1
|
Lane BJ, Dionysopoulou M, Yan N, Lippiat JD, Muench SP, Pliotas C. The mechanosensitive channel YbiO has a conductance equivalent to the largest gated pore. Structure 2025; 33:652-662.e3. [PMID: 39919733 DOI: 10.1016/j.str.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/13/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025]
Abstract
Bacterial mechanosensitive channels are divided into large (MscL) and small (MscS-like) conductance families. The function of MscS and MscL is to protect cells against osmotic shock by acting as pressure safety valves. Within the MscS-like family, E. coli encodes much larger channels, such as YbiO, MscK, and MscM, but their physiological role remains unclear. Compared to MscL their conductances are reported as 3-10 times lower. We show that YbiO can achieve a conductance of ∼3 nS, and an equivalent pore opening of > 25 Å in diameter, equaling the known largest gated pore, MscL. We determine a cryoelectron microscopy (cryo-EM) structure of YbiO in a sub-open conformation, demonstrating the existence of multiple substates. One substate is consistent with the pore opening extent of our structure and the other matches states previously thought to resemble full openings. Our findings demonstrate surprising capabilities, hinting at new physiological roles for YbiO and potentially other MscS-like channels.
Collapse
Affiliation(s)
- Benjamin J Lane
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Aston Institute for Membrane Excellence, Aston University, Birmingham B4 7ET, UK
| | - Mariangela Dionysopoulou
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Nana Yan
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jonathan D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Stephen P Muench
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Christos Pliotas
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
2
|
Evangelisti E, Govers F. Roadmap to Success: How Oomycete Plant Pathogens Invade Tissues and Deliver Effectors. Annu Rev Microbiol 2024; 78:493-512. [PMID: 39227351 DOI: 10.1146/annurev-micro-032421-121423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Filamentous plant pathogens threaten global food security and ecosystem resilience. In recent decades, significant strides have been made in deciphering the molecular basis of plant-pathogen interactions, especially the interplay between pathogens' molecular weaponry and hosts' defense machinery. Stemming from interdisciplinary investigations into the infection cell biology of filamentous plant pathogens, recent breakthrough discoveries have provided a new impetus to the field. These advances include the biophysical characterization of a novel invasion mechanism (i.e., naifu invasion) and the unraveling of novel effector secretion routes. On the plant side, progress includes the identification of components of cellular networks involved in the uptake of intracellular effectors. This exciting body of research underscores the pivotal role of logistics management by the pathogen throughout the infection cycle, encompassing the precolonization stages up to tissue invasion. More insight into these logistics opens new avenues for developing environmentally friendly crop protection strategies in an era marked by an imperative to reduce the use of agrochemicals.
Collapse
Affiliation(s)
- Edouard Evangelisti
- Current affiliation: Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France;
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands;
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands;
| |
Collapse
|
3
|
Lane BJ, Ma Y, Yan N, Wang B, Ackermann K, Karamanos TK, Bode BE, Pliotas C. Monitoring the conformational ensemble and lipid environment of a mechanosensitive channel under cyclodextrin-induced membrane tension. Structure 2024; 32:739-750.e4. [PMID: 38521071 DOI: 10.1016/j.str.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/29/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Membrane forces shift the equilibria of mechanosensitive channels enabling them to convert mechanical cues into electrical signals. Molecular tools to stabilize and methods to capture their highly dynamic states are lacking. Cyclodextrins can mimic tension through the sequestering of lipids from membranes. Here we probe the conformational ensemble of MscS by EPR spectroscopy, the lipid environment with NMR, and function with electrophysiology under cyclodextrin-induced tension. We show the extent of MscS activation depends on the cyclodextrin-to-lipid ratio, and that lipids are depleted slower when MscS is present. This has implications in MscS' activation kinetics when distinct membrane scaffolds such as nanodiscs or liposomes are used. We find MscS transits from closed to sub-conducting state(s) before it desensitizes, due to the lack of lipid availability in its vicinity required for closure. Our approach allows for monitoring tension-sensitive states in membrane proteins and screening molecules capable of inducing molecular tension in bilayers.
Collapse
Affiliation(s)
- Benjamin J Lane
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Yue Ma
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Nana Yan
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Bolin Wang
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, St Andrews KY16 9ST, UK
| | - Theodoros K Karamanos
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Bela E Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, St Andrews KY16 9ST, UK
| | - Christos Pliotas
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK; Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
4
|
Pajić T, Stevanović K, Todorović NV, Krmpot AJ, Živić M, Savić-Šević S, Lević SM, Stanić M, Pantelić D, Jelenković B, Rabasović MD. In vivo femtosecond laser nanosurgery of the cell wall enabling patch-clamp measurements on filamentous fungi. MICROSYSTEMS & NANOENGINEERING 2024; 10:47. [PMID: 38590818 PMCID: PMC10999429 DOI: 10.1038/s41378-024-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 04/10/2024]
Abstract
Studying the membrane physiology of filamentous fungi is key to understanding their interactions with the environment and crucial for developing new therapeutic strategies for disease-causing pathogens. However, their plasma membrane has been inaccessible for a micron-sized patch-clamp pipette for pA current recordings due to the rigid chitinous cell wall. Here, we report the first femtosecond IR laser nanosurgery of the cell wall of the filamentous fungi, which enabled patch-clamp measurements on protoplasts released from hyphae. A reproducible and highly precise (diffraction-limited, submicron resolution) method for obtaining viable released protoplasts was developed. Protoplast release from the nanosurgery-generated incisions in the cell wall was achieved from different regions of the hyphae. The plasma membrane of the obtained protoplasts formed tight and high-resistance (GΩ) contacts with the recording pipette. The entire nanosurgical procedure followed by the patch-clamp technique could be completed in less than 1 hour. Compared to previous studies using heterologously expressed channels, this technique provides the opportunity to identify new ionic currents and to study the properties of the ion channels in the protoplasts of filamentous fungi in their native environment.
Collapse
Grants
- Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja (Ministry of Education, Science and Technological Development of the Republic of Serbia)
- This work was supported by the Ministry of Science, Technological Development and Innovations, Republic of Serbia [contract number: 451-03-47/2023-01/200178]; The Project Advanced Biophysical Methods for Soil Targeted Fungi-Based Biocontrol Agents - BioPhysFUN [Grant number 4545] from Program DEVELOPMENT – Green program of cooperation between science and industry, Science Fund of the Republic of Serbia
- This work was supported by the Ministry of Science, Technological Development and Innovations, Republic of Serbia [contract number: 451-03-47/2023-01/200007]; The Project Advanced Biophysical Methods for Soil Targeted Fungi-Based Biocontrol Agents - BioPhysFUN [Grant number 4545] from Program DEVELOPMENT – Green program of cooperation between science and industry, Science Fund of the Republic of Serbia
- The Project Advanced Biophysical Methods for Soil Targeted Fungi-Based Biocontrol Agents - BioPhysFUN [Grant number 4545] from Program DEVELOPMENT – Green program of cooperation between science and industry, Science Fund of the Republic of Serbia; the Project HEMMAGINERO [Grant number 6066079] from Program PROMIS, Science Fund of the Republic of Serbia; and the Institute of Physics Belgrade, through the grant by the Ministry of Science, Technological Development and Innovations of the Republic of Serbia.
- The Institute of Physics Belgrade, through the grant by the Ministry of Science, Technological Development and Innovations of the Republic of Serbia
Collapse
Affiliation(s)
- Tanja Pajić
- Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
| | - Katarina Stevanović
- Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
| | - Nataša V. Todorović
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Aleksandar J. Krmpot
- Institute of Physics Belgrade, University of Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| | - Miroslav Živić
- Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
| | - Svetlana Savić-Šević
- Institute of Physics Belgrade, University of Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| | - Steva M. Lević
- University of Belgrade, Faculty of Agriculture, Nemanjina Street 6, 11080 Belgrade, Serbia
| | - Marina Stanić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Dejan Pantelić
- Institute of Physics Belgrade, University of Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| | - Brana Jelenković
- Institute of Physics Belgrade, University of Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| | - Mihailo D. Rabasović
- Institute of Physics Belgrade, University of Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| |
Collapse
|
5
|
Stevanović KS, Čepkenović B, Križak S, Živić MŽ, Todorović NV. Osmotically Activated Anion Current of Phycomyces Blakesleeanus-Filamentous Fungi Counterpart to Vertebrate Volume Regulated Anion Current. J Fungi (Basel) 2023; 9:637. [PMID: 37367573 DOI: 10.3390/jof9060637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Studies of ion currents in filamentous fungi are a prerequisite for forming a complete understanding of their physiology. Cytoplasmic droplets (CDs), obtained from sporangiophores of Phycomyces blakesleeanus, are a model system that enables the characterization of ion currents in the native membrane, including the currents mediated by the channels not yet molecularly identified. Osmotically activated anionic current with outward rectification (ORIC) is a dominant current in the membrane of cytoplasmic droplets under the conditions of hypoosmotic stimulation. We have previously reported remarkable functional similarities of ORIC with the vertebrate volume regulated anionic current (VRAC), such as dose-dependent activation by osmotic difference, ion selectivity sequence, and time and voltage dependent profile of the current. Using the patch clamp method on the CD membrane, we further resolve VRAC-like ORIC characteristics in this paper. We examine the inhibition by extracellular ATP and carbenoxolone, the permeation of glutamate in presence of chloride, selectivity for nitrates, and activation by GTP, and we show its single channel behavior in excised membrane. We propose that ORIC is a functional counterpart of vertebrate VRAC in filamentous fungi, possibly with a similar essential role in anion efflux during cell volume regulation.
Collapse
Affiliation(s)
- Katarina S Stevanović
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Bogdana Čepkenović
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Strahinja Križak
- Institute of Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Miroslav Ž Živić
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Nataša V Todorović
- Institute of Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Nakayama Y, Rohde PR, Martinac B. "Force-From-Lipids" Dependence of the MscCG Mechanosensitive Channel Gating on Anionic Membranes. Microorganisms 2023; 11:microorganisms11010194. [PMID: 36677485 PMCID: PMC9861469 DOI: 10.3390/microorganisms11010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Mechanosensory transduction in Corynebacterium glutamicum plays a major role in glutamate efflux for industrial MSG, whose production depends on the activation of MscCG-type mechanosensitive channels. Dependence of the MscCG channel activation by membrane tension on the membrane lipid content has to date not been functionally characterized. Here, we report the MscCG channel patch clamp recording from liposomes fused with C. glutamicum membrane vesicles as well as from proteoliposomes containing the purified MscCG protein. Our recordings demonstrate that mechanosensitivity of MscCG channels depends significantly on the presence of negatively charged lipids in the proteoliposomes. MscCG channels in liposome preparations fused with native membrane vesicles exhibited the activation threshold similar to the channels recorded from C. glutamicum giant spheroplasts. In comparison, the activation threshold of the MscCG channels reconstituted into azolectin liposomes was higher than the activation threshold of E. coli MscL, which is gated by membrane tension close to the bilayer lytic tension. The spheroplast-like activation threshold was restored when the MscCG channels were reconstituted into liposomes made of E. coli polar lipid extract. In liposomes made of polar lipids mixed with synthetic phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin, the activation threshold of MscCG was significantly reduced compared to the activation threshold recorded in azolectin liposomes, which suggests the importance of anionic lipids for the channel mechanosensitivity. Moreover, the micropipette aspiration technique combined with patch fluorometry demonstrated that membranes containing anionic phosphatidylglycerol are softer than membranes containing only polar non-anionic phosphatidylcholine and phosphatidylethanolamine. The difference in mechanosensitivity between C. glutamicum MscCG and canonical MscS of E. coli observed in proteoliposomes explains the evolutionary tuning of the force from lipids sensing in various bacterial membrane environments.
Collapse
Affiliation(s)
- Yoshitaka Nakayama
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
- Faculty of Medicine, St Vincent’s Clinical School, The University of New South Wales, Sydney 2010, Australia
| | - Paul R. Rohde
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
- Faculty of Medicine, St Vincent’s Clinical School, The University of New South Wales, Sydney 2010, Australia
- Correspondence: ; Tel.: +61-2-9295-8743
| |
Collapse
|