1
|
Vera OD, Wulff H, Braun AP. Endothelial KCa channels: Novel targets to reduce atherosclerosis-driven vascular dysfunction. Front Pharmacol 2023; 14:1151244. [PMID: 37063294 PMCID: PMC10102451 DOI: 10.3389/fphar.2023.1151244] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Elevated levels of cholesterol in the blood can induce endothelial dysfunction, a condition characterized by impaired nitric oxide production and decreased vasodilatory capacity. Endothelial dysfunction can promote vascular disease, such as atherosclerosis, where macrophages accumulate in the vascular intima and fatty plaques form that impair normal blood flow in conduit arteries. Current pharmacological strategies to treat atherosclerosis mostly focus on lipid lowering to prevent high levels of plasma cholesterol that induce endothelial dysfunction and atherosclerosis. While this approach is effective for most patients with atherosclerosis, for some, lipid lowering is not enough to reduce their cardiovascular risk factors associated with atherosclerosis (e.g., hypertension, cardiac dysfunction, stroke, etc.). For such patients, additional strategies targeted at reducing endothelial dysfunction may be beneficial. One novel strategy to restore endothelial function and mitigate atherosclerosis risk is to enhance the activity of Ca2+-activated K+ (KCa) channels in the endothelium with positive gating modulator drugs. Here, we review the mechanism of action of these small molecules and discuss their ability to improve endothelial function. We then explore how this strategy could mitigate endothelial dysfunction in the context of atherosclerosis by examining how KCa modulators can improve cardiovascular function in other settings, such as aging and type 2 diabetes. Finally, we consider questions that will need to be addressed to determine whether KCa channel activation could be used as a long-term add-on to lipid lowering to augment atherosclerosis treatment, particularly in patients where lipid-lowering is not adequate to improve their cardiovascular health.
Collapse
Affiliation(s)
- O. Daniel Vera
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, United States
| | - Andrew P. Braun
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- *Correspondence: Andrew P. Braun,
| |
Collapse
|
2
|
Li X, Liu Y, Cao A, Li C, Wang L, Wu Q, Li X, Lv X, Zhu J, Chun H, Laba C, Du X, Zhang Y, Yang H. Crocin Improves Endothelial Mitochondrial Dysfunction via GPx1/ROS/KCa3.1 Signal Axis in Diabetes. Front Cell Dev Biol 2021; 9:651434. [PMID: 33777959 PMCID: PMC7994751 DOI: 10.3389/fcell.2021.651434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction contributes to excessive reactive oxygen species (ROS) generation, which is a dramatic cause to promote endothelial dysfunction in diabetes. It was previously demonstrated that crocin protected the endothelium based on its diverse medicinal properties, but its effect on the mitochondrion and the potential mechanism are not fully understood. In this study, mitochondrial function was analyzed during the process of excessive ROS generation in high glucose (HG)-cultured human umbilical vein endothelial cells (HUVECs). The role played by KCa3.1 was further investigated by the inhibition and/or gene silence of KCa3.1 in this process. In addition, nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase 2 (NOX2), superoxide dismutase 1 (SOD1), and glutathione peroxidase 1 (GPx1) were also detected in this study. Our data showed that crocin improved mitochondrial dysfunction and maintained normal mitochondrial morphology by enhancing the mitochondrial membrane potential (MMP), mitochondrial mass, and mitochondrial fusion. Furthermore, KCa3.1 was confirmed to be located in the mitochondrion, and the blockade and/or silencing of KCa3.1 improved mitochondrial dysfunction and reduced excessive ROS generation but did not affect NOX2 and/or the SOD1 system. Intriguingly, it was confirmed that KCa3.1 expression was elevated by ROS overproduction in the endothelium under HG and/or diabetes conditions, while crocin significantly suppressed this elevation by promoting GPx1 and subsequently eliminating ROS generation. In addition, crocin enhanced CD31, thrombomodulin (TM), and p-/t-endothelial nitric oxide synthase (eNOS) expressions as well as NO generation and decreased vascular tone. Hence, crocin improved mitochondrial dysfunction through inhibiting ROS-induced KCa3.1 overexpression in the endothelium, which in turn reduced more ROS generation and final endothelial dysfunction in diabetes.
Collapse
Affiliation(s)
- Xuemei Li
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Anatomy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Anqiang Cao
- Department of Cardiac Surgery, The Third People's Hospital of Chengdu, Institute of Cardiovascular Science, Chengdu, China
| | - Chao Li
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Luodan Wang
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Qing Wu
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Xinlei Li
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Xiaohong Lv
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Jiwei Zhu
- Department of Forensic Medicine, Harbin Medical University, Harbin, China
| | - Hua Chun
- Department of Modern Medicine, Tibetan Traditional Medical College, Lhasa, China
| | - Ciren Laba
- Department of Modern Medicine, Tibetan Traditional Medical College, Lhasa, China
| | - Xingchi Du
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Yafang Zhang
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Huike Yang
- Department of Anatomy, Harbin Medical University, Harbin, China.,Department of Modern Medicine, Tibetan Traditional Medical College, Lhasa, China
| |
Collapse
|
3
|
Sahranavard T, Carbone F, Montecucco F, Xu S, Al-Rasadi K, Jamialahmadi T, Sahebkar A. The role of potassium in atherosclerosis. Eur J Clin Invest 2021; 51:e13454. [PMID: 33216974 DOI: 10.1111/eci.13454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Atherosclerosis (AS) is a chronic progressive inflammatory condition with a leading prevalence worldwide. Endothelial dysfunction leads to low-density lipoprotein trafficking into subendothelial space and the subsequent form of oxidized LDL (ox-LDL) within intimal layer, perpetuating the vicious cycle of endothelial dysfunction. K+ exerts beneficial effects in vascular wall by reducing LDL oxidization, vascular smooth muscle cells (VSMCs) proliferation, and free radical generation. K+ also modulates vascular tone through a regulatory effect on cell membrane potential. MATERIALS AND METHODS The most relevant papers on the association between 'potassium channels' and 'atherosclerosis' were selected among those deposited on PubMed from 1990 to 2020. RESULTS Here, we provide a short narrative review that elaborates on the role of K+ in atherosclerosis. This review also update the current knowledge about potential pharmacological agents targeting K+ channels with a special focus on pleiotropic activities of agents such as statins, sulfonylureas and dihydropyridines. CONCLUSION In this review, the mechanism of different K+ channels on vascular endothelium will be summarized, mainly focusing on their pathophysiological role in atherosclerosis and potential therapeutic application.
Collapse
Affiliation(s)
- Toktam Sahranavard
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa School of Medicine, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Suowen Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | | | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| |
Collapse
|
4
|
Mishra RC, Kyle BD, Kendrick DJ, Svystonyuk D, Kieser TM, Fedak PWM, Wulff H, Braun AP. KCa channel activation normalizes endothelial function in Type 2 Diabetic resistance arteries by improving intracellular Ca 2+ mobilization. Metabolism 2021; 114:154390. [PMID: 33039407 PMCID: PMC7736096 DOI: 10.1016/j.metabol.2020.154390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Endothelial dysfunction is an early pathogenic event in the progression of cardiovascular disease in patients with Type 2 Diabetes (T2D). Endothelial KCa2.3 and KCa3.1 K+ channels are important regulators of arterial diameter, and we thus hypothesized that SKA-31, a small molecule activator of KCa2.3 and KCa3.1, would positively influence agonist-evoked dilation in myogenically active resistance arteries in T2D. METHODOLOGY Arterial pressure myography was utilized to investigate endothelium-dependent vasodilation in isolated cremaster skeletal muscle resistance arteries from 22 to 24 week old T2D Goto-Kakizaki rats, age-matched Wistar controls, and small human intra-thoracic resistance arteries from T2D subjects. Agonist stimulated changes in cytosolic free Ca2+ in acutely isolated, single endothelial cells from Wistar and T2D Goto-Kakizaki cremaster and cerebral arteries were examined using Fura-2 fluorescence imaging. MAIN FINDINGS Endothelium-dependent vasodilation in response to acetylcholine (ACh) or bradykinin (BK) was significantly impaired in isolated cremaster arteries from T2D Goto-Kakizaki rats compared with Wistar controls, and similar results were observed in human intra-thoracic arteries. In contrast, inhibition of myogenic tone by sodium nitroprusside, a direct smooth muscle relaxant, was unaltered in both rat and human T2D arteries. Treatment with a threshold concentration of SKA-31 (0.3 μM) significantly enhanced vasodilatory responses to ACh and BK in arteries from T2D Goto-Kakizaki rats and human subjects, whereas only modest effects were observed in non-diabetic arteries of both species. Mechanistically, SKA-31 enhancement of evoked dilation was independent of vascular NO synthase and COX activities. Remarkably, SKA-31 treatment improved agonist-stimulated Ca2+ elevation in acutely isolated endothelial cells from T2D Goto-Kakizaki cremaster and cerebral arteries, but not from Wistar control vessels. In contrast, SKA-31 treatment did not affect intracellular Ca2+ release by the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor cyclopiazonic acid. CONCLUSIONS Collectively, our data demonstrate that KCa channel modulation can acutely restore endothelium-dependent vasodilatory responses in T2D resistance arteries from rats and humans, which appears to involve improved endothelial Ca2+ mobilization.
Collapse
Affiliation(s)
- Ramesh C Mishra
- Dept. of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Barry D Kyle
- Dept. of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Dylan J Kendrick
- Dept. of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Daniyil Svystonyuk
- Dept. of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Teresa M Kieser
- Dept. of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Paul W M Fedak
- Dept. of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Heike Wulff
- Dept of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Andrew P Braun
- Dept. of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
5
|
Clinical Importance of the Human Umbilical Artery Potassium Channels. Cells 2020; 9:cells9091956. [PMID: 32854241 PMCID: PMC7565333 DOI: 10.3390/cells9091956] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Potassium (K+) channels are usually predominant in the membranes of vascular smooth muscle cells (SMCs). These channels play an important role in regulating the membrane potential and vessel contractility-a role that depends on the vascular bed. Thus, the activity of K+ channels represents one of the main mechanisms regulating the vascular tone in physiological and pathophysiological conditions. Briefly, the activation of K+ channels in SMC leads to hyperpolarization and vasorelaxation, while its inhibition induces depolarization and consequent vascular contraction. Currently, there are four different types of K+ channels described in SMCs: voltage-dependent K+ (KV) channels, calcium-activated K+ (KCa) channels, inward rectifier K+ (Kir) channels, and 2-pore domain K+ (K2P) channels. Due to the fundamental role of K+ channels in excitable cells, these channels are promising therapeutic targets in clinical practice. Therefore, this review discusses the basic properties of the various types of K+ channels, including structure, cellular mechanisms that regulate their activity, and new advances in the development of activators and blockers of these channels. The vascular functions of these channels will be discussed with a focus on vascular SMCs of the human umbilical artery. Then, the clinical importance of K+ channels in the treatment and prevention of cardiovascular diseases during pregnancy, such as gestational hypertension and preeclampsia, will be explored.
Collapse
|
6
|
Moccia F, Negri S, Faris P, Berra-Romani R. Targeting the Endothelial Ca2+ Toolkit to Rescue Endothelial Dysfunction in Obesity Associated-Hypertension. Curr Med Chem 2020; 27:240-257. [PMID: 31486745 DOI: 10.2174/0929867326666190905142135] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/03/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Obesity is a major cardiovascular risk factor which dramatically impairs endothelium- dependent vasodilation and leads to hypertension and vascular damage. The impairment of the vasomotor response to extracellular autacoids, e.g., acetylcholine, mainly depends on the reduced Nitric Oxide (NO) bioavailability, which hampers vasorelaxation in large conduit arteries. In addition, obesity may affect Endothelium-Dependent Hyperpolarization (EDH), which drives vasorelaxation in small resistance arteries and arterioles. Of note, endothelial Ca2+ signals drive NO release and trigger EDH. METHODS A structured search of bibliographic databases was carried out to retrieve the most influential, recent articles on the impairment of vasorelaxation in animal models of obesity, including obese Zucker rats, and on the remodeling of the endothelial Ca2+ toolkit under conditions that mimic obesity. Furthermore, we searched for articles discussing how dietary manipulation could be exploited to rescue Ca2+-dependent vasodilation. RESULTS We found evidence that the endothelial Ca2+ could be severely affected by obese vessels. This rearrangement could contribute to endothelial damage and is likely to be involved in the disruption of vasorelaxant mechanisms. However, several Ca2+-permeable channels, including Vanilloid Transient Receptor Potential (TRPV) 1, 3 and 4 could be stimulated by several food components to stimulate vasorelaxation in obese individuals. CONCLUSION The endothelial Ca2+ toolkit could be targeted to reduce vascular damage and rescue endothelium- dependent vasodilation in obese vessels. This hypothesis remains, however, to be probed on truly obese endothelial cells.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
7
|
John CM, Khaddaj Mallat R, Mishra RC, George G, Singh V, Turnbull JD, Umeshappa CS, Kendrick DJ, Kim T, Fauzi FM, Visser F, Fedak PWM, Wulff H, Braun AP. SKA-31, an activator of Ca 2+-activated K + channels, improves cardiovascular function in aging. Pharmacol Res 2019; 151:104539. [PMID: 31707036 DOI: 10.1016/j.phrs.2019.104539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022]
Abstract
Aging represents an independent risk factor for the development of cardiovascular disease, and is associated with complex structural and functional alterations in the vasculature, such as endothelial dysfunction. Small- and intermediate-conductance, Ca2+-activated K+ channels (KCa2.3 and KCa3.1, respectively) are prominently expressed in the vascular endothelium, and pharmacological activators of these channels induce robust vasodilation upon acute exposure in isolated arteries and intact animals. However, the effects of prolonged in vivo administration of such compounds are unknown. In our study, we hypothesized that such treatment would ameliorate aging-related cardiovascular deficits. Aged (∼18 months) male Sprague Dawley rats were treated daily with either vehicle or the KCa channel activator SKA-31 (10 mg/kg, intraperitoneal injection; n = 6/group) for 8 weeks, followed by echocardiography, arterial pressure myography, immune cell and plasma cytokine characterization, and tissue histology. Our results show that SKA-31 administration improved endothelium-dependent vasodilation, reduced agonist-induced vascular contractility, and prevented the aging-associated declines in cardiac ejection fraction, stroke volume and fractional shortening, and further improved the expression of endothelial KCa channels and associated cell signalling components to levels similar to those observed in young male rats (∼5 months at end of study). SKA-31 administration did not promote pro-inflammatory changes in either T cell populations or plasma cytokines/chemokines, and we observed no overt tissue histopathology in heart, kidney, aorta, brain, liver and spleen. SKA-31 treatment in young rats had little to no effect on vascular reactivity, select protein expression, tissue histology, plasma cytokines/chemokines or immune cell properties. Collectively, these data demonstrate that administration of the KCa channel activator SKA-31 improved aging-related cardiovascular function, without adversely affecting the immune system or promoting tissue toxicity.
Collapse
Affiliation(s)
- Cini Mathew John
- Dept. of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Rayan Khaddaj Mallat
- Dept. of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Ramesh C Mishra
- Dept. of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Grace George
- Dept. of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Vikrant Singh
- Dept. of Pharmacology, University of California, Davis, USA
| | - Jeannine D Turnbull
- Dept. of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Channakeshava S Umeshappa
- Dept. of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Canada
| | - Dylan J Kendrick
- Dept. of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Taeyeob Kim
- Dept. of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Fazlin M Fauzi
- Dept. of Pharmacology and Chemistry, Universiti Teknologi MARA, Malaysia
| | - Frank Visser
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Paul W M Fedak
- Dept. of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Heike Wulff
- Dept. of Pharmacology, University of California, Davis, USA
| | - Andrew P Braun
- Dept. of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada.
| |
Collapse
|
8
|
Kloza M, Baranowska-Kuczko M, Toczek M, Kusaczuk M, Sadowska O, Kasacka I, Kozłowska H. Modulation of Cardiovascular Function in Primary Hypertension in Rat by SKA-31, an Activator of KCa2.x and KCa3.1 Channels. Int J Mol Sci 2019; 20:ijms20174118. [PMID: 31450834 PMCID: PMC6747311 DOI: 10.3390/ijms20174118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to investigate the hemodynamic effects of SKA-31, an activator of the small (KCa2.x) and intermediate (KCa3.1) conductance calcium-activated potassium channels, and to evaluate its influence on endothelium-derived hyperpolarization (EDH)-KCa2.3/KCa3.1 type relaxation in isolated endothelium-intact small mesenteric arteries (sMAs) from spontaneously hypertensive rats (SHRs). Functional in vivo and in vitro experiments were performed on SHRs or their normotensive controls, Wistar-Kyoto rats (WKY). SKA-31 (1, 3 and 10 mg/kg) caused a brief decrease in blood pressure and bradycardia in both SHR and WKY rats. In phenylephrine-pre-constricted sMAs of SHRs, SKA-31 (0.01–10 µM)-mediated relaxation was reduced and SKA-31 potentiated acetylcholine-evoked endothelium-dependent relaxation. Endothelium denudation and inhibition of nitric oxide synthase (eNOS) and cyclooxygenase (COX) by the respective inhibitors l-NAME or indomethacin, attenuated SKA-31-mediated vasorelaxation. The inhibition of KCa3.1, KCa2.3, KIR and Na+/K+-ATPase by TRAM-34, UCL1684, Ba2+ and ouabain, respectively, reduced the potency and efficacy of the EDH-response evoked by SKA-31. The mRNA expression of eNOS, prostacyclin synthase, KCa2.3, KCa3.1 and KIR were decreased, while Na+/K+-ATPase expression was increased. Collectively, SKA-31 promoted hypotension and vasodilatation, potentiated agonist-stimulated vasodilation, and maintained KCa2.3/KCa3.1-EDH-response in sMAs of SHR with downstream signaling that involved KIR and Na+/K+-ATPase channels. In view of the importance of the dysfunction of endothelium-mediated vasodilatation in the mechanism of hypertension, application of activators of KCa2.3/KCa3.1 channels such as SKA-31 seem to be a promising avenue in pharmacotherapy of hypertension.
Collapse
Affiliation(s)
- Monika Kloza
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland
- Department of Clinical Pharmacy, Medical University of Białystok, 15-222 Białystok, Poland
| | - Marek Toczek
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland
| | - Magdalena Kusaczuk
- Department of Pharmaceutical Biochemistry, Medical University of Białystok, 15-222 Białystok, Poland
| | - Olga Sadowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Białystok, 15-222 Białystok, Poland
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland.
| |
Collapse
|
9
|
Khaddaj Mallat R, Mathew John C, Mishra RC, Kendrick DJ, Braun AP. Pharmacological Targeting of KCa Channels to Improve Endothelial Function in the Spontaneously Hypertensive Rat. Int J Mol Sci 2019; 20:ijms20143481. [PMID: 31315169 PMCID: PMC6678254 DOI: 10.3390/ijms20143481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 01/01/2023] Open
Abstract
Systemic hypertension is a major risk factor for the development of cardiovascular disease and is often associated with endothelial dysfunction. KCa2.3 and KCa3.1 channels are expressed in the vascular endothelium and contribute to stimulus-evoked vasodilation. We hypothesized that acute treatment with SKA-31, a selective activator of KCa2.x and KCa3.1 channels, would improve endothelium-dependent vasodilation and transiently lower mean arterial pressure (MAP) in male, spontaneously hypertensive rats (SHRs). Isolated vascular preparations exhibited impaired vasodilation in response to bradykinin (i.e., endothelial dysfunction) compared with Wistar controls, which was associated with decreased bradykinin receptor expression in mesenteric arteries. In contrast, similar levels of endothelial KCa channel expression were observed, and SKA-31 evoked vasodilation was comparable in vascular preparations from both strains. Addition of a low concentration of SKA-31 (i.e., 0.2–0.3 μM) failed to augment bradykinin-induced vasodilation in arteries from SHRs. However, responses to acetylcholine were enhanced. Surprisingly, acute bolus administration of SKA-31 in vivo (30 mg/kg, i.p. injection) modestly elevated MAP compared with vehicle injection. In summary, pharmacological targeting of endothelial KCa channels in SHRs did not readily reverse endothelial dysfunction in situ, or lower MAP in vivo. SHRs thus appear to be less responsive to endothelial KCa channel activators, which may be related to their vascular pathology.
Collapse
Affiliation(s)
- Rayan Khaddaj Mallat
- Department of Physiology and Pharmacology and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Cini Mathew John
- Department of Physiology and Pharmacology and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Ramesh C Mishra
- Department of Physiology and Pharmacology and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Dylan J Kendrick
- Department of Physiology and Pharmacology and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Andrew P Braun
- Department of Physiology and Pharmacology and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
10
|
Medina-Ruiz D, Erreguin-Luna B, Luna-Vázquez FJ, Romo-Mancillas A, Rojas-Molina A, Ibarra-Alvarado C. Vasodilation Elicited by Isoxsuprine, Identified by High-Throughput Virtual Screening of Compound Libraries, Involves Activation of the NO/cGMP and H₂S/K ATP Pathways and Blockade of α₁-Adrenoceptors and Calcium Channels. Molecules 2019; 24:molecules24050987. [PMID: 30862086 PMCID: PMC6429095 DOI: 10.3390/molecules24050987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/21/2022] Open
Abstract
Recently, our research group demonstrated that uvaol and ursolic acid increase NO and H2S production in aortic tissue. Molecular docking studies showed that both compounds bind with high affinity to endothelial NO synthase (eNOS) and cystathionine gamma-lyase (CSE). The aim of this study was to identify hits with high binding affinity for the triterpene binding-allosteric sites of eNOS and CSE and to evaluate their vasodilator effect. Additionally, the mechanism of action of the most potent compound was explored. A high-throughput virtual screening (HTVS) of 107,373 compounds, obtained from four ZINC database libraries, was performed employing the crystallographic structures of eNOS and CSE. Among the nine top-scoring ligands, isoxsuprine showed the most potent vasodilator effect. Pharmacological evaluation, employing the rat aorta model, indicated that the vasodilation produced by this compound involved activation of the NO/cGMP and H2S/KATP signaling pathways and blockade of α1-adrenoceptors and L-type voltage-dependent Ca2+ channels. Incubation of aorta homogenates in the presence of isoxsuprine caused 2-fold greater levels of H2S, which supported our preliminary in silico data. This study provides evidence to propose that the vasodilator effect of isoxsuprine involves various mechanisms, which highlights its potential to treat a wide variety of cardiovascular diseases.
Collapse
Affiliation(s)
- Daniella Medina-Ruiz
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro C.P. 76010, Mexico.
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - Berenice Erreguin-Luna
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - Francisco J Luna-Vázquez
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - Antonio Romo-Mancillas
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - Alejandra Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - César Ibarra-Alvarado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| |
Collapse
|
11
|
SKA-31, an activator of endothelial Ca 2+-activated K + channels evokes robust vasodilation in rat mesenteric arteries. Eur J Pharmacol 2018; 831:60-67. [PMID: 29753043 DOI: 10.1016/j.ejphar.2018.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/17/2022]
Abstract
It is now well recognized that endothelial KCa2.3 and KCa3.1 channel activities contribute to dilation of resistance arteries via endothelium-mediated hyperpolarization and vascular smooth muscle relaxation. In this study, we have investigated the functional effect of the KCa channel activator SKA-31 in third order rat mesenteric arteries using arterial pressure myography. Isolated arteries were cannulated, pressurized intraluminally to 70 mmHg at 36 °C and then constricted with 1 μM phenylephrine. Acute bath exposure to SKA-31 evoked a robust and reversible inhibition of developed tone (IC50 = 0.22 μM). The vasodilatory effects of SKA-31 and acetylcholine were blunted in the presence of KCa2.3 and KCa3.1 channel antagonists, and were largely prevented following endothelial denudation. Western blot and q-PCR analyses of isolated mesenteric arteries revealed KCa2.3 and KCa3.1 channel expression at the protein and mRNA levels, respectively. Penitrem-A, an inhibitor of KCa1.1 channels, decreased vasodilatory responses to acetylcholine, sodium nitroprusside and NS-1619, but had little effect on SKA-31. Similarly, bath exposure to the eNOS inhibitor L-NAME did not alter SKA-31 and acetylcholine-mediated vasodilation. Collectively, these data highlight the major cellular mechanisms by which the endothelial KCa channel activator SKA-31 inhibits agonist-evoked vasoconstriction in rat small mesenteric arteries.
Collapse
|