1
|
Ten Barge JA, van den Bosch GE, Slater R, van den Hoogen NJ, Reiss IKM, Simons SHP. Visceral Pain in Preterm Infants with Necrotizing Enterocolitis: Underlying Mechanisms and Implications for Treatment. Paediatr Drugs 2025; 27:201-220. [PMID: 39752054 PMCID: PMC11829917 DOI: 10.1007/s40272-024-00676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 01/04/2025]
Abstract
Necrotizing enterocolitis (NEC) is a relatively rare but very severe gastrointestinal disease primarily affecting very preterm infants. NEC is characterized by excessive inflammation and ischemia in the intestines, and is associated with prolonged, severe visceral pain. Despite its recognition as a highly painful disease, current pain management for NEC is often inadequate, and research on optimal analgesic therapy for these patients is lacking. Insight into the mechanisms underlying intestinal pain in infants with NEC-visceral pain-could help identify the most effective analgesics for these vulnerable patients. Therefore, this comprehensive review aims to provide an overview of visceral nociception, including transduction, transmission, modulation, and experience, and discuss the implications for analgesic therapy in preterm infants with NEC. The transmission of visceral pain differs from that of somatic pain, contributing to the diffuse nature of visceral pain. Studies evaluating the effectiveness of analgesics for treating visceral pain in infants are scarce. However, research in visceral pain models highlights agents that may be particularly effective for treating visceral pain based on their mechanisms of action. Further research is necessary to determine whether agents that have shown promise for treating visceral pain in preclinical studies and adults are effective in infants with NEC as well.
Collapse
Affiliation(s)
- Judith A Ten Barge
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands.
| | - Gerbrich E van den Bosch
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | | | - Irwin K M Reiss
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Sinno H P Simons
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Du C, Yuan F, Zhang Z, He Z, Liu G, Hou W, Deng M, Liu C, Rong M. Spider-derived peptide LCTx-F2 suppresses ASIC channels by occupying the acidic pocket. J Biol Chem 2025; 301:108286. [PMID: 39938802 PMCID: PMC11923824 DOI: 10.1016/j.jbc.2025.108286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-evoked sodium ion channels, highly distributed in the peripheral and central nervous system. ASICs are involved in pain perception, and ASIC3 channel is presumed as the target of promising analgesics. Peptide drugs have attracted the attention of pharmaceutical developers because of their advantages such as low toxic side effects and targeted specificity. Although numbers of chemicals acting on ASICs are emerging, there are limited reports on peptide inhibitor acting on ASIC3 channel. Here, we found that spider-derived peptide LCTx-F2 suppressed the activity of ASIC3 channel in a concentration-dependent manner. By performing peptide mutation and molecular docking, we revealed the molecular mechanism of LCTx-F2 inhibiting ASIC3 channel, in which β-hairpin of LCTx-F2 penetrated the acidic pocket of the channel. Similarly, LCTx-F2 also inhibited ASIC1a channel by occupying the acidic pocket, but N terminus of the peptide sticked into the region. The bond relationship between critical residues of LCTx-F2 and the channels was uncovered by molecular docking and dynamic simulation. Thus, our findings indicated the molecular mechanism by which LCTx-F2 acts on ASIC3 and ASIC1a channels and provided a novel template of analgesic drug targeting the channels.
Collapse
Affiliation(s)
- Canwei Du
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, China.
| | - Fuchu Yuan
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Zhongzhe Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Ziyan He
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Guohao Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Wenqian Hou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Changjun Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Mingqiang Rong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Liu TT, Qiu CY, Li XM, Hu WP. CXCL10 Enhances Acid-Sensing Ion Channel Currents in Rat Dorsal Root. Mol Neurobiol 2025; 62:1882-1893. [PMID: 39046700 DOI: 10.1007/s12035-024-04390-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/21/2024] [Indexed: 07/25/2024]
Abstract
Both CXCL10/CXCR3 and acid-sensing ion channels (ASICs) are expressed in nociceptive sensory neurons and participate in various pain processes, but it is still unclear whether there is a link between them. Herein, we report that CXCL10 enhances the electrophysiological activity of ASICs in rat dorsal root ganglia (DRG) neurons. A brief (10 min) application of CXCL10 increased acid-evoked ASIC currents in a concentration-dependent manner. CXCL10 increased the maximum response of ASICs to acidic stimuli without changing their sensitivity. CXCL10 enhanced ASIC currents in DRG cells through CXCR3, as this enhancement was completely blocked by AMG487, a selective CXCR3 antagonist. CXCL10 also increased ASIC3 currents in CHO cells coexpressing ASIC3 and CXCR3 but not in cells expressing ASIC3 alone. The CXCL10-mediated increase in ASIC currents was prevented by the application of either the G protein inhibitor GDP-β-S or the p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190 but not by the ERK inhibitor U0126 or the JNK inhibitor SP600125. Moreover, CXCL10 increased the number of action potentials triggered by acidic stimuli via CXCR3. CXCL10 dose-dependently exacerbated acid-induced nociceptive behavior in rats through peripheral CXCR3. These results indicated that CXCL10/CXCR3 signaling enhanced ASIC-mediated electrophysiological activity in DRG neurons and nociception in rats via a p38 MAPK-dependent pathway, revealing a novel mechanism underlying pain. CXCL10/CXCR3 signaling may be an effective target in the treatment of pain associated with tissue acidification.
Collapse
Affiliation(s)
- Ting-Ting Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Chun-Yu Qiu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Xue-Mei Li
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Wang-Ping Hu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China.
- Hubei College of Chinese Medicine, 87 Xueyuan Road, Jingzhou, 434020, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Bandarupalli R, Roth R, Klipp RC, Bankston JR, Li J. Molecular Insights into Single-Chain Lipid Modulation of Acid-Sensing Ion Channel 3. J Phys Chem B 2024; 128:12685-12697. [PMID: 39666997 DOI: 10.1021/acs.jpcb.4c04289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Polyunsaturated fatty acids (PUFAs) and their analogs play a significant role in modulating the activity of diverse ion channels, and recent studies show that these lipids potentiate acid-sensing ion channels (ASICs), leading to increased activity. The potentiation of the channel stems from multiple gating changes, but the exact mechanism of these effects remains uncertain. We posit a mechanistic explanation for one of these changes in channel function, the increase in the maximal current, by applying a combination of electrophysiology and all-atom molecular dynamics simulations on open-state hASIC3. Microsecond-scale simulations were performed on open-state hASIC3 in the absence and presence of a PUFA, docosahexaenoic acid (DHA), and a PUFA analogue, N-arachidonyl glycine (AG). Intriguingly, our simulations in the absence of PUFA or PUFA analogs reveal that a tail from the membrane phospholipid POPC inserts itself into the pore of the channel through lateral fenestrations on the sides of the transmembrane segments, obstructing ion permeation through the channel. The binding of either DHA or AG prevented POPC from accessing the pore in our simulations, which relied on the block of ionic conduction by phospholipids. Finally, we use single-channel recording to show that DHA increases the amplitude of the single-channel currents in ASIC3, which is consistent with our hypothesis that PUFAs relieve the pore block of the channel induced by POPCs. Together, these findings offer a potential mechanistic explanation of how PUFAs modulate the ASIC maximal current, revealing a novel mechanism of action for PUFA-induced modulation of ion channels.
Collapse
Affiliation(s)
- Ramya Bandarupalli
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Rebecca Roth
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Robert C Klipp
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Jing Li
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi 38677, United States
| |
Collapse
|
5
|
Li J, Wei Y, Wang Y, Zhang Y, Xu Y, Ma H, Ma L, Zeng Q. Metabolomics study of APETx2 post-conditioning on myocardial ischemia-reperfusion injury. Front Pharmacol 2024; 15:1470142. [PMID: 39712499 PMCID: PMC11658994 DOI: 10.3389/fphar.2024.1470142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Background Acid-sensing ion channels are activated during myocardial ischemia and are implicated in the mechanism of myocardial ischemia-reperfusion injury (MIRI). Acid-sensing ion channel 3 (ASIC3), the most pH-sensitive member of the ASIC family, is highly expressed in myocardial tissues. However, the role of ASIC3 in MIRI and its precise effects on the myocardial metabolome remain unclear. These unknowns might be related to the cardioprotective effects observed with APETx2 post-conditioning. Method Rat hearts subjected to Langendorff perfusion were randomly assigned to the normal (Nor) group, ischemia/reperfusion (I/R) group, ASIC3 blockade (AP) group. Rat hearts in group AP were treated with the ASIC3-specific inhibitor APETx2 (630 nM). Molecular and morphological changes were observed to elucidate the role of ASIC3 in MIRI. Bioinformatics analyses identified differential metabolites and pathways associated with APETx2 post-conditioning. Results APETx2 post-conditioning stabilized hemodynamics in the isolated rat heart model of MIRI. It also reduced myocardial infarct size, mitigated mitochondrial damage at the ultrastructural level, and improved markers of myocardial injury and oxidative stress. Further more, we observed that phosphatidylcholine, phosphatidylethanolamine, citric acid, cyanidin 5-O-beta-D-glucoside, and L-aspartic acid decreased after MIRI. The levels of these metabolites were partially restored by APETx2 post-conditioning. These metabolites are primarily involved in autophagy and endogenous cannabinoid signaling pathways. Conclusion ASIC3 is potentially a key player in MIRI. APETx2 post-conditioning may improve MIRI through specific metabolic changes. This study provides valuable data for future research on the metabolic mechanisms underlying the effects of APETx2 post-conditioning in MIRI.
Collapse
Affiliation(s)
- Jing Li
- Department of Anesthesiology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
- School of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou Province, China
- School of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yiyong Wei
- Department of Anesthesiology, Affiliated Shenzhen Women and Children’s Hospital (Longgang) of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Shenzhen, Guangdong Province, China
| | - Yi Wang
- School of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yue Zhang
- School of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Ying Xu
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Huanhuan Ma
- School of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Lulin Ma
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Qingfan Zeng
- Department of Anesthesiology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
- School of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou Province, China
| |
Collapse
|
6
|
Trone MAR, Stover JD, Almarza A, Bowles RD. pH: A major player in degenerative intervertebral disks. JOR Spine 2024; 7:e70025. [PMID: 39703199 PMCID: PMC11655178 DOI: 10.1002/jsp2.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/04/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
Chronic lower back pain is the leading cause of disability worldwide, generating a socioeconomic cost of over $100 billion annually in the United States. Among the prominent causes of low back pain (LBP) is degeneration of the intervertebral disk (IVD), a condition known as degenerative disk disease (DDD). Despite the prevalence of DDD and multiple studies demonstrating its relationship with LBP, the mechanisms by which it contributes to pain remain unknown. Previous studies have identified potential causes for this pain, such as extracellular matrix (ECM) breakdown, changes in biomechanics, and pro-inflammatory signals. Possible pain treatments targeting these factors have been developed but with limited effects. However, low pH in DDD is a potential pain generator whose role has largely been unexplored and underappreciated. This review highlights hyperacidity's effects on the IVD, such as catabolism of disk cells and ECM, neoinnervation, altered mechanical signaling, and expression of pro-inflammatory cytokines and ion channels. This review aims to discuss what is known about the contributions of acidity to DDD pain, identify the knowledge gaps on this topic, and propose what research can be conducted to fill these gaps. We must better understand the underlying mechanisms of DDD and the interaction between hyperacidity and nociception to develop better therapeutics for this disease.
Collapse
Affiliation(s)
| | - Joshua D. Stover
- Department of Biomedical EngineeringUniversity of UtahSalt Lake CityUtahUSA
- Department of Oral and Craniofacial SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Alejandro Almarza
- Department of Oral and Craniofacial SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Robert D. Bowles
- Department of Biomedical EngineeringUniversity of UtahSalt Lake CityUtahUSA
- Department of OrthopaedicsUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
7
|
Zhang Y, Dong D, Zhang J, Cheng K, Zhen F, Li M, Chen B. Pathology and physiology of acid-sensitive ion channels in the bladder. Heliyon 2024; 10:e38031. [PMID: 39347393 PMCID: PMC11437851 DOI: 10.1016/j.heliyon.2024.e38031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/08/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Acid-sensitive ion channels (ASICs) are sodium-permeable channels activated by extracellular acidification. They can be activated and trigger the inward flow of Na+ when the extracellular environment is acidic, leading to membrane depolarization and thus inducing action potentials in neurons. There are four ASIC genes in mammals (ASIC1-4). ASIC is widely expressed in humans. It is closely associated with pain, neurological disorders, multiple sclerosis, epilepsy, migraines, and many other disorders. Bladder pain syndrome/interstitial cystitis (BPS/IC) is a specific syndrome characterized by bladder pain. Recent studies have shown that ASICs are closely associated with the development of BPS/IC. A study revealed that ASIC levels are significantly elevated in a BPS/IC model. Additionally, researchers have reported differential changes in ASICs in the bladders of patients with neurogenic lower urinary tract dysfunction (NLUTD) caused by spinal cord injury (SCI). In this review, we summarize the structure and physiological functions of ASICs and focus on the mechanisms by which ASICs mediate bladder disease.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Di Dong
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jialong Zhang
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Kang Cheng
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fang Zhen
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Binghai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Translational Medicine, Jiangsu University, China
| |
Collapse
|
8
|
Balboni A, D'Angelo C, Collura N, Brusco S, Di Berardino C, Targa A, Massoti B, Mastrangelo E, Milani M, Seneci P, Broccoli V, Muzio L, Galli R, Menegon A. Acid-sensing ion channel 3 is a new potential therapeutic target for the control of glioblastoma cancer stem cells growth. Sci Rep 2024; 14:20421. [PMID: 39227705 PMCID: PMC11372124 DOI: 10.1038/s41598-024-71623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain cancer that, despite recent advances in the understanding of its pathogenesis, remains incurable. GBM contains a subpopulation of cells with stem cell-like properties called cancer stem cells (CSCs). Several studies have demonstrated that CSCs are resistant to conventional chemotherapy and radiation thus representing important targets for novel anti-cancer therapies. Proton sensing receptors expressed by CSCs could represent important factors involved in the adaptation of tumours to the extracellular environment. Accordingly, the expression of acid-sensing ion channels (ASICs), proton-gated sodium channels mainly expressed in the neurons of peripheral (PNS) and central nervous system (CNS), has been demonstrated in several tumours and linked to an increase in cell migration and proliferation. In this paper we report that the ASIC3 isoform, usually absent in the CNS and present in the PNS, is enriched in human GBM CSCs while poorly expressed in the healthy human brain. We propose here a novel therapeutic strategy based on the pharmacological activation of ASIC3, which induces a significant GBM CSCs damage while being non-toxic for neurons. This approach might offer a promising and appealing new translational pathway for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Andrea Balboni
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Camilla D'Angelo
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Nicoletta Collura
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Simone Brusco
- Division of Neuroscience, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
- Electrophysiology Unit, Axxam S.P.A., Via Meucci 3, Bresso, 20091, Milan, Italy
| | - Claudia Di Berardino
- Division of Neuroscience, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Altea Targa
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Beatrice Massoti
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | | | | | | | - Vania Broccoli
- Division of Neuroscience, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
- CNR-Institute of Neuroscience, Milan, Italy
| | - Luca Muzio
- INsPE, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Rossella Galli
- Neural Stem Cell Biology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Menegon
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy.
| |
Collapse
|
9
|
Bandarupalli R, Roth R, Klipp RC, Bankston JR, Li J. Molecular Insights into Single Chain Lipid Modulation of Acid-Sensing Ion Channel 3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610156. [PMID: 39257759 PMCID: PMC11383688 DOI: 10.1101/2024.08.29.610156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Polyunsaturated fatty acids (PUFAs) and their analogs play a significant role in modulating the activity of diverse ion channels, and recent studies show that these lipids potentiate acid-sensing ion channels (ASICs), leading to increased activity. The potentiation of the channel stems from multiple gating changes, but the exact mechanism of these effects remains uncertain. We posit a mechanistic explanation for one of these changes in channel function, the increase in the maximal current, by applying a combination of electrophysiology and all-atom molecular dynamics simulations on the open-state hASIC3. Microsecond-scale simulations were performed on open-state hASIC3 in the absence and presence of a PUFA, docosahexaenoic acid (DHA), and a PUFA analog, N-arachidonyl glycine (AG). Intriguingly, our simulations in the absence of PUFA or PUFA analogs reveal that a tail from the membrane phospholipid POPC inserts itself into the pore of the channel through lateral fenestrations on the sides of the transmembrane segments, obstructing ion permeation through the channel. The binding of either DHA or AG prevented POPC from accessing the pore in our simulations, relieving the block of ionic conduction by phospholipids. Finally, we use the single-channel recording to show that DHA increases the amplitude of the single-channel currents in ASIC3, which is consistent with our hypothesis that PUFAs relieve the pore block of the channel induced by POPCs. Together, these findings offer a potential mechanistic explanation of how PUFAs modulate ASIC maximal current, revealing a novel mechanism of action for PUFA-induced modulation of ion channels.
Collapse
Affiliation(s)
- Ramya Bandarupalli
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS
| | - Rebecca Roth
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Robert C Klipp
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jing Li
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS
| |
Collapse
|
10
|
Xu ZQ, Liu TT, Qin QR, Yuan H, Li XM, Qiu CY, Hu WP. Insulin enhances acid-sensing ion channel currents in rat primary sensory neurons. Sci Rep 2024; 14:18077. [PMID: 39103432 PMCID: PMC11300854 DOI: 10.1038/s41598-024-69139-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024] Open
Abstract
Insulin has been shown to modulate neuronal processes through insulin receptors. The ion channels located on neurons may be important targets for insulin/insulin receptor signaling. Both insulin receptors and acid-sensing ion channels (ASICs) are expressed in dorsal root ganglia (DRG) neurons. However, it is still unclear whether there is an interaction between them. Therefore, the purpose of this investigation was to determine the effects of insulin on the functional activity of ASICs. A 5 min application of insulin rapidly enhanced acid-evoked ASIC currents in rat DRG neurons in a concentration-dependent manner. Insulin shifted the concentration-response plot for ASIC currents upward, with an increase of 46.2 ± 7.6% in the maximal current response. The insulin-induced increase in ASIC currents was eliminated by the insulin receptor antagonist GSK1838705, the tyrosine kinase inhibitor lavendustin A, and the phosphatidylinositol-3 kinase antagonist wortmannin. Moreover, insulin increased the number of acid-triggered action potentials by activating insulin receptors. Finally, local administration of insulin exacerbated the spontaneous nociceptive behaviors induced by intraplantar acid injection and the mechanical hyperalgesia induced by intramuscular acid injections through peripheral insulin receptors. These results suggested that insulin/insulin receptor signaling enhanced the functional activity of ASICs via tyrosine kinase and phosphatidylinositol-3 kinase pathways. Our findings revealed that ASICs were targets in primary sensory neurons for insulin receptor signaling, which may underlie insulin modulation of pain.
Collapse
Affiliation(s)
- Zhong-Qing Xu
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Ting-Ting Liu
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Qing-Rui Qin
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Huan Yuan
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Xue-Mei Li
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Chun-Yu Qiu
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Wang-Ping Hu
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China.
- Department of Physiology, Hubei College of Chinese Medicine, 87 Xueyuan Road, Jingzhou, 434020, Hubei, People's Republic of China.
| |
Collapse
|
11
|
Messina DN, Peralta ED, Acosta CG. Complex alterations in inflammatory pain and analgesic sensitivity in young and ageing female rats: involvement of ASIC3 and Nav1.8 in primary sensory neurons. Inflamm Res 2024; 73:669-691. [PMID: 38483556 DOI: 10.1007/s00011-024-01862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 04/10/2024] Open
Abstract
OBJECTIVE AND DESIGN Our aim was to determine an age-dependent role of Nav1.8 and ASIC3 in dorsal root ganglion (DRG) neurons in a rat pre-clinical model of long-term inflammatory pain. METHODS We compared 6 and 24 months-old female Wistar rats after cutaneous inflammation. We used behavioral pain assessments over time, qPCR, quantitative immunohistochemistry, selective pharmacological manipulation, ELISA and in vitro treatment with cytokines. RESULTS Older rats exhibited delayed recovery from mechanical allodynia and earlier onset of spontaneous pain than younger rats after inflammation. Moreover, the expression patterns of Nav1.8 and ASIC3 were time and age-dependent and ASIC3 levels remained elevated only in aged rats. In vivo, selective blockade of Nav1.8 with A803467 or of ASIC3 with APETx2 alleviated mechanical and cold allodynia and also spontaneous pain in both age groups with slightly different potency. Furthermore, in vitro IL-1β up-regulated Nav1.8 expression in DRG neurons cultured from young but not old rats. We also found that while TNF-α up-regulated ASIC3 expression in both age groups, IL-6 and IL-1β had this effect only on young and aged neurons, respectively. CONCLUSION Inflammation-associated mechanical allodynia and spontaneous pain in the elderly can be more effectively treated by inhibiting ASIC3 than Nav1.8.
Collapse
Affiliation(s)
- Diego N Messina
- Laboratory of Neurobiology of Pain, Faculty of Medical Sciences, IHEM (Instituto de Histologia y Embriologia Mendoza, Dr. Mario H Burgos), Cuyo National University, Av. Del Libertador 80, 5500, Mendoza, Argentina
| | - Emanuel D Peralta
- Laboratory of Neurobiology of Pain, Faculty of Medical Sciences, IHEM (Instituto de Histologia y Embriologia Mendoza, Dr. Mario H Burgos), Cuyo National University, Av. Del Libertador 80, 5500, Mendoza, Argentina
| | - Cristian G Acosta
- Laboratory of Neurobiology of Pain, Faculty of Medical Sciences, IHEM (Instituto de Histologia y Embriologia Mendoza, Dr. Mario H Burgos), Cuyo National University, Av. Del Libertador 80, 5500, Mendoza, Argentina.
| |
Collapse
|
12
|
Qu S, Tang Y, Ning Z, Zhou Y, Wu H. Desired properties of polymeric hydrogel vitreous substitute. Biomed Pharmacother 2024; 172:116154. [PMID: 38306844 DOI: 10.1016/j.biopha.2024.116154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 02/04/2024] Open
Abstract
Vitreous replacement is a commonly employed method for treating a range of ocular diseases, including posterior vitreous detachment, complex retinal detachment, diabetic retinopathy, macular hole, and ocular trauma. Various clinical substitutes for vitreous include air, expandable gas, silicone oil, heavy silicone oil, and balanced salt solution. However, these substitutes have drawbacks such as short retention time, cytotoxicity, high intraocular pressure, and the formation of cataracts, rendering them unsuitable for long-term treatment. Polymeric hydrogels possess the potential to serve as ideal vitreous substitutes due to their structure-mimicking to natural vitreous and adjustable mechanical properties. Replacement with hydrogels as the tamponade can help maintain the shape of the eyeball, apply pressure to the detached retina, and ensure the metabolic transport of substances without impairing vision. This literature review examines the required properties of artificial vitreous, including the optical properties, rheological properties, expansive force action, and physiological and biochemical functions of chemically and physically crosslinked hydrogels. The strategies for enhancing the biocompatibility and injectability of hydrogels are also summarized and discussed. From a clinical ophthalmology perspective, this paper presents the latest developments in vitreous replacement, providing clinicians with a comprehensive understanding of hydrogel clinical applications, which offers guidance for future design directions and methodologies for hydrogel development.
Collapse
Affiliation(s)
- Sheng Qu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yi Tang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zichao Ning
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yanjie Zhou
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Hong Wu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
13
|
Osmakov DI, Onoprienko LV, Kalinovskii AP, Koshelev SG, Stepanenko VN, Andreev YA, Kozlov SA. Opioid Analgesic as a Positive Allosteric Modulator of Acid-Sensing Ion Channels. Int J Mol Sci 2024; 25:1413. [PMID: 38338690 PMCID: PMC10855113 DOI: 10.3390/ijms25031413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Tafalgin (Taf) is a tetrapeptide opioid used in clinical practice in Russia as an analgesic drug for subcutaneous administration as a solution (4 mg/mL; concentration of 9 mM). We found that the acid-sensing ion channels (ASICs) are another molecular target for this molecule. ASICs are proton-gated sodium channels that mediate nociception in the peripheral nervous system and contribute to fear and learning in the central nervous system. Using electrophysiological methods, we demonstrated that Taf could increase the integral current through heterologically expressed ASIC with half-maximal effective concentration values of 0.09 mM and 0.3 mM for rat and human ASIC3, respectively, and 1 mM for ASIC1a. The molecular mechanism of Taf action was shown to be binding to the channel in the resting state and slowing down the rate of desensitization. Taf did not compete for binding sites with both protons and ASIC3 antagonists, such as APETx2 and amiloride (Ami). Moreover, Taf and Ami together caused an unusual synergistic effect, which was manifested itself as the development of a pronounced second desensitizing component. Thus, the ability of Taf to act as a positive allosteric modulator of these channels could potentially cause promiscuous effects in clinical practice. This fact must be considered in patients' treatment.
Collapse
Affiliation(s)
- Dmitry I. Osmakov
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (L.V.O.); (S.G.K.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, Bld. 2, 119991 Moscow, Russia
| | - Lyudmila V. Onoprienko
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (L.V.O.); (S.G.K.); (Y.A.A.)
| | - Aleksandr P. Kalinovskii
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (L.V.O.); (S.G.K.); (Y.A.A.)
| | - Sergey G. Koshelev
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (L.V.O.); (S.G.K.); (Y.A.A.)
| | - Vasiliy N. Stepanenko
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (L.V.O.); (S.G.K.); (Y.A.A.)
| | - Yaroslav A. Andreev
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (L.V.O.); (S.G.K.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, Bld. 2, 119991 Moscow, Russia
| | - Sergey A. Kozlov
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (L.V.O.); (S.G.K.); (Y.A.A.)
| |
Collapse
|
14
|
Qin QR, Xu ZQ, Liu TT, Li XM, Qiu CY, Hu WP. CCK-8 enhances acid-sensing ion channel currents in rat primary sensory neurons. Neuropharmacology 2023; 241:109739. [PMID: 37820935 DOI: 10.1016/j.neuropharm.2023.109739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
Cholecystokinin (CCK) is a peptide that has been implicated in pain modulation. Acid sensitive ion channels (ASICs) also play an important role in pain associated with tissue acidification. However, it is still unclear whether there is an interaction between CCK signaling and ASICs during pain process. Herein, we report that a functional link between them in rat dorsal root ganglion (DRG) neurons. Pretreatment with CCK-8 concentration-dependently increased acid-evoked ASIC currents. CCK-8 increased the maximum response of ASICs to acid, but did not changed their acid sensitivity. Enhancement of ASIC currents by CCK-8 was mediated by the stimulation of CCK2 receptor (CCK2R), rather than CCK1R. The enhancement of ASIC currents by CCK-8 was prevented by application of either G-protein inhibitor GDP-β-S or protein kinase C (PKC) inhibitor GF109203×, but not by protein kinase A (PKA) inhibitor H-89 or JNK inhibitor SP600125. Moreover, CCK-8 increased the number of action potentials triggered by acid stimuli by activating CCK2R. Finally, CCK-8 dose-dependently exacerbated acid-induced nociceptive behavior in rats through local CCK2R. Together, these results indicated that CCK-8/CCK2R activation enhanced ASIC-mediated electrophysiological activity in DRG neurons and nociception in rats. The enhancement effect depended on G-proteins and intracellular PKC signaling rather than PKA and JNK signaling pathway. These findings provided that CCK-8/CCK2R is an important therapeutic target for ASIC-mediated pain.
Collapse
Affiliation(s)
- Qing-Rui Qin
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China
| | - Zhong-Qing Xu
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China
| | - Ting-Ting Liu
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China
| | - Xue-Mei Li
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China
| | - Chun-Yu Qiu
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China.
| | - Wang-Ping Hu
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China; Department of Physiology, Hubei College of Chinese Medicine, 87 Xueyuan Road, Jingzhou 434020, Hubei, PR China.
| |
Collapse
|
15
|
Osmakov DI, Tarasova NV, Nedorubov AA, Palikov VA, Palikova YA, Dyachenko IA, Andreev YA, Kozlov SA. Nocistatin and Products of Its Proteolysis Are Dual Modulators of Type 3 Acid-Sensing Ion Channels (ASIC3) with Algesic and Analgesic Properties. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2137-2145. [PMID: 38462456 DOI: 10.1134/s0006297923120155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 03/12/2024]
Abstract
The neuropeptide nocistatin (NS) is expressed by the nervous system cells and neutrophils as a part of a precursor protein and can undergo stepwise limited proteolysis. Previously, it was shown that rat NS (rNS) is able to activate acid-sensing ion channels (ASICs) and that this effect correlates with the acidic nature of NS. Here, we investigated changes in the properties of rNS in the course of its proteolytic degradation by comparing the effects of the full-size rNS and its two cleavage fragments on the rat isoform 3 ASICs (ASIC3) expressed in X. laevis oocytes and pain perception in mice. The rNS acted as both positive and negative modulator by lowering the steady-state desensitization of ASIC3 at pH 6.8-7.0 and reducing the channel's response to stimuli at pH 6.0-6.9, respectively. The truncated rNSΔ21 peptide lacking 21 amino acid residues from the N-terminus retained the positive modulatory activity, while the C-terminal pentapeptide (rNSΔ30) acted only as a negative ASIC3 modulator. The effects of the studied peptides were confirmed in animal tests: rNS and rNSΔ21 induced a pain-related behavior, whereas rNSΔ30 showed the analgesic effect. Therefore, we have shown that the mode of rNS action changes during its stepwise degradation, from an algesic molecule through a pain enhancer to a pain reliever (rNSΔ30 pentapeptide), which can be considered as a promising drug candidate.
Collapse
Affiliation(s)
- Dmitry I Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Nadezhda V Tarasova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| | - Andrey A Nedorubov
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| | - Victor A Palikov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, 142290, Russia.
| | - Yulia A Palikova
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, 142290, Russia.
| | - Igor A Dyachenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, 142290, Russia.
| | - Yaroslav A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|
16
|
Song S, Yuan Y, Xu L, Jiang J, Li Y, Yan Y, Li Q, Zhou F, Cao J, Zhang L. Genetic Architecture and Functional Implications of the CSF-Contacting Nucleus. Neurosci Bull 2023; 39:1638-1654. [PMID: 37405574 PMCID: PMC10602992 DOI: 10.1007/s12264-023-01084-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/17/2023] [Indexed: 07/06/2023] Open
Abstract
We previously identified a unique nucleus, the cerebrospinal fluid (CSF)-contacting nucleus. This study aims to understand its gene architecture and preliminarily suggest its functions. The results showed that there were about 19,666 genes in this nucleus, of which 913 were distinct from the dorsal raphe nucleus (non-CSF contacting). The top 40 highly-expressed genes are mainly related to energy metabolism, protein synthesis, transport, secretion, and hydrolysis. The main neurotransmitter is 5-HT. The receptors of 5-HT and GABA are abundant. The channels for Cl-, Na+, K+, and Ca2+ are routinely expressed. The signaling molecules associated with the CaMK, JAK, and MAPK pathways were identified accurately. In particular, the channels of transient receptor potential associated with nociceptors and the solute carrier superfamily members associated with cell membrane transport were significantly expressed. The relationship between the main genes of the nucleus and life activities is preliminarily verified.
Collapse
Affiliation(s)
- Siyuan Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, 221008, China
| | - Yumin Yuan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, 221008, China
| | - Lingling Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, 221008, China
| | - Jun Jiang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, 221008, China
| | - Ying Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, 221008, China
| | - Yao Yan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, 221008, China
| | - Qing Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, 221008, China
- School of Nursing, Xuzhou Medical University, Xuzhou, 221004, China
| | - Fang Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, 221008, China
- School of Nursing, Xuzhou Medical University, Xuzhou, 221004, China
| | - Junli Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, 221008, China
| | - Licai Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, 221008, China.
| |
Collapse
|
17
|
Hawashin A, Brakmann IC, Tian Y, Gründer S, Ortega-Ramírez AM. Modulation of Acid-Sensing Ion Channels by Tannic Acid and Green Tea via a Membrane-Mediated Mechanism. ACS Chem Neurosci 2023. [PMID: 37379568 DOI: 10.1021/acschemneuro.3c00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-gated ion channels that contribute to pain perception and neurotransmission. Being involved in sensing inflammation and ischemia, ASIC1a and ASIC3 are promising drug targets. Polyphenol tannic acid (TA) as well as green tea can interact with a variety of ion channels, but their effect on ASICs remains unknown. In addition, it is unknown whether they interact with ion channels via a common mechanism. Here, we show that TA is a potent modulator of ASICs. TA inhibited the transient current of rat ASIC3 expressed in HEK cells with an apparent IC50 of 2.2 ± 0.6 μM; it potentiated the sustained current and induced a slowly declining decay current. In addition, it produced an acidic shift of the pH-dependent activation of ASIC3 and inhibited the window current at pH 7.0. Moreover, TA inhibited the transient current of ASIC1a, ASIC1b, and ASIC2a. Pentagalloylglucose that is chemically identical to the central part of TA and a green tea extract both had effects on ASIC3 comparable to TA. TA and green tea inhibited inward currents generated by gramicidin channels, indicating interaction with the membrane. These results show that TA, pentagalloylglucose, and green tea modulate ASICs and identify alteration of the membrane as the potential common mechanism of this modulation. These properties will limit clinical application of these molecules.
Collapse
Affiliation(s)
- Ammar Hawashin
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, Aachen D-52074, Germany
| | - Ilka C Brakmann
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, Aachen D-52074, Germany
| | - Yuemin Tian
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, Aachen D-52074, Germany
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, Aachen D-52074, Germany
| | | |
Collapse
|
18
|
Kaulich E, McCubbin PTN, Schafer WR, Walker DS. Physiological insight into the conserved properties of Caenorhabditis elegans acid-sensing degenerin/epithelial sodium channels. J Physiol 2023; 601:1625-1653. [PMID: 36200489 PMCID: PMC10424705 DOI: 10.1113/jp283238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are members of the diverse family of degenerin/epithelial sodium channels (DEG/ENaCs). They perform a wide range of physiological roles in healthy organisms, including in gut function and synaptic transmission, but also play important roles in disease, as acidosis is a hallmark of painful inflammatory and ischaemic conditions. We performed a screen for acid sensitivity on all 30 subunits of the Caenorhabditis elegans DEG/ENaC family using two-electrode voltage clamp in Xenopus oocytes. We found two groups of acid-sensitive DEG/ENaCs characterised by being either inhibited or activated by increasing proton concentrations. Three of these acid-sensitive C. elegans DEG/ENaCs were activated by acidic pH, making them functionally similar to the vertebrate ASICs. We also identified three new members of the acid-inhibited DEG/ENaC group, giving a total of seven additional acid-sensitive channels. We observed sensitivity to the anti-hypertensive drug amiloride as well as modulation by the trace element zinc. Acid-sensitive DEG/ENaCs were found to be expressed in both neurons and non-neuronal tissue, highlighting the likely functional diversity of these channels. Our findings provide a framework to exploit the C. elegans channels as models to study the function of these acid-sensing channels in vivo, as well as to study them as potential targets for anti-helminthic drugs. KEY POINTS: Acidosis plays many roles in healthy physiology, including synaptic transmission and gut function, but is also a key feature of inflammatory pain, ischaemia and many other conditions. Cells monitor acidosis of their surroundings via pH-sensing channels, including the acid-sensing ion channels (ASICs). These are members of the degenerin/epithelial sodium channel (DEG/ENaC) family, along with, as the name suggests, vertebrate ENaCs and degenerins of the roundworm Caenorhabditis elegans. By screening all 30 C. elegans DEG/ENaCs for pH dependence, we describe, for the first time, three acid-activated members, as well as three additional acid-inhibited channels. We surveyed both groups for sensitivity to amiloride and zinc; like their mammalian counterparts, their currents can be blocked, enhanced or unaffected by these modulators. Likewise, they exhibit diverse ion selectivity. Our findings underline the diversity of acid-sensitive DEG/ENaCs across species and provide a comparative resource for better understanding the molecular basis of their function.
Collapse
Affiliation(s)
- Eva Kaulich
- Neurobiology DivisionMRC Laboratory of Molecular BiologyCambridgeUK
| | | | - William R. Schafer
- Neurobiology DivisionMRC Laboratory of Molecular BiologyCambridgeUK
- Department of BiologyKU LeuvenLeuvenBelgium
| | - Denise S. Walker
- Neurobiology DivisionMRC Laboratory of Molecular BiologyCambridgeUK
| |
Collapse
|
19
|
Mao XL, Chen YX, Yu H, Yang QW. Inhibition of acid sensing ion channels by eugenol in rat trigeminal ganglion neurons. Neurosci Lett 2023; 803:137192. [PMID: 36924928 DOI: 10.1016/j.neulet.2023.137192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Eugenol is widely used as an analgesic in the dental treatment. The underlying mechanisms may involve its modulation of various ion channels. Acid-sensing ion channels (ASICs) are pH sensors and expressed in trigeminal ganglion (TG) neurons. In the present study, we found that eugenol concentration-dependently inhibited ASIC currents in TG neurons with an IC50 of 98.8 ± 7.4 μM. Eugenol decreased the maximum response to acidic pH and did not alter pH0.5 in the concentration-response curve of acidic pH, suggesting a noncompetitive inhibition of ASICs by eugenol. G-proteins were not involved in eugenol-induced inhibition, since pre-application of eugenol also decreased ASIC currents in the presence of the G-protein blocker GDP-β-S. In addition, eugenol also partly inhibited ASIC3 currents in Chinese hamster ovary cells transfected with ASIC3. In conclusion, eugenol partly inhibited ASIC currents in TG neurons in a concentration-dependent, non-competitive and G-protein independent manner. These results suggested that the ASICs could be a molecular target for eugenol in TG neurons, which contributed to its analgesic effect.
Collapse
Affiliation(s)
- Xiao-Li Mao
- Department of Pharmacy, Wuhan First Hospital, Wuhan, China.
| | - Yi-Xuan Chen
- Department of Pharmacy, Wuhan First Hospital, Wuhan, China
| | - Huan Yu
- Department of Pharmacy, Wuhan First Hospital, Wuhan, China
| | - Quan-Wei Yang
- Department of Pharmacy, Wuhan First Hospital, Wuhan, China.
| |
Collapse
|
20
|
Liguori S, Moretti A, Toro G, Paoletta M, Palomba A, Barra G, Gimigliano F, Iolascon G. Pain and Motor Function in Myotonic Dystrophy Type 1: A Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5244. [PMID: 37047859 PMCID: PMC10094252 DOI: 10.3390/ijerph20075244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Pain is an underestimated finding in myotonic dystrophy type 1 (DM1). We provide a characterization of pain in terms of functional implications through a multidimensional assessment in patients with DM1, focusing on gender differences. We assessed pain through the Brief Pain Inventory (BPI) and its indexes (the Severity Index (SI) and the Interference Index (II)), balance/gait (the Tinetti Performance-Oriented Mobility Assessment (POMA)), functional abilities (the Functional Independence Measure (FIM)), and fatigue (the Fatigue Severity Scale (FSS)). We divided our sample into a mild (<4) and a moderate-severe group (≥4) based on BPI indexes. A between-group analysis was performed. We recruited 23 males and 22 females with DM1. A statistically significant difference was found for the FSS and the BPI-SI ≥ 4, and for all outcomes in the BPI-II ≥ 4 (p ≤ 0.003). In the female group, all outcomes except for the FIM were statistically significantly worse (p ≤ 0.004). Dividing our sample into four groups based on gender and the BPI, a statistically significant difference was found for FSS between the two groups with BPI-II ≥ 4 (with worsen score in the female one) (p < 0.002). Pain in DM1 patients is highly reported and gender related, with increased fatigue and poor balance/gait in the female group.
Collapse
Affiliation(s)
- Sara Liguori
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, Via De Crecchio n. 4, 80138 Naples, Italy; (S.L.)
| | - Antimo Moretti
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, Via De Crecchio n. 4, 80138 Naples, Italy; (S.L.)
| | - Giuseppe Toro
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, Via De Crecchio n. 4, 80138 Naples, Italy; (S.L.)
| | - Marco Paoletta
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, Via De Crecchio n. 4, 80138 Naples, Italy; (S.L.)
| | - Angela Palomba
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, Via De Crecchio n. 4, 80138 Naples, Italy; (S.L.)
| | - Giuseppe Barra
- Post Intensive Functional Rehabilitation Unit, Istituto di Diagnosi e Cura Hermitage Capodimonte, 80131 Naples, Italy
| | - Francesca Gimigliano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Largo Madonna delle Grazie n. 1, 80138 Naples, Italy
| | - Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, Via De Crecchio n. 4, 80138 Naples, Italy; (S.L.)
| |
Collapse
|
21
|
Messina DN, Peralta ED, Seltzer AM, Patterson SI, Acosta CG. Age-dependent and modality-specific changes in the phenotypic markers Nav1.8, ASIC3, P2X3 and TRPM8 in male rat primary sensory neurons during healthy aging. Biogerontology 2023; 24:111-136. [PMID: 36478541 DOI: 10.1007/s10522-022-10000-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
Abstract
The effects during healthy aging of the tetrodotoxin-resistant voltage-gated sodium channel 1.8 (Nav1.8), the acid-sensing ion channel-3 (ASIC3), the purinergic-receptor 2X3 (P2X3) and transient receptor potential of melastatin-8 (TRPM8) on responses to non-noxious stimuli are poorly understood. These effects will influence the transferability to geriatric subjects of findings obtained using young animals. To evaluate the involvement of these functional markers in mechanical and cold sensitivity to non-noxious stimuli and their underlying mechanisms, we used a combination of immunohistochemistry and quantitation of immunostaining in sub-populations of neurons of the dorsal root ganglia (DRG), behavioral tests, pharmacological interventions and Western-blot in healthy male Wistar rats from 3 to 24 months of age. We found significantly decreased sensitivity to mechanical and cold stimuli in geriatric rats. These behavioural alterations occurred simultaneously with differing changes in the expression of Nav1.8, ASIC3, P2X3 and TRPM8 in the DRG at different ages. Using pharmacological blockade in vivo we demonstrated the involvement of ASIC3 and P2X3 in normal mechanosensation and of Nav1.8 and ASIC3 in cold sensitivity. Geriatric rats also exhibited reductions in the number of A-like large neurons and in the proportion of peptidergic to non-peptidergic neurons. The changes in normal sensory physiology in geriatric rats we report here strongly support the inclusion of aged rodents as an important group in the design of pre-clinical studies evaluating pain treatments.
Collapse
Affiliation(s)
- Diego N Messina
- Laboratorio de Estudios Neurobiológicos (LABENE), Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM-CONICET), Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| | - Emanuel D Peralta
- Laboratorio de Estudios Neurobiológicos (LABENE), Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM-CONICET), Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| | - Alicia M Seltzer
- Laboratorio de Estudios Neurobiológicos (LABENE), Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM-CONICET), Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| | - Sean I Patterson
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Histología y Embriología - CONICET, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| | - Cristian G Acosta
- Laboratorio de Estudios Neurobiológicos (LABENE), Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM-CONICET), Universidad Nacional de Cuyo, 5500, Mendoza, Argentina. .,Histology Laboratory 107, IHEM-Faculty of Medical Sciences, National University of Cuyo, Av. del Libertador 80, 5500, Mendoza, Argentina.
| |
Collapse
|
22
|
Group II metabotropic glutamate receptor activation attenuates acid-sensing ion channel currents in rat primary sensory neurons. J Biol Chem 2023; 299:102953. [PMID: 36731795 PMCID: PMC9976456 DOI: 10.1016/j.jbc.2023.102953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Acid-sensing ion channels (ASICs) play an important role in pain associated with tissue acidification. Peripheral inhibitory group II metabotropic glutamate receptors (mGluRs) have analgesic effects in a variety of pain conditions. Whether there is a link between ASICs and mGluRs in pain processes is still unclear. Herein, we show that the group II mGluR agonist LY354740 inhibited acid-evoked ASIC currents and action potentials in rat dorsal root ganglia neurons. LY354740 reduced the maximum current response to protons, but it did not change the sensitivity of ASICs to protons. LY354740 inhibited ASIC currents by activating group II mGluRs. We found that the inhibitory effect of LY354740 was blocked by intracellular application of the Gi/o protein inhibitor pertussis toxin and the cAMP analogue 8-Br-cAMP and mimicked by the protein kinase A (PKA) inhibitor H-89. LY354740 also inhibited ASIC3 currents in CHO cells coexpressing mGluR2 and ASIC3 but not in cells expressing ASIC3 alone. In addition, intraplantar injection of LY354740 dose-dependently alleviated acid-induced nociceptive behavior in rats through local group II mGluRs. Together, these results suggested that activation of peripheral group II mGluRs inhibited the functional activity of ASICs through a mechanism that depended on Gi/o proteins and the intracellular cAMP/PKA signaling pathway in rat dorsal root ganglia neurons. We propose that peripheral group II mGluRs are an important therapeutic target for ASIC-mediated pain.
Collapse
|
23
|
The Role of Zinc in Modulating Acid-Sensing Ion Channel Function. Biomolecules 2023; 13:biom13020229. [PMID: 36830598 PMCID: PMC9953155 DOI: 10.3390/biom13020229] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-gated, voltage-independent sodium channels widely expressed throughout the central and peripheral nervous systems. They are involved in synaptic plasticity, learning/memory, fear conditioning and pain. Zinc, an important trace metal in the body, contributes to numerous physiological functions, with neurotransmission being of note. Zinc has been implicated in the modulation of ASICs by binding to specific sites on these channels and exerting either stimulatory or inhibitory effects depending on the ASIC subtype. ASICs have been linked to several neurological and psychological disorders, such as Alzheimer's disease, Parkinson's disease, ischemic stroke, epilepsy and cocaine addiction. Different ASIC isoforms contribute to the persistence of each of these neurological and psychological disorders. It is critical to understand how various zinc concentrations can modulate specific ASIC subtypes and how zinc regulation of ASICs can contribute to neurological and psychological diseases. This review elucidates zinc's structural interactions with ASICs and discusses the potential therapeutic implications zinc may have on neurological and psychological diseases through targeting ASICs.
Collapse
|
24
|
Roy S, Johner N, Trendafilov V, Gautschi I, Bignucolo O, Molton O, Bernèche S, Kellenberger S. Calcium regulates acid-sensing ion channel 3 activation by competing with protons in the channel pore and at an allosteric binding site. Open Biol 2022; 12:220243. [PMID: 36541099 PMCID: PMC9768671 DOI: 10.1098/rsob.220243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The extracellular Ca2+ concentration changes locally under certain physiological and pathological conditions. Such variations affect the function of ion channels of the nervous system and consequently also neuronal signalling. We investigated here the mechanisms by which Ca2+ controls the activity of acid-sensing ion channel (ASIC) 3. ASICs are neuronal, H+-gated Na+ channels involved in several physiological and pathological processes, including the expression of fear, learning, pain sensation and neurodegeneration after ischaemic stroke. It was previously shown that Ca2+ negatively modulates the ASIC pH dependence. While protons are default activators of ASIC3, this channel can also be activated at pH7.4 by the removal of the extracellular Ca2+. Two previous studies concluded that low pH opens ASIC3 by displacing Ca2+ ions that block the channel pore at physiological pH. We show here that an acidic residue, distant from the pore, together with pore residues, controls the modulation of ASIC3 by Ca2+. Our study identifies a new regulatory site in ASIC3 and demonstrates that ASIC3 activation involves an allosteric mechanism together with Ca2+ unbinding from the channel pore. We provide a molecular analysis of a regulatory mechanism found in many ion channels.
Collapse
Affiliation(s)
- Sophie Roy
- Department of biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland
| | - Niklaus Johner
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland,Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Viktor Trendafilov
- Department of biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland
| | - Ivan Gautschi
- Department of biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland
| | - Olivier Bignucolo
- Department of biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland,Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Ophélie Molton
- Department of biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland
| | - Simon Bernèche
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland,Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Stephan Kellenberger
- Department of biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
25
|
Zhigulin AS, Tikhonov DB, Barygin OI. Mechanisms of acid-sensing ion channels inhibition by nafamostat, sepimostat and diminazene. Eur J Pharmacol 2022; 938:175394. [PMID: 36403685 DOI: 10.1016/j.ejphar.2022.175394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Acid-sensing ion channels (ASICs) are blocked by many cationic compounds. Mechanisms of action, which may include pore block, modulation of activation and desensitization, need systematic analysis to allow predictable design of new potent and selective drugs. In this work, we studied the action of the serine protease inhibitors nafamostat, sepimostat, gabexate and camostat, on native ASICs in rat giant striatal interneurons and recombinant ASIC1a and ASIC2a channels, and compared it to that of well-known small molecule ASIC blocker diminazene. All these compounds have positively charged amidine and/or guanidine groups in their structure. Nafamostat, sepimostat and diminazene inhibited pH 6.5-induced currents in rat striatal interneurons at -80 mV holding voltage with IC50 values of 0.78 ± 0.12 μM, 2.4 ± 0.3 μM and 0.40 ± 0.09 μM, respectively, whereas camostat and gabexate were practically ineffective. The inhibition by nafamostat, sepimostat and diminazene was voltage-dependent evidencing binding in the channel pore. They were not trapped in the closed channels, suggesting "foot-in-the-door" mechanism of action. The inhibitory activity of nafamostat, sepimostat and diminazene was similar in experiments on native ASICs and recombinant ASIC1a channels, while all of them were drastically less active against ASIC2a channels. According to our molecular modeling, three active compounds bind in the channel pore between Glu 433 and Ala 444 in a similar way. In view of the relative safety of nafamostat for clinical use in humans, it can be considered as a potential candidate for the treatment of pathophysiological conditions linked to ASICs disfunction, including inflammatory pain and ischemic stroke.
Collapse
Affiliation(s)
- Arseniy S Zhigulin
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint-Petersburg, Russia
| | - Denis B Tikhonov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint-Petersburg, Russia
| | - Oleg I Barygin
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint-Petersburg, Russia.
| |
Collapse
|
26
|
Papalampropoulou-Tsiridou M, Shiers S, Wang F, Godin AG, Price TJ, De Koninck Y. Distribution of acid-sensing ion channel subunits in human sensory neurons contrasts with that in rodents. Brain Commun 2022; 4:fcac256. [PMID: 36337346 PMCID: PMC9629378 DOI: 10.1093/braincomms/fcac256] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/27/2022] [Accepted: 10/26/2022] [Indexed: 11/28/2022] Open
Abstract
Acid-sensing ion channels (ASICs) play a critical role in nociception in human sensory neurons. Four genes (ASIC1, ASIC2, ASIC3, and ASIC4) encoding multiple subunits through alternative splicing have been identified in humans. Real time-PCR experiments showed strong expression of three subunits ASIC1, ASIC2, and ASIC3 in human dorsal root ganglia; however, their detailed expression pattern in different neuronal populations has not been investigated yet. In the current study, using an in situ hybridization approach (RNAscope), we examined the presence of ASIC1, ASIC2, and ASIC3 mRNA in three subpopulations of human dorsal root ganglia neurons. Our results revealed that ASIC1 and ASIC3 were present in the vast majority of dorsal root ganglia neurons, while ASIC2 was only expressed in less than half of dorsal root ganglia neurons. The distribution pattern of the three ASIC subunits was the same across the three populations of dorsal root ganglia neurons examined, including neurons expressing the REarranged during Transfection (RET) receptor tyrosine kinase, calcitonin gene-related peptide, and a subpopulation of nociceptors expressing Transient Receptor Potential Cation Channel Subfamily V Member 1. These results strongly contrast the expression pattern of Asics in mice since our previous study demonstrated differential distribution of Asics among the various subpopulation of dorsal root ganglia neurons. Given the distinct acid-sensitivity and activity dynamics among different ASIC channels, the expression differences between human and rodents should be taken under consideration when evaluating the translational potential and efficiency of drugs targeting ASICs in rodent studies.
Collapse
Affiliation(s)
- Melina Papalampropoulou-Tsiridou
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC G1J 2G3, Canada,Graduate Program in Neuroscience, Université Laval, Québec, QC G1V 0A6, Canada
| | - Stephanie Shiers
- Center for Advanced Pain Studies and Department of Neuroscience, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA
| | - Feng Wang
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC G1J 2G3, Canada
| | - Antoine G Godin
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC G1J 2G3, Canada,Graduate Program in Neuroscience, Université Laval, Québec, QC G1V 0A6, Canada,Department of Psychiatry and Neuroscience, Université Laval, Québec, QC G1V 0A6, Canada
| | - Theodore J Price
- Center for Advanced Pain Studies and Department of Neuroscience, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA
| | - Yves De Koninck
- Correspondence to: Yves De Koninck 2601 Chemin de la Canardière Québec G1J 2G3 Canada. E-mail:
| |
Collapse
|
27
|
Aguilera-Lizarraga J. Gut reactions: emerging mechanisms of abdominal pain from food intake. Am J Physiol Gastrointest Liver Physiol 2022; 323:G401-G409. [PMID: 36126222 DOI: 10.1152/ajpgi.00173.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abdominal pain, which is a form of visceral pain, is a highly prevalent symptom worldwide frequently occurring following food ingestion. Its pathophysiology is complex, and many factors, including intestinal environmental cues, the immune system, or the molecular composition of foods, can influence the development of postprandial abdominal pain. Because of the poor efficacy of drug treatments, current strategies are often limited to the exclusion of culprit food(s) from the diet. However, there are two important limitations to this approach. First, patients suffering from food-induced abdominal pain usually recognize several food items as the cause of their gastrointestinal symptoms. Second, not all offending foods can always be identified by these patients. Newly identified mechanisms involving neuroimmune interactions and their communication with the intestinal microbiota shed light on the development of new therapeutic strategies. In this Mini-Review, these novel mechanisms and relevance of such findings are highlighted.
Collapse
Affiliation(s)
- Javier Aguilera-Lizarraga
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Centre for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Verkest C, Salinas M, Diochot S, Deval E, Lingueglia E, Baron A. Mechanisms of Action of the Peptide Toxins Targeting Human and Rodent Acid-Sensing Ion Channels and Relevance to Their In Vivo Analgesic Effects. Toxins (Basel) 2022; 14:toxins14100709. [PMID: 36287977 PMCID: PMC9612379 DOI: 10.3390/toxins14100709] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are voltage-independent H+-gated cation channels largely expressed in the nervous system of rodents and humans. At least six isoforms (ASIC1a, 1b, 2a, 2b, 3 and 4) associate into homotrimers or heterotrimers to form functional channels with highly pH-dependent gating properties. This review provides an update on the pharmacological profiles of animal peptide toxins targeting ASICs, including PcTx1 from tarantula and related spider toxins, APETx2 and APETx-like peptides from sea anemone, and mambalgin from snake, as well as the dimeric protein snake toxin MitTx that have all been instrumental to understanding the structure and the pH-dependent gating of rodent and human cloned ASICs and to study the physiological and pathological roles of native ASICs in vitro and in vivo. ASICs are expressed all along the pain pathways and the pharmacological data clearly support a role for these channels in pain. ASIC-targeting peptide toxins interfere with ASIC gating by complex and pH-dependent mechanisms sometimes leading to opposite effects. However, these dual pH-dependent effects of ASIC-inhibiting toxins (PcTx1, mambalgin and APETx2) are fully compatible with, and even support, their analgesic effects in vivo, both in the central and the peripheral nervous system, as well as potential effects in humans.
Collapse
Affiliation(s)
- Clément Verkest
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Miguel Salinas
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Sylvie Diochot
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Emmanuel Deval
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Eric Lingueglia
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Anne Baron
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
- Correspondence:
| |
Collapse
|
29
|
Li Q, Qiao W, Hao J, Wei S, Li X, Liu T, Qiu C, Hu W. Potentiation of ASIC currents by lysophosphatidic acid in rat dorsal root ganglion neurons. J Neurochem 2022; 163:327-337. [DOI: 10.1111/jnc.15690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Qing Li
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
| | - Wen‐Long Qiao
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
| | - Jia‐Wei Hao
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
| | - Shuang Wei
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
| | - Xue‐Mei Li
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
| | - Ting‐Ting Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
| | - Chun‐Yu Qiu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
| | - Wang‐Ping Hu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology Xianning Hubei China
- Hubei College of Chinese Medicine Jingzhou Hubei China
| |
Collapse
|
30
|
On the quest of small molecules that can mimic Psalmotoxin-1, the most powerful peptidic modulator of the acid sensing channel ASIC1a. Struct Chem 2022. [DOI: 10.1007/s11224-021-01826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Wei S, Liu TT, Hu WP, Qiu CY. Resveratrol inhibits the activity of acid-sensing ion channels in male rat dorsal root ganglion neurons. J Neurosci Res 2022; 100:1755-1764. [PMID: 35592934 DOI: 10.1002/jnr.25060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/16/2022] [Accepted: 04/22/2022] [Indexed: 11/07/2022]
Abstract
Resveratrol can relieve pain under various pain conditions. One of the mechanisms of resveratrol analgesia is the regulation of ion channels. Acid-sensing ion channels (ASICs) are expressed predominantly in nociceptive sensory neurons to detect changes in extracellular pH. ASICs are important players in pain associated with tissue acidification. However, it is still unclear whether ASICs are resveratrol targets. Electrophysiological recordings showed that resveratrol decreased acid-induced and ASIC-mediated currents in male rat dorsal root ganglion (DRG) neurons in a concentration-dependent manner. Resveratrol downwardly shifted the concentration-response curve for protons, suggesting that it inhibited ASICs not by changing the pH0.5 , but by suppressing the proton-induced maximum response. It also suppressed acid-triggered action potentials in the rat DRG neurons. Finally, intraplantar pretreatment with resveratrol relieved acid-induced nociceptive responses in male rats in a dose-dependent manner. These results indicated that resveratrol inhibited ASIC-mediated electrophysiological activity and nociception, suggesting a novel peripheral mechanism underlying its analgesic effect.
Collapse
Affiliation(s)
- Shuang Wei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China.,School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Ting-Ting Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Wang-Ping Hu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China.,Department of Physiology, Hubei College of Chinese Medicine, Jingzhou, PR China
| | - Chun-Yu Qiu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China.,School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| |
Collapse
|
32
|
Nagakura Y. Therapeutic Approaches to Nociplastic Pain Based on Findings in the Reserpine-Induced Fibromyalgia-Like Animal Model. J Pharmacol Exp Ther 2022; 381:106-119. [PMID: 35246482 DOI: 10.1124/jpet.121.001051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Nociplastic pain, the third category of chronic pain, has emerged as a serious medical issue. Due to its significant negative influences on patients and society, high prevalence, and lack of sufficiently effective treatments, more efficacious therapies are required. This review highlights the potential therapeutic approaches identified in studies that used reserpine-induced myalgia (RIM) animal model that exhibits nociplastic pain-associated phenotypes. These studies have revealed that biologic processes including the chronic reduction of monoamines, increase of oxidative/nitrosative stresses and inflammatory mediators, upregulation of pronociceptive neurotransmitters and their receptors, increase of trophic factors, enhancement of the apoptotic pathway, sensory nerve sensitization, and activation of immune cells in central and/or peripheral regions underly the nociplastic pain-associated phenotypes in RIM animal model. Potential therapeutic approaches to nociplastic pain, i.e., 1) functional modification of specific molecules whose expression is distinctly altered following the chronic reduction of monoamines, 2) targeting the molecules that are responsible for other major categories of chronic pain (i.e., chronic inflammatory pain and neuropathic pain), 3) supplementation of nutrition to correct the disrupted nutritional balance, 4) improvement of physical constitution by natural substances, and 5) nonpharmacological interventions, have been identified. SIGNIFICANCE STATEMENT: Studies in reserpine-induced myalgia (RIM) animal model have revealed the pathologies that occur after the chronic reduction of monoamines and identified potential therapeutic approaches to nociplastic pain. Translation of their analgesic efficacy from RIM animal model to patients remains an issue to be addressed. Successful translation would lead to better therapies for nociplastic pain.
Collapse
Affiliation(s)
- Yukinori Nagakura
- School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka, Japan
| |
Collapse
|
33
|
Acid-Sensing Ion Channels in Glial Cells. MEMBRANES 2022; 12:membranes12020119. [PMID: 35207041 PMCID: PMC8878633 DOI: 10.3390/membranes12020119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 12/13/2022]
Abstract
Acid-sensing ion channels (ASICs) are proton-gated cation channels and key mediators of responses to neuronal injury. ASICs exhibit unique patterns of distribution in the brain, with high expression in neurons and low expression in glial cells. While there has been a lot of focus on ASIC in neurons, less is known about the roles of ASICs in glial cells. ASIC1a is expressed in astrocytes and might contribute to synaptic transmission and long-term potentiation. In oligodendrocytes, constitutive activation of ASIC1a participates in demyelinating diseases. ASIC1a, ASIC2a, and ASIC3, found in microglial cells, could mediate the inflammatory response. Under pathological conditions, ASIC dysregulation in glial cells can contribute to disease states. For example, activation of astrocytic ASIC1a may worsen neurodegeneration and glioma staging, activation of microglial ASIC1a and ASIC2a may perpetuate ischemia and inflammation, while oligodendrocytic ASIC1a might be involved in multiple sclerosis. This review concentrates on the unique ASIC components in each of the glial cells and integrates these glial-specific ASICs with their physiological and pathological conditions. Such knowledge provides promising evidence for targeting of ASICs in individual glial cells as a therapeutic strategy for a diverse range of conditions.
Collapse
|
34
|
Wei S, Hao JW, Qiao WL, Li Q, Liu TT, Qiu CY, Hu WP. Suppression of ASIC activity by the activation of A1 adenosine receptors in rat primary sensory neurons. Neuropharmacology 2021; 205:108924. [PMID: 34919904 DOI: 10.1016/j.neuropharm.2021.108924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/21/2021] [Accepted: 12/10/2021] [Indexed: 11/25/2022]
Abstract
Peripheral A1 adenosine receptor signaling has been shown to have analgesic effects in a variety of pain conditions. However, it is not yet fully elucidated for the precise molecular mechanisms. Acid sensing ion channels (ASICs) are expressed predominantly in nociceptive sensory neurons responding to protons. Given that both A1 adenosine receptors and ASICs are present in dorsal root ganglia (DRG) neurons, we therefore investigated whether there was a cross-talk between the two types of receptors. Herein, electrophysiological recordings showed that the A1 adenosine receptor agonist N6-cyclopentyladenosine (CPA) suppressed acid-induced currents and action potentials, which were mediated by ASICs, in rat DRG neurons. CPA inhibited the maximum response to protons, as shown a downward shift of concentration-response curve for protons. The CPA-induced suppression of ASIC currents was blocked by the A1 adenosine receptor antagonist KW-3902 and also prevented by intracellular application of the Gi/o-protein inhibitor pertussis toxin, the adenylate cyclase activator forskolin, and the cAMP analog 8-Br-cAMP. Finally, intraplantar pretreatment of CPA dose-dependently relieved acid-induced nociceptive responses in rats through peripheral A1 adenosine receptors. These results suggested that CPA suppressed ASICs via A1 adenosine receptors and intracellular Gi/o-proteins and cAMP signaling cascades in rat DRG neurons, which was a novel potential mechanism underlying analgesia of peripheral A1 adenosine receptors.
Collapse
Affiliation(s)
- Shuang Wei
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China
| | - Jia-Wei Hao
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China
| | - Wen-Long Qiao
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China
| | - Qing Li
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China
| | - Ting-Ting Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China
| | - Chun-Yu Qiu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China
| | - Wang-Ping Hu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China; Hubei College of Chinese Medicine, 87 Xueyuan Road, Jingzhou, 434020, Hubei, PR China.
| |
Collapse
|
35
|
Jayakar S, Shim J, Jo S, Bean BP, Singeç I, Woolf CJ. Developing nociceptor-selective treatments for acute and chronic pain. Sci Transl Med 2021; 13:eabj9837. [PMID: 34757806 PMCID: PMC9964063 DOI: 10.1126/scitranslmed.abj9837] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite substantial efforts dedicated to the development of new, nonaddictive analgesics, success in treating pain has been limited. Clinically available analgesic agents generally lack efficacy and may have undesirable side effects. Traditional target-based drug discovery efforts that generate compounds with selectivity for single targets have a high rate of attrition because of their poor clinical efficacy. Here, we examine the challenges associated with the current analgesic drug discovery model and review evidence in favor of stem cell–derived neuronal-based screening approaches for the identification of analgesic targets and compounds for treating diverse forms of acute and chronic pain.
Collapse
Affiliation(s)
- Selwyn Jayakar
- F.M. Kirby Neurobiology, Boston Children’s Hospital, and Department of Neurology, Harvard Medical School; Boston, MA 02115, USA
| | - Jaehoon Shim
- F.M. Kirby Neurobiology, Boston Children’s Hospital, and Department of Neurology, Harvard Medical School; Boston, MA 02115, USA
| | - Sooyeon Jo
- Department of Neurobiology, Harvard Medical School; Boston, MA 02115, USA
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School; Boston, MA 02115, USA
| | - Ilyas Singeç
- National Center for Advancing Translational Sciences (NCATS), Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH); Bethesda, MD 20892, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology, Boston Children’s Hospital, and Department of Neurology, Harvard Medical School; Boston, MA 02115, USA
| |
Collapse
|
36
|
Rotpenpian N, Arayapisit T, Roumwong A, Pakaprot N, Tantisira M, Wanasuntronwong A. A standardized extract of Centella asiatica (ECa 233) prevents temporomandibular joint osteoarthritis by modulating the expression of local inflammatory mediators in mice. J Appl Oral Sci 2021; 29:e20210329. [PMID: 34705985 PMCID: PMC8523094 DOI: 10.1590/1678-7757-2021-0329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022] Open
Abstract
Objectives To investigate the effect of a standardized extract of Centella asiatica (ECa 233), which has anti-inflammatory properties, on the local expression of the transient receptor potential vanilloid 1 (TRPV1), the acid-sensing ion channel subunit 3 (ASIC3), and the calcitonin gene-related peptide (CGRP) in the temporomandibular joint (TMJ) structure 21 days after injecting the TMJ with complete Freund’s adjuvant (CFA). Methodology A mouse model was induced by analyzing the CFA-injected TMJ on days 7, 14, and 21. We assessed TMJ histology by the osteoarthritis cartilage grade score. Then, we observed the effect of different ECa 233 concentrations (30, 100, and 300 mg/kg) and of 140 mg/kg ibuprofen doses on TRPV1, ASIC3, and CGRP local expression on day 21. Results Osteoarthritis cartilage scores were 1.17±0.37 and 3.83±0.68 on days 14 and 21, respectively, in the CFA group (n=5). On day 21, TRPV1, ASIC3, and CGRP expression significantly increased in the CFA group. In the ibuprofen-treated group, TRPV1 expression significantly decreased, but ASIC3 and CGRP showed no significant difference. All ECa 233 doses reduced TRPV1 expression, but the 100 mg/kg ECa 233 dose significantly decreased ASIC3 expression. Conclusions TRPV1, ASIC3, and CGRP expression increased in mice with TMJ-OA on day 21. All ECa 233 and ibuprofen doses inhibited pathogenesis by modulating the local expression of TRPV1 and ASIC3. Therefore, ECa 233 was more effective than ibuprofen.
Collapse
Affiliation(s)
| | | | - Atitaya Roumwong
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Narawut Pakaprot
- Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mayuree Tantisira
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| | | |
Collapse
|
37
|
Páez O, Segura-Chama P, Almanza A, Pellicer F, Mercado F. Properties and Differential Expression of H + Receptors in Dorsal Root Ganglia: Is a Labeled-Line Coding for Acid Nociception Possible? Front Physiol 2021; 12:733267. [PMID: 34764880 PMCID: PMC8576393 DOI: 10.3389/fphys.2021.733267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Pain by chemical irritants is one of the less well-described aspects of nociception. The acidic substance is the paradigm of the chemical noxious compound. An acidic insult on cutaneous, subcutaneous and muscle tissue results in pain sensation. Acid (or H+) has at least two main receptor channels in dorsal root ganglia (DRG) nociceptors: the heat receptor transient receptor potential vanilloid 1 (TRPV1) and the acid-sensing ionic channels (ASICs). TRPV1 is a low-sensitivity H+ receptor, whereas ASIC channels display a higher H+ sensitivity of at least one order of magnitude. In this review, we first describe the functional and structural characteristics of these and other H+-receptor candidates and the biophysics of their responses to low pH. Additionally, we compile reports of the expression of these H+-receptors (and other possible complementary proteins) within the DRG and compare these data with mRNA expression profiles from single-cell sequencing datasets for ASIC3, ASIC1, transient receptor potential Ankiryn subtype 1 (TRPA1) and TRPV1. We show that few nociceptor subpopulations (discriminated by unbiased classifications) combine acid-sensitive channels. This comparative review is presented in light of the accumulating evidence for labeled-line coding for most noxious sensory stimuli.
Collapse
Affiliation(s)
- Omar Páez
- Laboratorio de Fisiología Celular, Dirección de Investigaciones en Nuerociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Pedro Segura-Chama
- Laboratorio de Fisiología Celular, Dirección de Investigaciones en Nuerociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
- Cátedras CONACyT, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Angélica Almanza
- Laboratorio de Fisiología Celular, Dirección de Investigaciones en Nuerociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Francisco Pellicer
- Laboratorio de Neurofisiología Integrativa, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Francisco Mercado
- Laboratorio de Fisiología Celular, Dirección de Investigaciones en Nuerociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| |
Collapse
|
38
|
Heusser SA, Pless SA. Acid-sensing ion channels as potential therapeutic targets. Trends Pharmacol Sci 2021; 42:1035-1050. [PMID: 34674886 DOI: 10.1016/j.tips.2021.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
Tissue acidification is associated with a variety of disease states, and acid-sensing ion channels (ASICs) that can sense changes in pH have gained traction as possible pharmaceutical targets. An array of modulators, ranging from small molecules to large biopharmaceuticals, are known to inhibit ASICs. Here, we summarize recent insights from animal studies to assess the therapeutic potential of ASICs in disorders such as ischemic stroke, various pain-related processes, anxiety, and cardiac pathologies. We also review the factors that present a challenge in the pharmacological targeting of ASICs, and which need to be taken into careful consideration when developing potent and selective modulators in the future.
Collapse
Affiliation(s)
- Stephanie A Heusser
- Department for Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Stephan A Pless
- Department for Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
39
|
Wei S, Qiu CY, Jin Y, Liu TT, Hu WP. Dexmedetomidine Inhibits ASIC Activity via Activation of α 2A Adrenergic Receptors in Rat Dorsal Root Ganglion Neurons. Front Pharmacol 2021; 12:685460. [PMID: 34108881 PMCID: PMC8181722 DOI: 10.3389/fphar.2021.685460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/11/2021] [Indexed: 01/13/2023] Open
Abstract
Dexmedetomidine (DEX), a selective α2 adrenergic receptor (α2-AR) agonist, has been shown to have peripheral analgesic effects in a variety of pain conditions. However, the precise molecular mechanisms have not yet been fully elucidated. Acid sensing ion channels (ASICs) are the major player in pain associated with tissue acidosis. Given that both α2-ARs and ASICs exist in dorsal root ganglia (DRG) neurons, we therefore investigated the effects of DEX on the functional activity of ASICs. Herein, whole-cell patch-clamp recordings demonstrated that DEX suppressed ASIC-mediated and acid-evoked currents and action potentials in dissociated rat DRG neurons. DEX shifted downwards concentration-response curve to protons, with a decrease of 35.83 ± 3.91% in the maximal current response to pH 4.5. DEX-induced inhibition of ASIC currents was blocked by the α2A-AR antagonist BRL44408 in DRG neurons. DEX also inhibited ASIC3 currents in CHO cells co-expressing ASIC3 and α2A-ARs, but not in ASIC3 transfected CHO cells without α2A-ARs expression. DEX-induced inhibition of ASIC currents was mimicked by the protein kinase A inhibitor H-89, and blocked by intracellular application of the Gi/o protein inhibitor pertussis toxin and the cAMP analog 8-Br-cAMP. In addition, peripherally administration of DEX dose-dependently relieved nociceptive responses to intraplantar injection of acetic acid in rats through local α2A-ARs. Our results indicated that DEX inhibited the functional activity of ASICs via α2A-ARs and intracellular Gi/o proteins and cAMP/protein kinase A signaling pathway in rat DRG neurons, which was a novel potential mechanism that probably mediated peripheral analgesia of DEX.
Collapse
Affiliation(s)
- Shuang Wei
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China.,Department of Pharmacology, Hubei University of Science and Technology, Xianning, China
| | - Chun-Yu Qiu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Ying Jin
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Ting-Ting Liu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Wang-Ping Hu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
40
|
Ruan N, Tribble J, Peterson AM, Jiang Q, Wang JQ, Chu XP. Acid-Sensing Ion Channels and Mechanosensation. Int J Mol Sci 2021; 22:ijms22094810. [PMID: 34062742 PMCID: PMC8125064 DOI: 10.3390/ijms22094810] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are mainly proton-gated cation channels that are activated by pH drops and nonproton ligands. They are part of the degenerin/epithelial sodium channel superfamily due to their sodium permeability. Predominantly expressed in the central nervous system, ASICs are involved in synaptic plasticity, learning/memory, and fear conditioning. These channels have also been implicated in multiple disease conditions, including ischemic brain injury, multiple sclerosis, Alzheimer’s disease, and drug addiction. Recent research has illustrated the involvement of ASICs in mechanosensation. Mechanosensation is a form of signal transduction in which mechanical forces are converted into neuronal signals. Specific mechanosensitive functions have been elucidated in functional ASIC1a, ASIC1b, ASIC2a, and ASIC3. The implications of mechanosensation in ASICs indicate their subsequent involvement in functions such as maintaining blood pressure, modulating the gastrointestinal function, and bladder micturition, and contributing to nociception. The underlying mechanism of ASIC mechanosensation is the tether-gate model, which uses a gating-spring mechanism to activate ASIC responses. Further understanding of the mechanism of ASICs will help in treatments for ASIC-related pathologies. Along with the well-known chemosensitive functions of ASICs, emerging evidence has revealed that mechanosensitive functions of ASICs are important for maintaining homeostasis and contribute to various disease conditions.
Collapse
|
41
|
Wei S, Qiu CY, Jin Y, Liu TT, Hu WP. TNF-α acutely enhances acid-sensing ion channel currents in rat dorsal root ganglion neurons via a p38 MAPK pathway. J Neuroinflammation 2021; 18:92. [PMID: 33853615 PMCID: PMC8048296 DOI: 10.1186/s12974-021-02151-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/07/2021] [Indexed: 12/31/2022] Open
Abstract
Background Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine involved in pain processing and hypersensitivity. It regulates not only the expression of a variety of inflammatory mediators but also the functional activity of some ion channels. Acid-sensing ion channels (ASICs), as key sensors for extracellular protons, are expressed in nociceptive sensory neurons and contribute to pain signaling caused by tissue acidosis. It is still unclear whether TNF-α has an effect on functional activity of ASICs. Herein, we reported that a brief exposure of TNF-α acutely sensitized ASICs in rat dorsal root ganglion (DRG) neurons. Methods Electrophysiological experiments on rat DRG neurons were performed in vitro and acetic acid induced nociceptive behavior quantified in vitro. Results A brief (5min) application of TNF-α rapidly enhanced ASIC-mediated currents in rat DRG neurons. TNF-α (0.1-10 ng/ml) dose-dependently increased the proton-evoked ASIC currents with an EC50 value of 0.12 ± 0.01 nM. TNF-α shifted the concentration-response curve of proton upwards with a maximal current response increase of 42.34 ± 7.89%. In current-clamp recording, an acute application of TNF-α also significantly increased acid-evoked firing in rat DRG neurons. The rapid enhancement of ASIC-mediated electrophysiological activity by TNF-α was prevented by p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190, but not by non-selective cyclooxygenase inhibitor indomethacin, suggesting that p38 MAPK is necessary for this enhancement. Behaviorally, TNF-α exacerbated acid-induced nociceptive behaviors in rats via activation of local p38 MAPK pathway. Conclusions These results suggest that TNF-α rapidly enhanced ASIC-mediated functional activity via a p38 MAPK pathway, which revealed a novel peripheral mechanism underlying TNF-α involvement in rapid hyperalgesia by sensitizing ASICs in primary sensory neurons.
Collapse
Affiliation(s)
- Shuang Wei
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China.,Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China
| | - Chun-Yu Qiu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China
| | - Ying Jin
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China
| | - Ting-Ting Liu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China
| | - Wang-Ping Hu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China.
| |
Collapse
|
42
|
Ma J, Wang FY, Xu L, Wang YF, Tang XD. Mechanism of mast cell-mediated COX2-PGE2-Eps signaling pathway in visceral hypersensitivity in irritable bowel syndrome. Shijie Huaren Xiaohua Zazhi 2021; 29:306-311. [DOI: 10.11569/wcjd.v29.i6.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder (FGID) whose pathophysiological mechanism is complex, involving genetic factors, psychosocial factors, low-grade mucosal inflammation, changes in the intestinal barrier, bacterial flora disorder, neuroimmune abnormalities, and high visceral sensitivity. In recent years, the mechanism of visceral hypersensitivity in IBS has become a hot research topic. Mast cells (MCs) are a group of immune cells that are distributed in the central nervous system and digestive system. The COX2-PGE2-Eps signaling pathway plays a major role in the visceral hypersensitivity in IBS, from peripheral sensitization to central sensitization, which provides a new idea for further clarifying the pathological mechanism of IBS.
Collapse
Affiliation(s)
- Jing Ma
- Graduate School of China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Feng-Yun Wang
- Department of Spleen and Stomach, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Lin Xu
- Graduate School of China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Yi-Fan Wang
- Peking University Traditional Chinese Medicine Clinical Medical School, Beijing 100091, China
| | - Xu-Dong Tang
- China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|