1
|
Metzen MG, Chacron MJ. Descending pathways increase sensory neural response heterogeneity to facilitate decoding and behavior. iScience 2023; 26:107139. [PMID: 37416462 PMCID: PMC10320509 DOI: 10.1016/j.isci.2023.107139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/25/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
The functional role of heterogeneous spiking responses of otherwise similarly tuned neurons to stimulation, which has been observed ubiquitously, remains unclear to date. Here, we demonstrate that such response heterogeneity serves a beneficial function that is used by downstream brain areas to generate behavioral responses that follows the detailed timecourse of the stimulus. Multi-unit recordings from sensory pyramidal cells within the electrosensory system of Apteronotus leptorhynchus were performed and revealed highly heterogeneous responses that were similar for all cell types. By comparing the coding properties of a given neural population before and after inactivation of descending pathways, we found that heterogeneities were beneficial as decoding was then more robust to the addition of noise. Taken together, our results not only reveal that descending pathways actively promote response heterogeneity within a given cell type, but also uncover a beneficial function for such heterogeneity that is used by the brain to generate behavior.
Collapse
Affiliation(s)
- Michael G. Metzen
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Maurice J. Chacron
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
2
|
Marquez MM, Chacron MJ. Serotonin increases population coding of behaviorally relevant stimuli by enhancing responses of ON but not OFF-type sensory neurons. Heliyon 2023; 9:e18315. [PMID: 37539191 PMCID: PMC10395545 DOI: 10.1016/j.heliyon.2023.e18315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
How neural populations encode sensory input to generate behavioral responses remains a central problem in systems neuroscience. Here we investigated how neuromodulation influences population coding of behaviorally relevant stimuli to give rise to behavior in the electrosensory system of the weakly electric fish Apteronotus leptorhynchus. We performed multi-unit recordings from ON and OFF sensory pyramidal cells in response to stimuli whose amplitude (i.e., envelope) varied in time, before and after electrical stimulation of the raphe nuclei. Overall, raphe stimulation increased population coding by ON- but not by OFF-type cells, despite both cell types showing similar sensitivities to the stimulus at the single neuron level. Surprisingly, only changes in population coding by ON-type cells were correlated with changes in behavioral responses. Taken together, our results show that neuromodulation differentially affects ON vs. OFF-type cells in order to enhance perception of behaviorally relevant sensory input.
Collapse
|
3
|
Qi ZX, Shen KL, Peng JY, Fan XJ, Huang HW, Jiang JL, Lu JH, Wang XQ, Fang XX, Chen L, Zhuang QX. Histamine bidirectionally regulates the intrinsic excitability of parvalbumin-positive neurons in the lateral globus pallidus and promotes motor behaviour. Br J Pharmacol 2022; 180:1379-1407. [PMID: 36512485 DOI: 10.1111/bph.16010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Parvalbumin (PV)-positive neurons are a type of neuron in the lateral globus pallidus (LGP) which plays an important role in motor control. The present study investigated the effect of histamine on LGPPV neurons and motor behaviour. EXPERIMENTAL APPROACH Histamine levels in LGP as well as its histaminergic innervation were determined through brain stimulation, microdialysis, anterograde tracing and immunostaining. Mechanisms of histamine action were detected by immunostaining, single-cell qPCR, whole-cell patch-clamp recording, optogenetic stimulation and CRISPR/Cas9 gene-editing techniques. The effect of histamine on motor behaviour was detected by animal behavioural tests. KEY RESULTS A direct histaminergic innervation in LGP from the tuberomammillary nucleus (TMN) and a histamine-induced increase in the intrinsic excitability of LGPPV neurons were determined by pharmacological blockade or by genetic knockout of the histamine H1 receptor (H1 R)-coupled TWIK-related potassium channel-1 (TREK-1) and the small-conductance calcium-activated potassium channel (SK3), as well as by activation or overexpression of the histamine H2 receptor (H2 R)-coupled hyperpolarization-activated cyclic nucleotide-gated channel (HCN2). Histamine negatively regulated the STN → LGPGlu transmission in LGPPV neurons via the histamine H3 receptor (H3 R), whereas blockage or knockout of H3 R increased the intrinsic excitability of LGPPV neurons. CONCLUSIONS AND IMPLICATIONS Our results indicated that the endogenous histaminergic innervation in the LGP can bidirectionally promote motor control by increasing the intrinsic excitability of LGPPV neurons through postsynaptic H1 R and H2 R, albeit its action was negatively regulated by the presynaptic H3 R, thereby suggesting possible role of histamine in motor deficits manifested in Parkinson's disease (PD).
Collapse
Affiliation(s)
- Zeng-Xin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Kang-Li Shen
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Jian-Ya Peng
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiu-Juan Fan
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Hui-Wei Huang
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Jian-Lan Jiang
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Jian-Hua Lu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiao-Qin Wang
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiao-Xia Fang
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qian-Xing Zhuang
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
4
|
Kim C, Chacron MJ. Lower Baseline Variability Gives Rise to Lower Detection Thresholds in Midbrain than Hindbrain Electrosensory Neurons. Neuroscience 2020; 448:43-54. [PMID: 32926952 DOI: 10.1016/j.neuroscience.2020.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Understanding how the brain decodes sensory information to give rise to behaviour remains an important problem in systems neuroscience. Across various sensory modalities (e.g. auditory, visual), the time-varying contrast of natural stimuli has been shown to carry behaviourally relevant information. However, it is unclear how such information is actually decoded by the brain to evoke perception and behaviour. Here we investigated how midbrain electrosensory neurons respond to weak contrasts in the electrosensory system of the weakly electric fish Apteronotus leptorhynchus. We found that these neurons displayed lower detection thresholds than their afferent hindbrain electrosensory neurons. Further analysis revealed that the lower detection thresholds of midbrain neurons were not due to increased sensitivity to the stimulus. Rather, these were due to the fact that midbrain neurons displayed lower variability in their firing activities in the absence of stimulation, which is due to lower firing rates. Our results suggest that midbrain neurons play an active role towards enabling the detection of weak stimulus contrasts, which in turn leads to perception and behavioral responses.
Collapse
Affiliation(s)
- Chelsea Kim
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
5
|
Marquez MM, Chacron MJ. Serotonergic Modulation of Sensory Neuron Activity and Behavior in Apteronotus albifrons. Front Integr Neurosci 2020; 14:38. [PMID: 32733214 PMCID: PMC7358949 DOI: 10.3389/fnint.2020.00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/15/2020] [Indexed: 01/12/2023] Open
Abstract
Organisms must constantly adapt to changes in their environment to survive. It is thought that neuromodulators such as serotonin enable sensory neurons to better process input encountered during different behavioral contexts. Here, we investigated how serotonergic innervation affects neural and behavioral responses to behaviorally relevant envelope stimuli in the weakly electric fish species Apteronotus albifrons. Under baseline conditions, we found that exogenous serotonin application within the electrosensory lateral line lobe increased sensory neuron excitability, thereby promoting burst firing. We found that serotonin enhanced the responses to envelope stimuli of pyramidal cells within the lateral segment of the electrosensory lateral line lobe (ELL) by increasing sensitivity, with the increase more pronounced for stimuli with higher temporal frequencies (i.e., >0.2 Hz). Such increases in neural sensitivity were due to increased burst firing. At the organismal level, bilateral serotonin application within the ELL lateral segment enhanced behavioral responses to sensory input through increases in sensitivity. Similar to what was observed for neural responses, increases in behavioral sensitivity were more pronounced for higher (i.e., >0.2 Hz) temporal frequencies. Surprisingly, a comparison between our results and previous ones obtained in the closely related species A. leptorhynchus revealed that, while serotonin application gave rise to similar effects on neural excitability and responses to sensory input, serotonin application also gave rise to marked differences in behavior. Specifically, behavioral responses in A. leptorhynchus were increased primarily for lower (i.e., ≤0.2 Hz) rather than for higher temporal frequencies. Thus, our results strongly suggest that there are marked differences in how sensory neural responses are processed downstream to give rise to behavior across both species. This is even though previous results have shown that the behavioral responses of both species to envelope stimuli were identical when serotonin is not applied.
Collapse
Affiliation(s)
- Mariana M Marquez
- Computational Systems Neuroscience Laboratory, Department of Physiology, McGill University, Montreal, QC, Canada
| | - Maurice J Chacron
- Computational Systems Neuroscience Laboratory, Department of Physiology, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Hofmann V, Chacron MJ. Neuronal On- and Off-type heterogeneities improve population coding of envelope signals in the presence of stimulus-induced noise. Sci Rep 2020; 10:10194. [PMID: 32576916 PMCID: PMC7311526 DOI: 10.1038/s41598-020-67258-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/04/2020] [Indexed: 11/14/2022] Open
Abstract
Understanding the mechanisms by which neuronal population activity gives rise to perception and behavior remains a central question in systems neuroscience. Such understanding is complicated by the fact that natural stimuli often have complex structure. Here we investigated how heterogeneities within a sensory neuron population influence the coding of a noisy stimulus waveform (i.e., the noise) and its behaviorally relevant envelope signal (i.e., the signal). We found that On- and Off-type neurons displayed more heterogeneities in their responses to the noise than in their responses to the signal. These differences in heterogeneities had important consequences when quantifying response similarity between pairs of neurons. Indeed, the larger response heterogeneity displayed by On- and Off-type neurons made their pairwise responses to the noise on average more independent than when instead considering pairs of On-type or Off-type neurons. Such relative independence allowed for better averaging out of the noise response when pooling neural activities in a mixed-type (i.e., On- and Off-type) than for same-type (i.e., only On-type or only Off-type), thereby leading to greater information transmission about the signal. Our results thus reveal a function for the combined activities of On- and Off-type neurons towards improving information transmission of envelope stimuli at the population level. Our results will likely generalize because natural stimuli across modalities are characterized by a stimulus waveform whose envelope varies independently as well as because On- and Off-type neurons are observed across systems and species.
Collapse
Affiliation(s)
- Volker Hofmann
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
7
|
Marquez MM, Chacron MJ. Serotonin modulates optimized coding of natural stimuli through increased neural and behavioural responses via enhanced burst firing. J Physiol 2020; 598:1573-1589. [DOI: 10.1113/jp278940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/23/2020] [Indexed: 01/28/2023] Open
|
8
|
Huang CG, Metzen MG, Chacron MJ. Descending pathways mediate adaptive optimized coding of natural stimuli in weakly electric fish. SCIENCE ADVANCES 2019; 5:eaax2211. [PMID: 31693006 PMCID: PMC6821470 DOI: 10.1126/sciadv.aax2211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Biological systems must be flexible to environmental changes to survive. This is exemplified by the fact that sensory systems continuously adapt to changes in the environment to optimize coding and behavioral responses. However, the nature of the underlying mechanisms remains poorly understood in general. Here, we investigated the mechanisms mediating adaptive optimized coding of naturalistic stimuli with varying statistics depending on the animal's velocity during movement. We found that central neurons adapted their responses to stimuli with different power spectral densities such as to optimally encode them, thereby ensuring that behavioral responses are, in turn, better matched to the new stimulus statistics. Sensory adaptation further required descending inputs from the forebrain as well as the raphe nuclei. Our findings thus reveal a previously unknown functional role for descending pathways in mediating adaptive optimized coding of natural stimuli that is likely generally applicable across sensory systems and species.
Collapse
|
9
|
Hofmann V, Chacron MJ. Novel Functions of Feedback in Electrosensory Processing. Front Integr Neurosci 2019; 13:52. [PMID: 31572137 PMCID: PMC6753188 DOI: 10.3389/fnint.2019.00052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/26/2019] [Indexed: 11/13/2022] Open
Abstract
Environmental signals act as input and are processed across successive stages in the brain to generate a meaningful behavioral output. However, a ubiquitous observation is that descending feedback projections from more central to more peripheral brain areas vastly outnumber ascending feedforward projections. Such projections generally act to modify how sensory neurons respond to afferent signals. Recent studies in the electrosensory system of weakly electric fish have revealed novel functions for feedback pathways in that their transformation of the afferent input generates neural firing rate responses to sensory signals mediating perception and behavior. In this review, we focus on summarizing these novel and recently uncovered functions and put them into context by describing the more "classical" functions of feedback in the electrosensory system. We further highlight the parallels between the electrosensory system and other systems as well as outline interesting future directions.
Collapse
Affiliation(s)
- Volker Hofmann
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
10
|
Huang CG, Metzen MG, Chacron MJ. Feedback optimizes neural coding and perception of natural stimuli. eLife 2018; 7:e38935. [PMID: 30289387 PMCID: PMC6181564 DOI: 10.7554/elife.38935] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/04/2018] [Indexed: 11/13/2022] Open
Abstract
Growing evidence suggests that sensory neurons achieve optimal encoding by matching their tuning properties to the natural stimulus statistics. However, the underlying mechanisms remain unclear. Here we demonstrate that feedback pathways from higher brain areas mediate optimized encoding of naturalistic stimuli via temporal whitening in the weakly electric fish Apteronotus leptorhynchus. While one source of direct feedback uniformly enhances neural responses, a separate source of indirect feedback selectively attenuates responses to low frequencies, thus creating a high-pass neural tuning curve that opposes the decaying spectral power of natural stimuli. Additionally, we recorded from two populations of higher brain neurons responsible for the direct and indirect descending inputs. While one population displayed broadband tuning, the other displayed high-pass tuning and thus performed temporal whitening. Hence, our results demonstrate a novel function for descending input in optimizing neural responses to sensory input through temporal whitening that is likely to be conserved across systems and species.
Collapse
|
11
|
Thomas RA, Metzen MG, Chacron MJ. Weakly electric fish distinguish between envelope stimuli arising from different behavioral contexts. ACTA ACUST UNITED AC 2018; 221:jeb.178244. [PMID: 29954835 DOI: 10.1242/jeb.178244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 06/14/2018] [Indexed: 11/20/2022]
Abstract
Understanding how sensory information is processed by the brain in order to give rise to behavior remains poorly understood in general. Here, we investigated the behavioral responses of the weakly electric fish Apteronotus albifrons to stimuli arising from different contexts, by measuring changes in the electric organ discharge (EOD) frequency. Specifically, we focused on envelopes, which can arise either because of movement (i.e. motion envelopes) or because of interactions between the electric fields of three of more fish (i.e. social envelopes). Overall, we found that the animal's EOD frequency effectively tracked the detailed time course of both motion and social envelopes. In general, behavioral sensitivity (i.e. gain) decreased while phase lag increased with increasing envelope and carrier frequency. However, changes in gain and phase lag as a function of changes in carrier frequency were more prominent for motion than for social envelopes in general. Importantly, we compared behavioral responses to motion and social envelopes with similar characteristics. Although behavioral sensitivities were similar, we observed an increased response lag for social envelopes, primarily for low carrier frequencies. Thus, our results imply that the organism can, based on behavioral responses, distinguish envelope stimuli resulting from movement from those that instead result from social interactions. We discuss the implications of our results for neural coding of envelopes and propose that behavioral responses to motion and social envelopes are mediated by different neural circuits in the brain.
Collapse
Affiliation(s)
- Rhalena A Thomas
- Department of Physiology, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | - Michael G Metzen
- Department of Physiology, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | - Maurice J Chacron
- Department of Physiology, McGill University, Montreal, Quebec, Canada H3G 1Y6
| |
Collapse
|
12
|
Metzen MG, Huang CG, Chacron MJ. Descending pathways generate perception of and neural responses to weak sensory input. PLoS Biol 2018; 16:e2005239. [PMID: 29939982 PMCID: PMC6040869 DOI: 10.1371/journal.pbio.2005239] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 07/11/2018] [Accepted: 06/12/2018] [Indexed: 01/24/2023] Open
Abstract
Natural sensory stimuli frequently consist of a fast time-varying waveform whose amplitude or contrast varies more slowly. While changes in contrast carry behaviorally relevant information necessary for sensory perception, their processing by the brain remains poorly understood to this day. Here, we investigated the mechanisms that enable neural responses to and perception of low-contrast stimuli in the electrosensory system of the weakly electric fish Apteronotus leptorhynchus. We found that fish reliably detected such stimuli via robust behavioral responses. Recordings from peripheral electrosensory neurons revealed stimulus-induced changes in firing activity (i.e., phase locking) but not in their overall firing rate. However, central electrosensory neurons receiving input from the periphery responded robustly via both phase locking and increases in firing rate. Pharmacological inactivation of feedback input onto central electrosensory neurons eliminated increases in firing rate but did not affect phase locking for central electrosensory neurons in response to low-contrast stimuli. As feedback inactivation eliminated behavioral responses to these stimuli as well, our results show that it is changes in central electrosensory neuron firing rate that are relevant for behavior, rather than phase locking. Finally, recordings from neurons projecting directly via feedback to central electrosensory neurons revealed that they provide the necessary input to cause increases in firing rate. Our results thus provide the first experimental evidence that feedback generates both neural and behavioral responses to low-contrast stimuli that are commonly found in the natural environment. Feedback input from more central to more peripheral brain areas is found ubiquitously in the central nervous system of vertebrates. In this study, we used a combination of electrophysiological, behavioral, and pharmacological approaches to reveal a novel function for feedback pathways in generating neural and behavioral responses to weak sensory input in the weakly electric fish. We first determined that weak sensory input gives rise to responses that are phase locked in both peripheral sensory neurons and in the central neurons that are their downstream targets. However, central neurons also responded to weak sensory inputs that were not relayed via a feedforward input from the periphery, because complete inactivation of the feedback pathway abolished increases in firing rate but not the phase locking in response to weak sensory input. Because such inactivation also abolished the behavioral responses, our results show that the increases in firing rate in central neurons, and not the phase locking, are decoded downstream to give rise to perception. Finally, we discovered that the neurons providing feedback input were also activated by weak sensory input, thereby offering further evidence that feedback is necessary to elicit increases in firing rate that are needed for perception.
Collapse
Affiliation(s)
- Michael G. Metzen
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Chengjie G. Huang
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Maurice J. Chacron
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
13
|
Regulatory Effect of General Anesthetics on Activity of Potassium Channels. Neurosci Bull 2018; 34:887-900. [PMID: 29948841 PMCID: PMC6129254 DOI: 10.1007/s12264-018-0239-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/12/2018] [Indexed: 12/19/2022] Open
Abstract
General anesthesia is an unconscious state induced by anesthetics for surgery. The molecular targets and cellular mechanisms of general anesthetics in the mammalian nervous system have been investigated during past decades. In recent years, K+ channels have been identified as important targets of both volatile and intravenous anesthetics. This review covers achievements that have been made both on the regulatory effect of general anesthetics on the activity of K+ channels and their underlying mechanisms. Advances in research on the modulation of K+ channels by general anesthetics are summarized and categorized according to four large K+ channel families based on their amino-acid sequence homology. In addition, research achievements on the roles of K+ channels in general anesthesia in vivo, especially with regard to studies using mice with K+ channel knockout, are particularly emphasized.
Collapse
|
14
|
Serotonin Selectively Increases Detectability of Motion Stimuli in the Electrosensory System. eNeuro 2018; 5:eN-NWR-0013-18. [PMID: 29845105 PMCID: PMC5969320 DOI: 10.1523/eneuro.0013-18.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 11/21/2022] Open
Abstract
Serotonergic innervation of sensory areas is found ubiquitously across the central nervous system of vertebrates. Here, we used a system's level approach to investigate the role of serotonin on processing motion stimuli in the electrosensory system of the weakly electric fish Apteronotus albifrons. We found that exogenous serotonin application increased the firing activity of pyramidal neural responses to both looming and receding motion. Separating spikes belonging to bursts from those that were isolated revealed that this effect was primarily due to increased burst firing. Moreover, when investigating whether firing activity during stimulation could be discriminated from baseline (i.e., in the absence of stimulation), we found that serotonin increased stimulus discriminability only for some stimuli. This is because increased burst firing was most prominent for these. Further, the effects of serotonin were highly heterogeneous, with some neurons displaying large while others instead displaying minimal changes in responsiveness following serotonin application. Further analysis revealed that serotonin application had the greatest effect on neurons with low baseline firing rates and little to no effect on neurons with high baseline firing rates. Finally, the effects of serotonin on sensory neuron responses were largely independent of object velocity. Our results therefore reveal a novel function for the serotonergic system in selectively enhancing discriminability for motion stimuli.
Collapse
|
15
|
Perrotta A, Coppola G, Anastasio MG, De Icco R, Ambrosini A, Serrao M, Parisi V, Evangelista M, Sandrini G, Pierelli F. Trait- and Frequency-Dependent Dysfunctional Habituation to Trigeminal Nociceptive Stimulation in Trigeminal Autonomic Cephalalgias. THE JOURNAL OF PAIN 2018; 19:1040-1048. [PMID: 29655843 DOI: 10.1016/j.jpain.2018.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/31/2018] [Accepted: 03/02/2018] [Indexed: 01/03/2023]
Abstract
We investigated whether the stimulation frequency (SF), the pain phases, and different diagnoses of trigeminal autonomic cephalalgias (TACs) may influence the habituation to pain. We studied the habituation of the nociceptive blink reflex R2 responses at different SFs (.05, .1, .2, .3, .5, and 1 Hz), in 28 episodic cluster headache (ECH) patients, 16 during and 12 outside the bout; they were compared with 16 episodic paroxysmal hemicrania (EPH) during the bout and 21 healthy subjects. We delivered 26 electrical stimuli and subdivided stimuli 2 to 26 in 5 blocks of 5 responses for each SF. Habituation values for each SF were expressed as the percentages of the mean area value of second through fifth blocks with respect to the first one. A significant lower mean percentage decrease of the R2 area across all blocks was found at .2 to 1 Hz SF during ECH, outside of the ECH, and EPH compared with healthy subjects. We showed a common frequency-dependent deficit of habituation of trigeminal nociceptive responses at higher SFs in ECH and EPH patients, independently from the disease phase. This abnormal temporal pattern of pain processing may suggest a trait-dependent dysfunction of some underlying pain-related subcortical structures, rather than a state-dependent functional abnormality due to the recurrence of the headache attacks during the active period. PERSPECTIVE TACs showed a frequency-related defective habituation of nociceptive trigeminal responses at the higher SFs, irrespectively of the diagnosis and/or the disease phase. We showed that the clinical similarities in the different subtypes of TACs are in parallel with a trait-dependent dysfunction in pain processing.
Collapse
Affiliation(s)
| | - Gianluca Coppola
- G.B. Bietti Foundation IRCCS, Research Unit of Neurophysiology of Vision and Neurophthalmology, Rome, Italy
| | - Maria Grazia Anastasio
- IRCCS Neuromed, Pozzilli, IS, Italy; Department of Neurology and Psychiatry, "Sapienza" University of Rome, Rome, Italy
| | - Roberto De Icco
- C. Mondino National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | | | - Mariano Serrao
- Unit of Neurorehabilitation, Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, ICOT, Latina, Italy
| | - Vincenzo Parisi
- G.B. Bietti Foundation IRCCS, Research Unit of Neurophysiology of Vision and Neurophthalmology, Rome, Italy
| | - Maurizio Evangelista
- Istituto di Anestesiologia, Rianimazione e Terapia del Dolore, Università Cattolica del Sacro Cuore/CIC, Rome, Italy
| | - Giorgio Sandrini
- C. Mondino National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Francesco Pierelli
- IRCCS Neuromed, Pozzilli, IS, Italy; Unit of Neurorehabilitation, Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, ICOT, Latina, Italy
| |
Collapse
|