcome the issues encountered with the commonly used constant-velocity SMD simulations, such as low mechanical stability of the helix during stretching and high dependency of the elastic properties on the pulling rate. We estimated Young's moduli of the α-helices of MscL to vary between 0.2 and 12.5 GPa with TM2 helix being the stiffest. We also studied the effect of water on the properties of the pore-lining TM1 helix. In the absence of water, this helix exhibited a much stiffer response. By monitoring the number of hydrogen bonds, it appears that water acts like a 'lubricant' (softener) during TM1 helix elongation. These data shed light on another physical aspect underlying hydrophobic gating of MS channels, in particular MscL.
Collapse
Affiliation(s)
- N Bavi
- a Division of Molecular Cardiology and Biophysics , Victor Chang Cardiac Research Institute , Darlinghurst , NSW , Australia.,b St Vincent's Clinical School, Faculty of Medicine , University of New South Wales , Darlinghurst , NSW , Australia
| | - O Bavi
- c Institute for Nanoscience and Nanotechnology, Sharif University of Technology , Tehran , Iran
| | - M Vossoughi
- c Institute for Nanoscience and Nanotechnology, Sharif University of Technology , Tehran , Iran.,d Biochemical & Bioenvironmental Research Center (BBRC) , Tehran , Iran
| | - R Naghdabadi
- c Institute for Nanoscience and Nanotechnology, Sharif University of Technology , Tehran , Iran.,e Department of Mechanical Engineering , Sharif University of Technology , Tehran , Iran
| | - A P Hill
- a Division of Molecular Cardiology and Biophysics , Victor Chang Cardiac Research Institute , Darlinghurst , NSW , Australia
| | - B Martinac
- a Division of Molecular Cardiology and Biophysics , Victor Chang Cardiac Research Institute , Darlinghurst , NSW , Australia.,b St Vincent's Clinical School, Faculty of Medicine , University of New South Wales , Darlinghurst , NSW , Australia
| | - Y Jamali
- f Department of Mathematics , Tarbiat Modares University , Tehran , Iran.,g Computational Physical Sciences Research Laboratory , School of Nanoscience, Institute for Research in Fundamental Sciences (IPM) , Tehran , Iran
| |
Collapse
|