1
|
Ganglberger M, Koschak A. Exploring the potential for gene therapy in Cav1.4-related retinal channelopathies. Channels (Austin) 2025; 19:2480089. [PMID: 40129245 PMCID: PMC11938310 DOI: 10.1080/19336950.2025.2480089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
The visual process begins with photon detection in photoreceptor outer segments within the retina, which processes light signals before transmission to the thalamus and visual cortex. Cav1.4 L-type calcium channels play a crucial role in this process, and dysfunction of these channels due to pathogenic variants in corresponding genes leads to specific manifestations in visual impairments. This review explores the journey from basic research on Cav1.4 L-type calcium channel complexes in retinal physiology and pathophysiology to their potential as gene therapy targets. Moreover, we provide a concise overview of key findings from studies using different animal models to investigate retinal diseases. It will critically examine the constraints these models present when attempting to elucidate retinal channelopathies. Additionally, the paper will explore potential strategies for addressing Cav1.4 channel dysfunction and discuss the current challenges facing gene therapy approaches in this area of research.
Collapse
Affiliation(s)
- Matthias Ganglberger
- Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Alexandra Koschak
- Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Klomp AJ, Pace M, Mehr JB, Arrieta MFH, Hayes C, Fleck A, Heiney S, Williams AJ. Deletion of the voltage-gated calcium channel gene, Ca V 1.3, reduces Purkinje cell dendritic complexity without altering cerebellar-mediated eyeblink conditioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645586. [PMID: 40196480 PMCID: PMC11974831 DOI: 10.1101/2025.03.27.645586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Genetic variation in CACNA1D , the gene that encodes the pore-forming subunit of the L-type calcium channel Ca V 1.3, has been associated with increased risk for neuropsychiatric disorders that display abnormalities in cerebellar structures. We sought to clarify if deletion of Ca V 1.3 in mice would induce abnormalities in cerebellar cortex cytoarchitecture or synapse morphology. Since Ca V 1.3 is highly expressed in cerebellar molecular layer interneurons (MLIs) and L-type channels appear to regulate GABA release from MLIs, we hypothesized that loss of Ca V 1.3 would alter GABAergic synapses between MLIs and Purkinje cells (PCs) without altering MLI numbers or PC structure. As expected, we did not observe changes in the numbers of MLIs or PCs. Surprisingly, Ca V 1.3 KO mice do have decreased complexity of PC dendritic arbors without differences in the number or structure of GABAergic synapses onto PCs. Loss of Ca V 1.3 was not associated with impaired acquisition of delay eyeblink conditioning. Therefore, our data suggest that Ca V 1.3 expression is important for PC structure but does not affect other measures of cerebellar cortex morphology or cerebellar function as assessed by delay eyeblink conditioning.
Collapse
|
3
|
Ortner NJ. Is Cav1.3 a feasible therapeutic target for a rare neurodevelopmental disorder? Expert Opin Ther Targets 2024:1-5. [PMID: 39670814 DOI: 10.1080/14728222.2024.2442428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/27/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Affiliation(s)
- Nadine J Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Hussey JW, DeMarco E, DiSilvestre D, Brohus M, Busuioc AO, Iversen ED, Jensen HH, Nyegaard M, Overgaard MT, Ben-Johny M, Dick IE. Voltage Gated Calcium Channel Dysregulation May Contribute to Neurological Symptoms in Calmodulinopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626503. [PMID: 39677635 PMCID: PMC11642847 DOI: 10.1101/2024.12.02.626503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Calmodulinopathies are caused by mutations in calmodulin (CaM), and result in debilitating cardiac arrythmias such as long-QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT). In addition, many patients exhibit neurological comorbidities, including developmental delay and autism spectrum disorder. Until now, most work into these mutations has focused on cardiac effects, identifying impairment of Ca 2+ /CaM-dependent inactivation (CDI) of Ca V 1.2 channels as a major pathogenic mechanism. However, the impact of these mutations on neurological function has yet to be fully explored. CaM regulation of voltage-gated calcium channels (VGCCs) is a critical element of neuronal function, implicating multiple VGCC subtypes in the neurological pathogenesis of calmodulinopathies. Here, we explore the potential for pathological CaM variants to impair the Ca 2+ /CaM-dependent regulation of Ca V 1.3 and Ca V 2.1, both essential for neuronal function. We find that mutations in CaM can impair the CDI of Ca V 1.3 and reduce the Ca 2+ -dependent facilitation (CDF) of Ca V 2.1 channels. We find that mutations associated with significant neurological symptoms exhibit marked effects on Ca V 1.3 CDI, with overlapping but distinct impacts on Ca V 2.1 CDF. Moreover, while the majority of CaM variants demonstrated the ability to bind the IQ region of each channel, distinct differences were noted between Ca V 1.3 and Ca V 2.1, demonstrating distinct CaM interactions across the two channel subtypes. Further, C-domain CaM variants display a reduced ability to sense Ca 2+ when in complex with the Ca V IQ domains, explaining the Ca 2+ /CaM regulation deficits. Overall, these results support the possibility that disrupted Ca 2+ /CaM regulation of VGCCs may contribute to neurological pathogenesis of calmodulinopathies.
Collapse
|
5
|
Török F, Salamon S, Ortner NJ, Fernández-Quintero ML, Matthes J, Striessnig J. Inactivation induced by pathogenic Ca v1.3 L-type Ca 2+-channel variants enhances sensitivity for dihydropyridine Ca 2+ channel blockers. Br J Pharmacol 2024. [PMID: 39370994 DOI: 10.1111/bph.17357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND AND PURPOSE Pathogenic gain-of-function mutations in Cav1.3 L-type voltage-gated Ca2+-channels (CACNA1D) cause neurodevelopmental disorders with or without endocrine symptoms. We aimed to confirm a pathogenic gain-of function phenotype of CACNA1D de novo missense mutations A749T and L271H, and investigated the molecular mechanism causing their enhanced sensitivity for the Ca2+-channel blocker isradipine, a potential therapeutic for affected patients. EXPERIMENTAL APPROACH Wildtype and mutant channels were expressed in tsA-201 cells and their gating analysed using whole-cell and single-channel patch-clamp recordings. The voltage-dependence of isradipine action was quantified using protocols inducing variable fractions of inactivated channels. The molecular basis for altered channel gating in the mutants was investigated using in silico modelling and molecular dynamics simulations. KEY RESULTS Both mutations were confirmed pathogenic due to characteristic shifts of voltage-dependent activation and inactivation towards negative potentials (~20 mV). At negative holding potentials both mutations showed significantly higher isradipine sensitivity compared to wildtype. The affinity for wildtype and mutant channels increased with channel inactivation as predicted by the modulated receptor hypothesis (30- to 40-fold). The IC50 was indistinguishable for wildtype and mutants when >50% of channels were inactivated. CONCLUSIONS AND IMPLICATIONS Mutations A749T and L271H induce pathogenic gating changes. Like wildtype, isradipine inhibition is strongly voltage-dependent. Our data explains their apparent higher drug sensitivity at a given negative voltage by the availability of more inactivated channels due to their more negative inactivation voltage range. Low nanomolar isradipine concentrations will only inhibit Cav1.3 channels in neurons during prolonged depolarized states without selectivity for mutant channels.
Collapse
Affiliation(s)
- Ferenc Török
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Sarah Salamon
- Center of Pharmacology, Institute II, University of Cologne, Cologne, Germany
| | - Nadine J Ortner
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Monica L Fernández-Quintero
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Jan Matthes
- Center of Pharmacology, Institute II, University of Cologne, Cologne, Germany
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Tang X, Ortner NJ, Nikonishyna YV, Fernández-Quintero ML, Kokot J, Striessnig J, Liedl KR. Pathogenicity of de novo CACNA1D Ca 2+ channel variants predicted from sequence co-variation. Eur J Hum Genet 2024; 32:1065-1073. [PMID: 38553610 PMCID: PMC11369236 DOI: 10.1038/s41431-024-01594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 09/04/2024] Open
Abstract
Voltage-gated L-type Cav1.3 Ca2+ channels support numerous physiological functions including neuronal excitability, sinoatrial node pacemaking, hearing, and hormone secretion. De novo missense mutations in the gene of their pore-forming α1-subunit (CACNA1D) induce severe gating defects which lead to autism spectrum disorder and a more severe neurological disorder with and without endocrine symptoms. The number of CACNA1D variants reported is constantly rising, but their pathogenic potential often remains unclear, which complicates clinical decision-making. Since functional tests are time-consuming and not always available, bioinformatic tools further improving pathogenicity potential prediction of novel variants are needed. Here we employed evolutionary analysis considering sequences of the Cav1.3 α1-subunit throughout the animal kingdom to predict the pathogenicity of human disease-associated CACNA1D missense variants. Co-variation analyses of evolutionary information revealed residue-residue couplings and allowed to generate a score, which correctly predicted previously identified pathogenic variants, supported pathogenicity in variants previously classified as likely pathogenic and even led to the re-classification or re-examination of 18 out of 80 variants previously assessed with clinical and electrophysiological data. Based on the prediction score, we electrophysiologically tested one variant (V584I) and found significant gating changes associated with pathogenic risks. Thus, our co-variation model represents a valuable addition to complement the assessment of the pathogenicity of CACNA1D variants completely independent of clinical diagnoses, electrophysiology, structural or biophysical considerations, and solely based on evolutionary analyses.
Collapse
Affiliation(s)
- Xuechen Tang
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Nadine J Ortner
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Yuliia V Nikonishyna
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Monica L Fernández-Quintero
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Janik Kokot
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria.
| | - Klaus R Liedl
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria.
| |
Collapse
|
7
|
Salamon S, Kuzmenkina E, Fried C, Matthes J. CaM-dependent modulation of human Ca V1.3 whole-cell and single-channel currents by C-terminal CaMKII phosphorylation site S1475. J Physiol 2024; 602:3955-3973. [PMID: 39037941 DOI: 10.1113/jp284972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
Phosphorylation enables rapid modulation of voltage-gated calcium channels (VGCC) in physiological and pathophysiological conditions. How phosphorylation modulates human CaV1.3 VGCC, however, is largely unexplored. We characterized modulation of CaV1.3 gating via S1475, the human equivalent of a phosphorylation site identified in the rat. S1475 is highly conserved in CaV1.3 but absent from all other high-voltage activating calcium channel types co-expressed with CaV1.3 in similar tissues. Further, it is located in the C-terminal EF-hand motif, which binds calmodulin (CaM). This is involved in calcium-dependent channel inactivation (CDI). We used amino acid exchanges that mimic either sustained phosphorylation (S1475D) or phosphorylation resistance (S1475A). Whole-cell and single-channel recordings of phosphorylation state imitating CaV1.3 variants in transiently transfected HEK-293 cells revealed functional relevance of S1475 in human CaV1.3. We obtained three main findings: (1) CaV1.3_S1475D, imitating sustained phosphorylation, displayed decreased current density, reduced CDI and (in-) activation kinetics shifted to more depolarized voltages compared with both wildtype CaV1.3 and the phosphorylation-resistant CaV1.3_S1475A variant. Corresponding to the decreased current density, we find a reduced open probability of CaV1.3_S1475D at the single-channel level. (2) Using CaM overexpression or depletion, we find that CaM is necessary for modulating CaV1.3 through S1475. (3) CaMKII activation led to CaV1.3_WT-current properties similar to those of CaV1.3_S1475D, but did not affect CaV1.3_S1475A, confirming that CaMKII modulates human CaV1.3 via S1475. Given the physiological and pathophysiological importance of CaV1.3, our findings on the S1475-mediated interplay of phosphorylation, CaM interaction and CDI provide hints for approaches on specific CaV1.3 modulation under physiological and pathophysiological conditions. KEY POINTS: Phosphorylation modulates activity of voltage-gated L-type calcium channels for specific cellular needs but is largely unexplored for human CaV1.3 channels. Here we report that S1475, a CaMKII phosphorylation site identified in rats, is functionally relevant in human CaV1.3. Imitating phosphorylation states at S1475 alters current density and inactivation in a calmodulin-dependent manner. In wildtype CaV1.3 but not in the phosphorylation-resistant variant S1475A, CaMKII activation elicits effects similar to constitutively mimicking phosphorylation at S1475. Our findings provide novel insights on the interplay of modulatory mechanisms of human CaV1.3 channels, and present a possible target for CaV1.3-specific gating modulation in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Sarah Salamon
- Center of Pharmacology, Institute II, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Elza Kuzmenkina
- Center of Pharmacology, Institute II, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Cora Fried
- Center of Pharmacology, Institute II, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Jan Matthes
- Center of Pharmacology, Institute II, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Ortner NJ, Sah A, Paradiso E, Shin J, Stojanovic S, Hammer N, Haritonova M, Hofer NT, Marcantoni A, Guarina L, Tuluc P, Theiner T, Pitterl F, Ebner K, Oberacher H, Carbone E, Stefanova N, Ferraguti F, Singewald N, Roeper J, Striessnig J. The human channel gating-modifying A749G CACNA1D (Cav1.3) variant induces a neurodevelopmental syndrome-like phenotype in mice. JCI Insight 2023; 8:e162100. [PMID: 37698939 PMCID: PMC10619503 DOI: 10.1172/jci.insight.162100] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Germline de novo missense variants of the CACNA1D gene, encoding the pore-forming α1 subunit of Cav1.3 L-type Ca2+ channels (LTCCs), have been found in patients with neurodevelopmental and endocrine dysfunction, but their disease-causing potential is unproven. These variants alter channel gating, enabling enhanced Cav1.3 activity, suggesting Cav1.3 inhibition as a potential therapeutic option. Here we provide proof of the disease-causing nature of such gating-modifying CACNA1D variants using mice (Cav1.3AG) containing the A749G variant reported de novo in a patient with autism spectrum disorder (ASD) and intellectual impairment. In heterozygous mutants, native LTCC currents in adrenal chromaffin cells exhibited gating changes as predicted from heterologous expression. The A749G mutation induced aberrant excitability of dorsomedial striatum-projecting substantia nigra dopamine neurons and medium spiny neurons in the dorsal striatum. The phenotype observed in heterozygous mutants reproduced many of the abnormalities described within the human disease spectrum, including developmental delay, social deficit, and pronounced hyperactivity without major changes in gross neuroanatomy. Despite an approximately 7-fold higher sensitivity of A749G-containing channels to the LTCC inhibitor isradipine, oral pretreatment over 2 days did not rescue the hyperlocomotion. Cav1.3AG mice confirm the pathogenicity of the A749G variant and point toward a pathogenetic role of altered signaling in the dopamine midbrain system.
Collapse
Affiliation(s)
- Nadine J. Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Anupam Sah
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Enrica Paradiso
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Josef Shin
- Institute for Neurophysiology, Goethe University, Frankfurt, Germany
| | | | - Niklas Hammer
- Institute for Neurophysiology, Goethe University, Frankfurt, Germany
| | - Maria Haritonova
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Nadja T. Hofer
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Andrea Marcantoni
- Department of Drug Science, N.I.S. Centre, University of Torino, Torino, Italy
| | - Laura Guarina
- Department of Drug Science, N.I.S. Centre, University of Torino, Torino, Italy
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Tamara Theiner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Florian Pitterl
- Institute of Legal Medicine and Core Facility Metabolomics and
| | - Karl Ebner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | | | - Emilio Carbone
- Department of Drug Science, N.I.S. Centre, University of Torino, Torino, Italy
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Francesco Ferraguti
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Jochen Roeper
- Institute for Neurophysiology, Goethe University, Frankfurt, Germany
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Török F, Tezcan K, Filippini L, Fernández-Quintero ML, Zanetti L, Liedl KR, Drexel RS, Striessnig J, Ortner NJ. Germline de novo variant F747S extends the phenotypic spectrum of CACNA1D Ca2+ channelopathies. Hum Mol Genet 2023; 32:847-859. [PMID: 36208199 PMCID: PMC9941835 DOI: 10.1093/hmg/ddac248] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/14/2022] Open
Abstract
Germline gain-of-function missense variants in the pore-forming Cav1.3 α1-subunit (CACNA1D gene) confer high risk for a severe neurodevelopmental disorder with or without endocrine symptoms. Here, we report a 4-week-old new-born with the novel de novo missense variant F747S with a so far not described prominent jittering phenotype in addition to symptoms previously reported for CACNA1D mutations including developmental delay, elevated aldosterone level and transient hypoglycemia. We confirmed the pathogenicity of this variant in whole-cell patch-clamp experiments with wild-type and F747S mutant channels heterologously expressed together with α2δ1 and cytosolic β3 or membrane-bound β2a subunits. Mutation F747S caused the quantitatively largest shift in the voltage dependence of activation (-28 mV) reported so far for CACNA1D germline mutations. It also shifted inactivation to more negative voltages, slowed the time course of current inactivation and slowed current deactivation upon repolarization with both co-expressed β-subunits. In silico modelling and molecular docking, simulations revealed that this gain-of-function phenotype can be explained by formation of a novel inter-domain hydrogen bond between mutant residues S747 (IIS6) with N1145 (IIIS6) stabilizing selectively the activated open channel state. F747S displayed 2-6-fold increased sensitivity for the L-type Ca2+ channel blocker isradipine compared to wild type. Our data confirm the pathogenicity of the F747S variant with very strong gain-of-function gating changes, which may contribute to the novel jittering phenotype. Increased sensitivity for isradipine suggests this drug for potential symptomatic off-label treatment for carriers of this mutation.
Collapse
Affiliation(s)
- Ferenc Török
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Kamer Tezcan
- Department of Genetics, Kaiser Permanente, Sacramento, CA 95825, USA
| | - Ludovica Filippini
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Monica L Fernández-Quintero
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Lucia Zanetti
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Klaus R Liedl
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Raphaela S Drexel
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Nadine J Ortner
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
10
|
Abstract
Tightly controlled Ca2+ influx through voltage-gated Ca2+ channels (Cavs) is indispensable for proper physiological function. Thus, it is not surprising that Cav loss and/or gain of function have been implicated in human pathology. Deficiency of Cav1.3 L-type Ca2+ channels (LTCCs) causes deafness and bradycardia, whereas several genetic variants of CACNA1D, the gene encoding the pore-forming α1 subunit of Cav1.3, have been linked to various disease phenotypes, such as hypertension, congenital hypoglycemia, or autism. These variants include not only common polymorphisms associated with an increased disease risk, but also rare de novo missense variants conferring high risk. This review provides a concise summary of disease-associated CACNA1D variants, whereas the main focus lies on de novo germline variants found in individuals with a neurodevelopmental disorder of variable severity. Electrophysiological recordings revealed activity-enhancing gating changes induced by these de novo variants, and tools to predict their pathogenicity and to study the resulting pathophysiological consequences will be discussed. Despite the low number of affected patients, potential phenotype-genotype correlations and factors that could impact the severity of symptoms will be covered. Since increased channel activity is assumed as the disease-underlying mechanism, pharmacological inhibition could be a treatment option. In the absence of Cav1.3-selective blockers, dihydropyridine LTCC inhibitors clinically approved for the treatment of hypertension may be used for personalized off-label trials. Findings from in vitro studies and treatment attempts in some of the patients seem promising as outlined. Taken together, due to advances in diagnostic sequencing techniques the number of reported CACNA1D variants in human diseases is constantly rising. Evidence from in silico, in vitro, and in vivo disease models can help to predict the pathogenic potential of such variants and to guide diagnosis and treatment in the clinical practice when confronted with patients harboring CACNA1D variants.
Collapse
Affiliation(s)
- Nadine J Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
11
|
Hofer NT, Pinggera A, Nikonishyna YV, Tuluc P, Fritz EM, Obermair GJ, Striessnig J. Stabilization of negative activation voltages of Cav1.3 L-Type Ca 2+-channels by alternative splicing. Channels (Austin) 2021; 15:38-52. [PMID: 33380256 PMCID: PMC7781618 DOI: 10.1080/19336950.2020.1859260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 11/30/2022] Open
Abstract
-->Low voltage-activated Cav1.3 L-type Ca2+-channels are key regulators of neuronal excitability controlling neuronal development and different types of learning and memory. Their physiological functions are enabled by their negative activation voltage-range, which allows Cav1.3 to be active at subthreshold voltages. Alternative splicing in the C-terminus of their pore-forming α1-subunits gives rise to C-terminal long (Cav1.3L) and short (Cav1.3S) splice variants allowing Cav1.3S to activate at even more negative voltages than Cav1.3L. We discovered that inclusion of exons 8b, 11, and 32 in Cav1.3S further shifts activation (-3 to -4 mV) and inactivation (-4 to -6 mV) to more negative voltages as revealed by functional characterization in tsA-201 cells. We found transcripts of these exons in mouse chromaffin cells, the cochlea, and the brain. Our data further suggest that Cav1.3-containing exons 11 and 32 constitute a significant part of native channels in the brain. We therefore investigated the effect of these splice variants on human disease variants. Splicing did not prevent the gating defects of the previously reported human pathogenic variant S652L, which further shifted the voltage-dependence of activation of exon 11-containing channels by more than -12 mV. In contrast, we found no evidence for gating changes of the CACNA1D missense variant R498L, located in exon 11, which has recently been identified in a patient with an epileptic syndrome. Our data demonstrate that alternative splicing outside the C-terminus involving exons 11 and 32 contributes to channel fine-tuning by stabilizing negative activation and inactivation gating properties of wild-type and mutant Cav1.3 channels.
Collapse
Affiliation(s)
- Nadja T. Hofer
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Austria
| | - Alexandra Pinggera
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Yuliia V. Nikonishyna
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Austria
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Austria
| | - Eva M. Fritz
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Austria
| | - Gerald J. Obermair
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
- Division Physiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Austria
| |
Collapse
|
12
|
Shimada H, Yamazaki Y, Sugawara A, Sasano H, Nakamura Y. Molecular Mechanisms of Functional Adrenocortical Adenoma and Carcinoma: Genetic Characterization and Intracellular Signaling Pathway. Biomedicines 2021; 9:biomedicines9080892. [PMID: 34440096 PMCID: PMC8389593 DOI: 10.3390/biomedicines9080892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
The adrenal cortex produces steroid hormones as adrenocortical hormones in the body, secreting mineralocorticoids, glucocorticoids, and adrenal androgens, which are all considered essential for life. Adrenocortical tumors harbor divergent hormonal activity, frequently with steroid excess, and disrupt homeostasis of the body. Aldosterone-producing adenomas (APAs) cause primary aldosteronism (PA), and cortisol-producing adenomas (CPAs) are the primary cause of Cushing’s syndrome. In addition, adrenocortical carcinoma (ACC) is a highly malignant cancer harboring poor prognosis. Various genetic abnormalities have been reported, which are associated with possible pathogenesis by the alteration of intracellular signaling and activation of transcription factors. In particular, somatic mutations in APAs have been detected in genes encoding membrane proteins, especially ion channels, resulting in hypersecretion of aldosterone due to activation of intracellular calcium signaling. In addition, somatic mutations have been detected in those encoding cAMP-PKA signaling-related factors, resulting in hypersecretion of cortisol due to its driven status in CPAs. In ACC, mutations in tumor suppressor genes and Wnt-β-catenin signaling-related factors have been implicated in its pathogenesis. In this article, we review recent findings on the genetic characteristics and regulation of intracellular signaling and transcription factors in individual tumors.
Collapse
Affiliation(s)
- Hiroki Shimada
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Miyagi, Japan;
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (Y.Y.); (H.S.)
| | - Akira Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan;
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (Y.Y.); (H.S.)
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Miyagi, Japan;
- Correspondence: ; Tel.: +81-22-290-8731
| |
Collapse
|
13
|
De Mingo Alemany MC, Mifsud Grau L, Moreno Macián F, Ferrer Lorente B, León Cariñena S. A de novo CACNA1D missense mutation in a patient with congenital hyperinsulinism, primary hyperaldosteronism and hypotonia. Channels (Austin) 2021; 14:175-180. [PMID: 32336187 PMCID: PMC7219433 DOI: 10.1080/19336950.2020.1761171] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Congenital hyperinsulinemic hypoglycemia is the most frequent cause of persistent and recurrent hypoglycemia in the first years of life and in many patients rare genetic variants can be identified. Recently a case of congenital hyperinsulinemic hypoglycemia and a severe neurodevelopmental syndrome due to a mutation in the voltage-gated Cav1.3 Ca2+ channel CACNA1D gene has been reported which required long-term treatment with diazoxide. This suggested CACNA1D variants as a potential cause for this condition. Here we support this observation by presenting the case of a female child with congential hyperinsulinemic hypoglycemia and primary hyperaldosteronism, aortic insufficiency, pronounced developmental delay, muscle hypotonia, and facial dysmorphias but without seizures. Sequencing of the exome of the child and its parents identified a novel de novo CACNA1D missense mutation p.L271 H, replacing a highly conserved residue in a functionally relevant region of the voltage-gated Cav1.3 Ca2+ channel. The patient was treated with diazoxide and nifedipine with adequate control of glucose metabolism and blood pressure, and with improvement in muscle tone. Our findings further confirm the pathogenic role of CACNA1D for congentital hyperinsulinemic hypoglycemia and primary aldosteronism. Moreover, we provide evidence that the dihydropyridine Ca2+ channel blocker nifedipine, although not considered a first-line treatment for congenital hyperinsulinism, may be beneficial to control blood pressure and neurological symptoms in patients with CACNA1D mutations.
Collapse
Affiliation(s)
| | | | | | | | - Sara León Cariñena
- Pediatric Endocrinology Unit, Hospital Universitario la Fe, Valencia, Spain
| |
Collapse
|
14
|
Meyer LS, Handgriff L, Lim JS, Udager AM, Kinker IS, Ladurner R, Wildgruber M, Knösel T, Bidlingmaier M, Rainey WE, Reincke M, Williams TA. Single-Center Prospective Cohort Study on the Histopathology, Genotype, and Postsurgical Outcomes of Patients With Primary Aldosteronism. Hypertension 2021; 78:738-746. [PMID: 34024122 DOI: 10.1161/hypertensionaha.121.17348] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Lucie S Meyer
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München (L.S.M., L.H., I.K., M.B., M.R., T.A.W.), Ludwig-Maximilians-Universität München, Germany
| | - Laura Handgriff
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München (L.S.M., L.H., I.K., M.B., M.R., T.A.W.), Ludwig-Maximilians-Universität München, Germany
| | - Jung Soo Lim
- Department of Molecular and Integrative Physiology (J.S.L., W.E.R.), University of Michigan Medical School, Ann Arbor, MI
| | - Aaron M Udager
- Department of Pathology (A.M.U.), University of Michigan Medical School, Ann Arbor, MI.,Michigan Center for Translational Pathology, Ann Arbor (A.M.U.).,Rogel Cancer Center, University of Michigan, Ann Arbor (A.M.U.)
| | - Isabella-Sabrina Kinker
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München (L.S.M., L.H., I.K., M.B., M.R., T.A.W.), Ludwig-Maximilians-Universität München, Germany
| | - Roland Ladurner
- Klinik für Viszeral- und Endokrine Chirurgie, Klinikum der Universität München, Germany (R.L.)
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, Germany (M.W.)
| | - Thomas Knösel
- Institute of Pathology (T.K.), Ludwig-Maximilians-Universität München, Germany
| | - Martin Bidlingmaier
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München (L.S.M., L.H., I.K., M.B., M.R., T.A.W.), Ludwig-Maximilians-Universität München, Germany
| | - William E Rainey
- Department of Molecular and Integrative Physiology (J.S.L., W.E.R.), University of Michigan Medical School, Ann Arbor, MI
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München (L.S.M., L.H., I.K., M.B., M.R., T.A.W.), Ludwig-Maximilians-Universität München, Germany
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München (L.S.M., L.H., I.K., M.B., M.R., T.A.W.), Ludwig-Maximilians-Universität München, Germany.,Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy (T.A.W.)
| |
Collapse
|
15
|
Striessnig J. Voltage-Gated Ca 2+-Channel α1-Subunit de novo Missense Mutations: Gain or Loss of Function - Implications for Potential Therapies. Front Synaptic Neurosci 2021; 13:634760. [PMID: 33746731 PMCID: PMC7966529 DOI: 10.3389/fnsyn.2021.634760] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
This review summarizes our current knowledge of human disease-relevant genetic variants within the family of voltage gated Ca2+ channels. Ca2+ channelopathies cover a wide spectrum of diseases including epilepsies, autism spectrum disorders, intellectual disabilities, developmental delay, cerebellar ataxias and degeneration, severe cardiac arrhythmias, sudden cardiac death, eye disease and endocrine disorders such as congential hyperinsulinism and hyperaldosteronism. A special focus will be on the rapidly increasing number of de novo missense mutations identified in the pore-forming α1-subunits with next generation sequencing studies of well-defined patient cohorts. In contrast to likely gene disrupting mutations these can not only cause a channel loss-of-function but can also induce typical functional changes permitting enhanced channel activity and Ca2+ signaling. Such gain-of-function mutations could represent therapeutic targets for mutation-specific therapy of Ca2+-channelopathies with existing or novel Ca2+-channel inhibitors. Moreover, many pathogenic mutations affect positive charges in the voltage sensors with the potential to form gating-pore currents through voltage sensors. If confirmed in functional studies, specific blockers of gating-pore currents could also be of therapeutic interest.
Collapse
Affiliation(s)
- Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Banono NS, Gawel K, De Witte L, Esguerra CV. Zebrafish Larvae Carrying a Splice Variant Mutation in cacna1d: A New Model for Schizophrenia-Like Behaviours? Mol Neurobiol 2021; 58:877-894. [PMID: 33057948 PMCID: PMC7843589 DOI: 10.1007/s12035-020-02160-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
Abstract
Persons with certain single nucleotide polymorphisms (SNPs) in the CACNA1D gene (encoding voltage-gated calcium channel subunit alpha 1-D) have increased risk of developing neuropsychiatric disorders such as bipolar, schizophrenia and autism. The molecular consequences of SNPs on gene expression and protein function are not well understood. Thus, the use of animal models to determine genotype-phenotype correlations is critical to understanding disease pathogenesis. Here, we describe the behavioural changes in larval zebrafish carrying an essential splice site mutation (sa17298) in cacna1da. Heterozygous mutation resulted in 50% reduction of splice variants 201 and 202 (haploinsufficiency), while homozygosity increased transcript levels of variant 201 above wild type (WT; gain-of-function, GOF). Due to low homozygote viability, we focused primarily on performing the phenotypic analysis on heterozygotes. Indeed, cacna1dasa17298/WT larvae displayed hyperlocomotion-a behaviour characterised in zebrafish as a surrogate phenotype for epilepsy, anxiety or psychosis-like behaviour. Follow-up tests ruled out anxiety or seizures, however, as neither thigmotaxis defects nor epileptiform-like discharges in larval brains were observed. We therefore focused on testing for potential "psychosis-like" behaviour by assaying cacna1dasa17298/WT larval locomotor activity under constant light, during light-dark transition and in startle response to dark flashes. Furthermore, exposure of larvae to the antipsychotics, risperidone and haloperidol reversed cacna1da-induced hyperactivity to WT levels while valproate decreased but did not reverse hyperactivity. Together, these findings demonstrate that cacna1da haploinsufficiency induces behaviours in larval zebrafish analogous to those observed in rodent models of psychosis. Future studies on homozygous mutants will determine how cacna1d GOF alters behaviour in this context.
Collapse
Affiliation(s)
- Nancy Saana Banono
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), Faculty of Medicine, University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway
| | - Kinga Gawel
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), Faculty of Medicine, University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego Str. 8b, 20-090, Lublin, Poland
| | - Linus De Witte
- Pharmaceutical and Biological Sciences, AP Hogeschool Antwerpen, Antwerp, Belgium
| | - Camila V Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), Faculty of Medicine, University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway.
- School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Sælandsvei 24, 0371, Oslo, Norway.
| |
Collapse
|
17
|
Sadeh TT, Black GC, Manson F. A Review of Genetic and Physiological Disease Mechanisms Associated With Cav1 Channels: Implications for Incomplete Congenital Stationary Night Blindness Treatment. Front Genet 2021; 12:637780. [PMID: 33584831 PMCID: PMC7876387 DOI: 10.3389/fgene.2021.637780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/12/2021] [Indexed: 11/13/2022] Open
Abstract
Calcium channels are crucial to a number of cellular functions. The high voltage-gated calcium channel family comprise four heteromeric channels (Cav1.1-1.4) that function in a similar manner, but that have distinct expression profiles. Three of the pore-forming α1 subunits are located on autosomes and the forth on the X chromosome, which has consequences for the type of pathogenic mutation and the disease mechanism associated with each gene. Mutations in this family of channels are associated with malignant hyperthermia (Cav1.1), various QT syndromes (Cav1.2), deafness (Cav1.3), and incomplete congenital stationary night blindness (iCSNB; Cav1.4). In this study we performed a bioinformatic analysis on reported mutations in all four Cav α1 subunits and correlated these with variant frequency in the general population, phenotype and the effect on channel conductance to produce a comprehensive composite Cav1 mutation analysis. We describe regions of mutation clustering, identify conserved residues that are mutated in multiple family members and regions likely to cause a loss- or gain-of-function in Cav1.4. Our research highlights that therapeutic treatments for each of the Cav1 channels will have to consider channel-specific mechanisms, especially for the treatment of X-linked iCSNB.
Collapse
Affiliation(s)
- Tal T Sadeh
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Graeme C Black
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, Manchester University NHS Foundation Trust, St Mary's Hospital, Manchester, United Kingdom
| | - Forbes Manson
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
18
|
Abstract
Purpose of Review This review a highlights that to use artificial intelligence (AI) tools effectively for hypertension research, a new foundation to further understand the biology of hypertension needs to occur by leveraging genome and RNA sequencing technology and derived tools on a broad scale in hypertension. Recent Findings For the last few years, progress in research and management of essential hypertension has been stagnating while at the same time, the sequencing of the human genome has been generating many new research tools and opportunities to investigate the biology of hypertension. Cancer research has applied modern tools derived from DNA and RNA sequencing on a large scale, enabling the improved understanding of cancer biology and leading to many clinical applications. Compared with cancer, studies in hypertension, using whole genome, exome, or RNA sequencing tools, total less than 2% of the number cancer studies. While true, sequencing the genome of cancer tissue has provided cancer research an advantage, DNA and RNA sequencing derived tools can also be used in hypertension to generate new understanding how complex protein network, in non-cancer tissue, adapts and learns to be effective when for example, somatic mutations or environmental inputs change the gene expression profiles at different network nodes. The amount of data and differences in clinical condition classification at the individual sample level might be of such magnitude to overwhelm and stretch comprehension. Here is the opportunity to use AI tools for the analysis of data streams derived from DNA and RNA sequencing tools combined with clinical data to generate new hypotheses leading to the discovery of mechanisms and potential target molecules from which drugs or treatments can be developed and tested. Summary Basic and clinical research taking advantage of new gene sequencing-based tools, to uncover mechanisms how complex protein networks regulate blood pressure in health and disease, will be critical to lift hypertension research and management from its stagnation. The use of AI analytic tools will help leverage such insights. However, applying AI tools to vast amounts of data that certainly exist in hypertension, without taking advantage of new gene sequencing-based research tools, will generate questionable results and will miss many new potential molecular targets and possibly treatments. Without such approaches, the vision of precision medicine for hypertension will be hard to accomplish and most likely not occur in the near future.
Collapse
Affiliation(s)
- Franco B Mueller
- Division of Nephrology and Hypertension, Department of Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, 318 West 100th Street, Box 8D, New York, NY, 10025, USA.
| |
Collapse
|
19
|
Ortner NJ, Kaserer T, Copeland JN, Striessnig J. De novo CACNA1D Ca 2+ channelopathies: clinical phenotypes and molecular mechanism. Pflugers Arch 2020; 472:755-773. [PMID: 32583268 PMCID: PMC7351864 DOI: 10.1007/s00424-020-02418-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
The identification of rare disease-causing variants in humans by large-scale next-generation sequencing (NGS) studies has also provided us with new insights into the pathophysiological role of de novo missense variants in the CACNA1D gene that encodes the pore-forming α1-subunit of voltage-gated Cav1.3 L-type Ca2+ channels. These CACNA1D variants have been identified somatically in aldosterone-producing adenomas as well as germline in patients with neurodevelopmental and in some cases endocrine symptoms. In vitro studies in heterologous expression systems have revealed typical gating changes that indicate enhanced Ca2+ influx through Cav1.3 channels as the underlying disease-causing mechanism. Here we summarize the clinical findings of 12 well-characterized individuals with a total of 9 high-risk pathogenic CACNA1D variants. Moreover, we propose how information from somatic mutations in aldosterone-producing adenomas could be used to predict the potential pathogenicity of novel germline variants. Since these pathogenic de novo variants can cause a channel-gain-of function, we also discuss the use of L-type Ca2+ channel blockers as a potential therapeutic option.
Collapse
Affiliation(s)
- Nadine J Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| | - Teresa Kaserer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - J Nathan Copeland
- Duke Center for Autism and Brain Development, Duke Child and Family Mental Health and Developmental Neuroscience, Durham, USA
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
20
|
Gomez-Sanchez CE, Gomez-Sanchez EP, Nishimoto K. Immunohistochemistry of the Human Adrenal CYP11B2 in Normal Individuals and in Patients with Primary Aldosteronism. Horm Metab Res 2020; 52:421-426. [PMID: 32289837 PMCID: PMC7299743 DOI: 10.1055/a-1139-2079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The CYP11B2 enzyme is the terminal enzyme in the biosynthesis of aldosterone. Immunohistochemistry using antibodies against CYP11B2 defines cells of the adrenal ZG that synthesize aldosterone. CYP11B2 expression is normally stimulated by angiotensin II, but becomes autonomous in primary hyperaldosteronism, in most cases driven by recently discovered somatic mutations of ion channels or pumps. Cells expressing CYP11B2 in young normal humans form a continuous band beneath the adrenal capsule; in older individuals they form discrete clusters, aldosterone-producing cell clusters (APCC), surrounded by non-aldosterone producing cells in the outer layer of the adrenal gland. Aldosterone-producing adenomas may exhibit a uniform or heterogeneous expression of CYP11B2. APCC frequently persist in the adrenal with an aldosterone-producing adenoma suggesting autonomous CYP11B2 expression in these cells as well. This was confirmed by finding known mutations that drive aldosterone production in adenomas in the APCC of clinically normal people. Unilateral aldosteronism may also be due to multiple CYP11B2-expressing nodules of various sizes or a continuous band of hyperplastic ZG cells expressing CYP11B2. Use of CYP11B2 antibodies to identify areas for sequencing has greatly facilitated the detection of aldosterone-driving mutations.
Collapse
Affiliation(s)
- Celso E. Gomez-Sanchez
- G.V. (Sonny) Montgomery VA Medical Center, University of Mississippi Medical Center, Jackson, MS 39216
- Department of Pharmacology and Toxicology,University of Mississippi Medical Center, Jackson, MS 39216
- Medicine (Endocrinology), University of Mississippi Medical Center, Jackson, MS 39216
| | - Elise P. Gomez-Sanchez
- Department of Pharmacology and Toxicology,University of Mississippi Medical Center, Jackson, MS 39216
| | - Koshiro Nishimoto
- Department of Uro-Oncology, Saitama Medical University International Medical Center, Saitama, Japan
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Nanba K, Blinder AR, Rege J, Hattangady NG, Else T, Liu CJ, Tomlins SA, Vats P, Kumar-Sinha C, Giordano TJ, Rainey WE. Somatic CACNA1H Mutation As a Cause of Aldosterone-Producing Adenoma. Hypertension 2020; 75:645-649. [PMID: 31983310 DOI: 10.1161/hypertensionaha.119.14349] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Driver somatic mutations for aldosterone excess have been found in ≈90% of aldosterone-producing adenomas (APAs) using an aldosterone synthase (CYP11B2)-guided sequencing approach. In the present study, we identified a novel somatic CACNA1H mutation (c.T4289C, p.I1430T) in an APA without any currently known aldosterone-driver mutations using CYP11B2 immunohistochemistry-guided whole exome sequencing. The CACNA1H gene encodes a voltage-dependent T-type calcium channel alpha-1H subunit. Germline variants in this gene are known as a cause of familial hyperaldosteronism IV. Targeted next-generation sequencing detected identical CACNA1H variants in 2 additional APAs in a cohort of the University of Michigan, resulting in a prevalence of 4% (3/75) in APAs. We tested the functional effect of the variant on adrenal cell aldosterone production and CYP11B2 mRNA expression using the human adrenocortical HAC15 cell line with a doxycycline-inducible CACNA1HI1430T mutation. Doxycycline treatment increased CYP11B2 mRNA levels as well as aldosterone production, supporting a pathological role of the CACNA1H p.I1430T mutation on the development of primary aldosteronism. In conclusion, somatic CACNA1H mutation is a genetic cause of APAs. Although the prevalence of this mutation is low, this study will provide better understanding of molecular mechanism of inappropriate aldosterone production in APAs.
Collapse
Affiliation(s)
- Kazutaka Nanba
- From the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor (K.N., A.R.B., J.R., W.E.R.).,Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan (K.N.)
| | - Amy R Blinder
- From the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor (K.N., A.R.B., J.R., W.E.R.)
| | - Juilee Rege
- From the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor (K.N., A.R.B., J.R., W.E.R.)
| | - Namita G Hattangady
- Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor (N.G.H., T.E., T.J.G., W.E.R.)
| | - Tobias Else
- Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor (N.G.H., T.E., T.J.G., W.E.R.)
| | - Chia-Jen Liu
- Department of Pathology, University of Michigan, Ann Arbor (C.-J.L., S.A.T., P.V., C.K.-S., T.J.G.).,Rogel Cancer Center, University of Michigan, Ann Arbor (C.J.-L., S.A.T., T.J.G.).,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor (C.-J.L., S.A.T., P.V., C.K.-S.)
| | - Scott A Tomlins
- Department of Pathology, University of Michigan, Ann Arbor (C.-J.L., S.A.T., P.V., C.K.-S., T.J.G.).,Rogel Cancer Center, University of Michigan, Ann Arbor (C.J.-L., S.A.T., T.J.G.).,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor (C.-J.L., S.A.T., P.V., C.K.-S.)
| | - Pankaj Vats
- Department of Pathology, University of Michigan, Ann Arbor (C.-J.L., S.A.T., P.V., C.K.-S., T.J.G.).,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor (C.-J.L., S.A.T., P.V., C.K.-S.)
| | - Chandan Kumar-Sinha
- Department of Pathology, University of Michigan, Ann Arbor (C.-J.L., S.A.T., P.V., C.K.-S., T.J.G.).,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor (C.-J.L., S.A.T., P.V., C.K.-S.)
| | - Thomas J Giordano
- Department of Pathology, University of Michigan, Ann Arbor (C.-J.L., S.A.T., P.V., C.K.-S., T.J.G.).,Rogel Cancer Center, University of Michigan, Ann Arbor (C.J.-L., S.A.T., T.J.G.)
| | - William E Rainey
- From the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor (K.N., A.R.B., J.R., W.E.R.).,Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor (N.G.H., T.E., T.J.G., W.E.R.)
| |
Collapse
|
22
|
Hofer NT, Tuluc P, Ortner NJ, Nikonishyna YV, Fernándes-Quintero ML, Liedl KR, Flucher BE, Cox H, Striessnig J. Biophysical classification of a CACNA1D de novo mutation as a high-risk mutation for a severe neurodevelopmental disorder. Mol Autism 2020; 11:4. [PMID: 31921405 PMCID: PMC6950833 DOI: 10.1186/s13229-019-0310-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/24/2019] [Indexed: 12/27/2022] Open
Abstract
Background There is increasing evidence that de novo CACNA1D missense mutations inducing increased Cav1.3 L-type Ca2+-channel-function confer a high risk for neurodevelopmental disorders (autism spectrum disorder with and without neurological and endocrine symptoms). Electrophysiological studies demonstrating the presence or absence of typical gain-of-function gating changes could therefore serve as a tool to distinguish likely disease-causing from non-pathogenic de novo CACNA1D variants in affected individuals. We tested this hypothesis for mutation S652L, which has previously been reported in twins with a severe neurodevelopmental disorder in the Deciphering Developmental Disorder Study, but has not been classified as a novel disease mutation. Methods For functional characterization, wild-type and mutant Cav1.3 channel complexes were expressed in tsA-201 cells and tested for typical gain-of-function gating changes using the whole-cell patch-clamp technique. Results Mutation S652L significantly shifted the voltage-dependence of activation and steady-state inactivation to more negative potentials (~ 13-17 mV) and increased window currents at subthreshold voltages. Moreover, it slowed tail currents and increased Ca2+-levels during action potential-like stimulations, characteristic for gain-of-function changes. To provide evidence that only gain-of-function variants confer high disease risk, we also studied missense variant S652W reported in apparently healthy individuals. S652W shifted activation and inactivation to more positive voltages, compatible with a loss-of-function phenotype. Mutation S652L increased the sensitivity of Cav1.3 for inhibition by the dihydropyridine L-type Ca2+-channel blocker isradipine by 3-4-fold.Conclusions and limitationsOur data provide evidence that gain-of-function CACNA1D mutations, such as S652L, but not loss-of-function mutations, such as S652W, cause high risk for neurodevelopmental disorders including autism. This adds CACNA1D to the list of novel disease genes identified in the Deciphering Developmental Disorder Study. Although our study does not provide insight into the cellular mechanisms of pathological Cav1.3 signaling in neurons, we provide a unifying mechanism of gain-of-function CACNA1D mutations as a predictor for disease risk, which may allow the establishment of a more reliable diagnosis of affected individuals. Moreover, the increased sensitivity of S652L to isradipine encourages a therapeutic trial in the two affected individuals. This can address the important question to which extent symptoms are responsive to therapy with Ca2+-channel blockers.
Collapse
Affiliation(s)
- Nadja T. Hofer
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Nadine J. Ortner
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Yuliia V. Nikonishyna
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Monica L. Fernándes-Quintero
- Institute of General, Inorganic and Theoretical Chemistry, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Bernhard E. Flucher
- Division of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Helen Cox
- West Midlands Regional Clinical Genetics Service, Birmingham Women’s and Children’s Hospital, National Health Service Foundation Trust, B15 2TG, Birmingham, UK
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
23
|
Catterall WA, Lenaeus MJ, Gamal El-Din TM. Structure and Pharmacology of Voltage-Gated Sodium and Calcium Channels. Annu Rev Pharmacol Toxicol 2020; 60:133-154. [PMID: 31537174 DOI: 10.1146/annurev-pharmtox-010818-021757] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Voltage-gated sodium and calcium channels are evolutionarily related transmembrane signaling proteins that initiate action potentials, neurotransmission, excitation-contraction coupling, and other physiological processes. Genetic or acquired dysfunction of these proteins causes numerous diseases, termed channelopathies, and sodium and calcium channels are the molecular targets for several major classes of drugs. Recent advances in the structural biology of these proteins using X-ray crystallography and cryo-electron microscopy have given new insights into the molecular basis for their function and pharmacology. Here we review this recent literature and integrate findings on sodium and calcium channels to reveal the structural basis for their voltage-dependent activation, fast and slow inactivation, ion conductance and selectivity, and complex pharmacology at the atomic level. We conclude with the theme that new understanding of the diseases and therapeutics of these channels will be derived from application of the emerging structural principles from these recent structural analyses.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology and Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, Washington 98195, USA;
| | - Michael J Lenaeus
- Department of Pharmacology and Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, Washington 98195, USA;
| | - Tamer M Gamal El-Din
- Department of Pharmacology and Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, Washington 98195, USA;
| |
Collapse
|
24
|
Weiss N, Zamponi GW. Genetic T-type calcium channelopathies. J Med Genet 2020; 57:1-10. [PMID: 31217264 PMCID: PMC6929700 DOI: 10.1136/jmedgenet-2019-106163] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/02/2019] [Accepted: 05/18/2019] [Indexed: 12/13/2022]
Abstract
T-type channels are low-voltage-activated calcium channels that contribute to a variety of cellular and physiological functions, including neuronal excitability, hormone and neurotransmitter release as well as developmental aspects. Several human conditions including epilepsy, autism spectrum disorders, schizophrenia, motor neuron disorders and aldosteronism have been traced to variations in genes encoding T-type channels. In this short review, we present the genetics of T-type channels with an emphasis on structure-function relationships and associated channelopathies.
Collapse
Affiliation(s)
- Norbert Weiss
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Praha, Czech Republic
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
25
|
Williams TA. Translational Control of Aldosterone Production in Aldosterone-Producing Adenomas. Hypertension 2019; 75:299-301. [PMID: 31865787 DOI: 10.1161/hypertensionaha.119.14196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Tracy Ann Williams
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany; and Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy (T.A.W.)
| |
Collapse
|